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PREFACE
Welcome to Physics, an OpenStax resource. This textbook
was written to increase student access to high-quality
learning materials, maintaining highest standards of
academic rigor at little to no cost.

About OpenStax
OpenStax is a nonprofit based at Rice University, and it’s our
mission to improve student access to education. Our first
openly licensed college textbook was published in 2012 and
our library has since scaled to over 25 books for college and
AP® courses used by hundreds of thousands of students.
OpenStax Tutor, our low-cost personalized learning tool, is
being used in college courses throughout the country.
Through our partnerships with philanthropic foundations
and our alliance with other educational resource
organizations, OpenStax is breaking down the most
common barriers to learning and empowering students and
instructors to succeed.

About OpenStax resources
Customization
Physics is licensed under a Creative Commons Attribution
4.0 International (CC BY) license, which means that you can
distribute, remix, and build upon the content, as long as you
provide attribution to OpenStax and its content
contributors.

Because our books are openly licensed, you are free to use
the entire book or pick and choose the sections that are most
relevant to the needs of your course. Feel free to remix the
content by assigning your students certain chapters and
sections in your syllabus, in the order that you prefer. You
can even provide a direct link in your syllabus to the sections
in the web view of your book.

Instructors also have the option of creating a customized
version of their OpenStax book. The custom version can be
made available to students in low-cost print or digital form
through their campus bookstore. Visit your book page on
OpenStax.org for more information.

Art Atrribution in Physics
In Physics, most art contains attribution to its title, creator
or rights holder, host platform, and license within the
caption. For art that is openly licensed, anyone may reuse the
art as long as they provide the same attribution to its original
source. Some art has been provided through permissions
and should only be used with the attribution or limitations
provided in the credit.

Errata
All OpenStax textbooks undergo a rigorous review process.
However, like any professional-grade textbook, errors
sometimes occur. The good part is, since our books are web-
based, we can make updates periodically. If you have a
correction to suggest, submit it through our errata reporting
tool. We will review your suggestion and make necessary
changes.

Format
You can access this textbook for free in web view or PDF
through OpenStax.org, and for a low cost in print.

About Physics
This instructional material was initially created through a
Texas Education Agency (TEA) initiative to provide high-
quality open-source instructional materials to districts free
of charge. Funds were allocated by the 84th Texas Legislature
(2015) for the creation of state-developed, open-source
instructional materials with the request that advanced
secondary courses supporting the study of science,
technology, engineering, and mathematics should be
prioritized.

Physics covers the scope and sequence requirements of a
typical one-year physics course. The text provides
comprehensive coverage of physical concepts, quantitative
examples and skills, and interesting applications. High
School Physics has been designed to meet and exceed the
requirements of the relevant Texas Essential Knowledge and
Skills (TEKS (http://ritter.tea.state.tx.us/rules/tac/
chapter112/ch112c.html#112.39) ), while allowing significant
flexibility for instructors.

Qualified and experienced Texas faculty were involved
throughout the development process, and the textbooks were
reviewed extensively to ensure effectiveness and usability in
each course. Reviewers considered each resource’s clarity,
accuracy, student support, assessment rigor and
appropriateness, alignment to TEKS, and overall quality.
Their invaluable suggestions provided the basis for
continually improved material and helped to certify that the
books are ready for use. The writers and reviewers also
considered common course issues, effective teaching
strategies, and student engagement to provide instructors
and students with useful, supportive content and drive
effective learning experiences.

Coverage and scope
Physics presents physical laws, research, concepts, and skills
in a logical and engaging progression that should be familiar
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to most physics faculty. The textbook begins with a general
introduction to physics and scientific processes, which is
followed by several chapters on motion and Newton’s laws.
After mechanics, the students will move through
thermodynamics, waves and sound, and light and optics.
Electricity and magnetism and nuclear physics complete the
textbook.

• Chapter 1: What Is Physics?
• Chapter 2: Motion in One Dimension
• Chapter 3: Acceleration
• Chapter 4: Forces and Newton’s Laws of Motion
• Chapter 5: Motion in Two Dimensions
• Chapter 6: Circular and Rotational Motion
• Chapter 7: Newton’s Law of Gravitation
• Chapter 8: Momentum
• Chapter 9: Work, Energy, and Simple Machines
• Chapter 10: Special Relativity
• Chapter 11: Thermal Energy, Heat, and Work
• Chapter 12: Thermodynamics
• Chapter 13: Waves and Their Properties
• Chapter 14: Sound
• Chapter 15: Light
• Chapter 16: Mirrors and Lenses
• Chapter 17: Diffraction and Interference
• Chapter 18: Static Electricity
• Chapter 19: Electrical Circuits
• Chapter 20: Magnetism
• Chapter 21: The Quantum Nature of Light
• Chapter 22: The Atom
• Chapter 23: Particle Physics

Flexibility
Like any OpenStax content, this textbook can be modified as
needed for use by the instructor depending on the needs of
the students in the course. Each set of materials created by
OpenStax is organized into units and chapters and can be
used like a traditional textbook as the entire syllabus for each
course. The materials can also be accessed in smaller chunks
for more focused use with a single student or an entire class.
Instructors are welcome to download and assign the PDF
version of the textbook through a learning management
system or can use their LMS to link students to specific
chapters and sections of the book relevant to the concept
being studied. The entire textbook will be available during
the fall of 2020 in an editable Google document, and until
then instructors are welcome to copy and paste content from
the textbook to modify as needed prior to instruction.

Student-centered focus
Physics uses a friendly voice and exciting examples that
appeal to a high school audience. The Chapter Openers, for
example, include thought-provoking photographs and
introductions that connect the content to experiences
relevant to student’s lives. The writing in our program has

been developed with universal design in mind to ensure
students of all different backgrounds are reached. Content
can be accessed through engaging text, informative visuals,
hands-on activities, and online simulations. This diversity of
learning media presents a wealth of reinforcement
opportunities that allow students to review material in a new
and fresh way.

Features
• Snap Labs: Give students the opportunity to experience

physics through hands-on activities. The labs can be
completed quickly and rely primarily on readily available
materials so that students can do them at home as they read.

• Worked Examples: Promote both analytical and conceptual
skills. In each example, the scenario/application is first
introduced, followed by a description of the strategy used to
solve the problem that emphasizes the concepts involved.
These are followed by a fully worked mathematical solution
and a discussion of the results.

• Fun in Physics: Features physics applications in various
entertainment industries.

• Work in Physics: Students can explore careers in physics as
well as other careers that routinely employ physics.

• Boundless Physics: Reveal frontiers in physical knowledge
and descriptions of cutting-edge discoveries in physics.

• Links to Physics: Highlight connections of physics to other
disciplines.

• Watch Physics: Support student’s understanding of
conceptual and computational skills using videos from Khan
Academy.

• Virtual Physics: Provide inquiry and discovery-based
learning by providing a virtual “sandbox” where students can
experiment with simulated physics scenarios and equipment
using the University of Colorado-developed PhET
simulations.

• Tips for Success: Offer students advice on how to approach
content or problems.

Practice and Assessment
• Grasp Checks: Formative assessments that review the

comprehension of concepts and skills addressed through
reading features, interactive features, and snap labs.

• Practice Problems: Challenge students to apply concepts and
skills they have seen in a Worked Example to solve a
problem.

• Check Your Understanding: Conceptual questions that,
together with the practice problems, provide formative
assessment on key topics in each section.

• Performance Tasks: Challenge students to apply the content
and skills they have learned to find a solution to a practical
situation.

• Test Prep: Helps prepare students to successfully respond to
the format and rigor of standardized tests. The test prep
includes multiple choice, short answer, and extended
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response items.

Additional resources
Student and instructor resources
We’ve compiled additional resources for both students and 
instructors, including Getting Started Guides, PowerPoint 
slides, and an instructor answer guide. Instructor resources 
require a verified instructor account, which you can apply for 
when you log in or create your account on OpenStax.org. 
Take advantage of these resources to supplement your 
OpenStax book.

Partner resources
OpenStax Partners are our allies in the mission to make 
high-quality learning materials affordable and accessible to 
students and instructors everywhere. Their tools integrate 
seamlessly with our OpenStax titles at a low cost. To access 
the partner resources for your text, visit your book page on 
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INTRODUCTION

CHAPTER 1
What is Physics?

1.1 Physics: Definitions and Applications

1.2 The Scientific Methods

1.3 The Language of Physics: Physical Quantities and Units

Take a look at the image above of the Andromeda Galaxy (Figure 1.1), which contains billions of stars. This
galaxy is the nearest one to our own galaxy (the Milky Way) but is still a staggering 2.5 million light years from Earth. (A light
year is a measurement of the distance light travels in a year.) Yet, the primary force that affects the movement of stars within
Andromeda is the same force that we contend with here on Earth—namely, gravity.

You may soon realize that physics plays a much larger role in your life than you thought. This section introduces you to the realm
of physics, and discusses applications of physics in other disciplines of study. It also describes the methods by which science is
done, and how scientists communicate their results to each other.

1.1 Physics: Definitions and Applications
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the definition, aims, and branches of physics
• Describe and distinguish classical physics from modern physics and describe the importance of relativity,

quantum mechanics, and relativistic quantum mechanics in modern physics
• Describe how aspects of physics are used in other sciences (e.g., biology, chemistry, geology, etc.) as well as in

everyday technology

Figure 1.1 Galaxies, such as the Andromeda galaxy pictured here, are immense in size. The small blue spots in this
photo are also galaxies. The same physical laws apply to objects as large as galaxies or objects as small as atoms.
The laws of physics are, therefore, surprisingly few in number. (NASA, JPL-Caltech, P. Barmby, Harvard-Smithsonian
Center for Astrophysics).

Chapter Outline



Section Key Terms

atom classical physics modern physics

physics quantum mechanics theory of relativity

What Physics Is
Think about all of the technological devices that you use on a regular basis. Computers, wireless internet, smart phones, tablets,
global positioning system (GPS), MP3 players, and satellite radio might come to mind. Next, think about the most exciting
modern technologies that you have heard about in the news, such as trains that levitate above their tracks, invisibility cloaks that
bend light around them, and microscopic robots that fight diseased cells in our bodies. All of these groundbreaking
advancements rely on the principles of physics.

Physics is a branch of science. The word science comes from a Latin word that means having knowledge, and refers the
knowledge of how the physical world operates, based on objective evidence determined through observation and
experimentation. A key requirement of any scientific explanation of a natural phenomenon is that it must be testable; one must
be able to devise and conduct an experimental investigation that either supports or refutes the explanation. It is important to
note that some questions fall outside the realm of science precisely because they deal with phenomena that are not scientifically
testable. This need for objective evidence helps define the investigative process scientists follow, which will be described later in
this chapter.

Physics is the science aimed at describing the fundamental aspects of our universe. This includes what things are in it, what
properties of those things are noticeable, and what processes those things or their properties undergo. In simpler terms, physics
attempts to describe the basic mechanisms that make our universe behave the way it does. For example, consider a smart phone
(Figure 1.2). Physics describes how electric current interacts with the various circuits inside the device. This knowledge helps
engineers select the appropriate materials and circuit layout when building the smart phone. Next, consider a GPS. Physics
describes the relationship between the speed of an object, the distance over which it travels, and the time it takes to travel that
distance. When you use a GPS device in a vehicle, it utilizes these physics relationships to determine the travel time from one
location to another.

6 Chapter 1 • What is Physics?
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Figure 1.2 Physics describes the way that electric charge flows through the circuits of this device. Engineers use their knowledge of physics

to construct a smartphone with features that consumers will enjoy, such as a GPS function. GPS uses physics equations to determine the

driving time between two locations on a map. (@gletham GIS, Social, Mobile Tech Images)

As our technology evolved over the centuries, physics expanded into many branches. Ancient peoples could only study things
that they could see with the naked eye or otherwise experience without the aid of scientific equipment. This included the study
of kinematics, which is the study of moving objects. For example, ancient people often studied the apparent motion of objects in
the sky, such as the sun, moon, and stars. This is evident in the construction of prehistoric astronomical observatories, such as
Stonehenge in England (shown in Figure 1.3).

Figure 1.3 Stonehenge is a monument located in England that was built between 3000 and 1000 B.C. It functions as an ancient

astronomical observatory, with certain rocks in the monument aligning with the position of the sun during the summer and winter solstices.

Other rocks align with the rising and setting of the moon during certain days of the year. (Citypeek, Wikimedia Commons)

Ancient people also studied statics and dynamics, which focus on how objects start moving, stop moving, and change speed and
direction in response to forces that push or pull on the objects. This early interest in kinematics and dynamics allowed humans
to invent simple machines, such as the lever, the pulley, the ramp, and the wheel. These simple machines were gradually
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combined and integrated to produce more complicated machines, such as wagons and cranes. Machines allowed humans to
gradually do more work more effectively in less time, allowing them to create larger and more complicated buildings and
structures, many of which still exist today from ancient times.

As technology advanced, the branches of physics diversified even more. These include branches such as acoustics, the study of
sound, and optics, the study of the light. In 1608, the invention of the telescope by a Germany spectacle maker, Hans Lippershey,
led to huge breakthroughs in astronomy—the study of objects or phenomena in space. One year later, in 1609, Galileo Galilei
began the first studies of the solar system and the universe using a telescope. During the Renaissance era, Isaac Newton used
observations made by Galileo to construct his three laws of motion. These laws were the standard for studying kinematics and
dynamics even today.

Another major branch of physics is thermodynamics, which includes the study of thermal energy and the transfer of heat. James
Prescott Joule, an English physicist, studied the nature of heat and its relationship to work. Joule’s work helped lay the
foundation for the first of three laws of thermodynamics that describe how energy in our universe is transferred from one object
to another or transformed from one form to another. Studies in thermodynamics were motivated by the need to make engines
more efficient, keep people safe from the elements, and preserve food.

The 18th and 19th centuries also saw great strides in the study of electricity and magnetism. Electricity involves the study of
electric charges and their movements. Magnetism had long ago been noticed as an attractive force between a magnetized object
and a metal like iron, or between the opposite poles (North and South) of two magnetized objects. In 1820, Danish physicist
Hans Christian Oersted showed that electric currents create magnetic fields. In 1831, English inventor Michael Faraday showed
that moving a wire through a magnetic field could induce an electric current. These studies led to the inventions of the electric
motor and electric generator, which revolutionized human life by bringing electricity and magnetism into our machines.

The end of the 19th century saw the discovery of radioactive substances by the French scientists Marie and Pierre Curie. Nuclear
physics involves studying the nuclei of atoms, the source of nuclear radiation. In the 20th century, the study of nuclear physics
eventually led to the ability to split the nucleus of an atom, a process called nuclear fission. This process is the basis for nuclear
power plants and nuclear weapons. Also, the field of quantum mechanics, which involves the mechanics of atoms and
molecules, saw great strides during the 20th century as our understanding of atoms and subatomic particles increased (see
below).

Early in the 20th century, Albert Einstein revolutionized several branches of physics, especially relativity. Relativity
revolutionized our understanding of motion and the universe in general as described further in this chapter. Now, in the 21st

century, physicists continue to study these and many other branches of physics.

By studying the most important topics in physics, you will gain analytical abilities that will enable you to apply physics far
beyond the scope of what can be included in a single book. These analytical skills will help you to excel academically, and they will
also help you to think critically in any career you choose to pursue.

Physics: Past and Present
The word physics is thought to come from the Greek word phusis, meaning nature. The study of nature later came to be called
natural philosophy. From ancient times through the Renaissance, natural philosophy encompassed many fields, including
astronomy, biology, chemistry, mathematics, and medicine. Over the last few centuries, the growth of scientific knowledge has
resulted in ever-increasing specialization and branching of natural philosophy into separate fields, with physics retaining the
most basic facets. Physics, as it developed from the Renaissance to the end of the 19th century, is called classical physics.
Revolutionary discoveries starting at the beginning of the 20th century transformed physics from classical physics to modern
physics.

Classical physics is not an exact description of the universe, but it is an excellent approximation under the following conditions:
(1) matter must be moving at speeds less than about 1 percent of the speed of light, (2) the objects dealt with must be large
enough to be seen with the naked eye, and (3) only weak gravity, such as that generated by Earth, can be involved. Very small
objects, such as atoms and molecules, cannot be adequately explained by classical physics. These three conditions apply to
almost all of everyday experience. As a result, most aspects of classical physics should make sense on an intuitive level.

Many laws of classical physics have been modified during the 20th century, resulting in revolutionary changes in technology,
society, and our view of the universe. As a result, many aspects of modern physics, which occur outside of the range of our
everyday experience, may seem bizarre or unbelievable. So why is most of this textbook devoted to classical physics? There are
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two main reasons. The first is that knowledge of classical physics is necessary to understand modern physics. The second reason
is that classical physics still gives an accurate description of the universe under a wide range of everyday circumstances.

Modern physics includes two revolutionary theories: relativity and quantum mechanics. These theories deal with the very fast
and the very small, respectively. The theory of relativity was developed by Albert Einstein in 1905. By examining how two
observers moving relative to each other would see the same phenomena, Einstein devised radical new ideas about time and
space. He came to the startling conclusion that the measured length of an object travelling at high speeds (greater than about
one percent of the speed of light) is shorter than the same object measured at rest. Perhaps even more bizarre is the idea the
time for the same process to occur is different depending on the motion of the observer. Time passes more slowly for an object
travelling at high speeds. A trip to the nearest star system, Alpha Centauri, might take an astronaut 4.5 Earth years if the ship
travels near the speed of light. However, because time is slowed at higher speeds, the astronaut would age only 0.5 years during
the trip. Einstein’s ideas of relativity were accepted after they were confirmed by numerous experiments.

Gravity, the force that holds us to Earth, can also affect time and space. For example, time passes more slowly on Earth’s surface
than for objects farther from the surface, such as a satellite in orbit. The very accurate clocks on global positioning satellites have
to correct for this. They slowly keep getting ahead of clocks at Earth’s surface. This is called time dilation, and it occurs because
gravity, in essence, slows down time.

Large objects, like Earth, have strong enough gravity to distort space. To visualize this idea, think about a bowling ball placed on
a trampoline. The bowling ball depresses or curves the surface of the trampoline. If you rolled a marble across the trampoline, it
would follow the surface of the trampoline, roll into the depression caused by the bowling ball, and hit the ball. Similarly, the
Earth curves space around it in the shape of a funnel. These curves in space due to the Earth cause objects to be attracted to
Earth (i.e., gravity).

Because of the way gravity affects space and time, Einstein stated that gravity affects the space-time continuum, as illustrated in
Figure 1.4. This is why time proceeds more slowly at Earth’s surface than in orbit. In black holes, whose gravity is hundreds of
times that of Earth, time passes so slowly that it would appear to a far-away observer to have stopped!

Figure 1.4 Einstein’s theory of relativity describes space and time as an interweaved mesh. Large objects, such as a planet, distort space,

causing objects to fall in toward the planet due to the action of gravity. Large objects also distort time, causing time to proceed at a slower

rate near the surface of Earth compared with the area outside of the distorted region of space-time.

In summary, relativity says that in describing the universe, it is important to realize that time, space and speed are not absolute.
Instead, they can appear different to different observers. Einstein’s ability to reason out relativity is even more amazing because
we cannot see the effects of relativity in our everyday lives.

Quantum mechanics is the second major theory of modern physics. Quantum mechanics deals with the very small, namely, the
subatomic particles that make up atoms. Atoms (Figure 1.5) are the smallest units of elements. However, atoms themselves are
constructed of even smaller subatomic particles, such as protons, neutrons and electrons. Quantum mechanics strives to
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describe the properties and behavior of these and other subatomic particles. Often, these particles do not behave in the ways
expected by classical physics. One reason for this is that they are small enough to travel at great speeds, near the speed of light.

Figure 1.5 Using a scanning tunneling microscope (STM), scientists can see the individual atoms that compose this sheet of gold.

(Erwinrossen)

At particle colliders (Figure 1.6), such as the Large Hadron Collider on the France-Swiss border, particle physicists can make
subatomic particles travel at very high speeds within a 27 kilometers (17 miles) long superconducting tunnel. They can then study
the properties of the particles at high speeds, as well as collide them with each other to see how they exchange energy. This has
led to many intriguing discoveries such as the Higgs-Boson particle, which gives matter the property of mass, and antimatter,
which causes a huge energy release when it comes in contact with matter.

Figure 1.6 Particle colliders such as the Large Hadron Collider in Switzerland or Fermilab in the United States (pictured here), have long

tunnels that allows subatomic particles to be accelerated to near light speed. (Andrius.v )

Physicists are currently trying to unify the two theories of modern physics, relativity and quantum mechanics, into a single,
comprehensive theory called relativistic quantum mechanics. Relating the behavior of subatomic particles to gravity, time, and
space will allow us to explain how the universe works in a much more comprehensive way.

Application of Physics
You need not be a scientist to use physics. On the contrary, knowledge of physics is useful in everyday situations as well as in
nonscientific professions. For example, physics can help you understand why you shouldn’t put metal in the microwave (Figure
1.7), why a black car radiator helps remove heat in a car engine, and why a white roof helps keep the inside of a house cool. The
operation of a car’s ignition system, as well as the transmission of electrical signals through our nervous system, are much
easier to understand when you think about them in terms of the basic physics of electricity.

Figure 1.7 Why can't you put metal in the microwave? Microwaves are high-energy radiation that increases the movement of electrons in
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metal. These moving electrons can create an electrical current, causing sparking that can lead to a fire. (= MoneyBlogNewz)

Physics is the foundation of many important scientific disciplines. For example, chemistry deals with the interactions of atoms
and molecules. Not surprisingly, chemistry is rooted in atomic and molecular physics. Most branches of engineering are also
applied physics. In architecture, physics is at the heart of determining structural stability, acoustics, heating, lighting, and
cooling for buildings. Parts of geology, the study of nonliving parts of Earth, rely heavily on physics; including radioactive
dating, earthquake analysis, and heat transfer across Earth’s surface. Indeed, some disciplines, such as biophysics and
geophysics, are hybrids of physics and other disciplines.

Physics also describes the chemical processes that power the human body. Physics is involved in medical diagnostics, such as x-
rays, magnetic resonance imaging (MRI), and ultrasonic blood flow measurements (Figure 1.8). Medical therapy Physics also has
many applications in biology, the study of life. For example, physics describes how cells can protect themselves using their cell
walls and cell membranes (Figure 1.9). Medical therapy sometimes directly involves physics, such as in using X-rays to diagnose
health conditions. Physics can also explain what we perceive with our senses, such as how the ears detect sound or the eye
detects color.

Figure 1.8 Magnetic resonance imaging (MRI) uses electromagnetic waves to yield an image of the brain, which doctors can use to find

diseased regions. (Rashmi Chawla, Daniel Smith, and Paul E. Marik)

Figure 1.9 Physics, chemistry, and biology help describe the properties of cell walls in plant cells, such as the onion cells seen here.

(Umberto Salvagnin)

BOUNDLESS PHYSICS

The Physics of Landing on a Comet
On November 12, 2014, the European Space Agency’s Rosetta spacecraft (shown in Figure 1.10) became the first ever to reach and
orbit a comet. Shortly after, Rosetta’s rover, Philae, landed on the comet, representing the first time humans have ever landed a
space probe on a comet.
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Figure 1.10 The Rosetta spacecraft, with its large and revolutionary solar panels, carried the Philae lander to a comet. The lander then

detached and landed on the comet’s surface. (European Space Agency)

After traveling 6.4 billion kilometers starting from its launch on Earth, Rosetta landed on the comet 67P/Churyumov-
Gerasimenko, which is only 4 kilometers wide. Physics was needed to successfully plot the course to reach such a small, distant,
and rapidly moving target. Rosetta’s path to the comet was not straight forward. The probe first had to travel to Mars so that
Mars’s gravity could accelerate it and divert it in the exact direction of the comet.

This was not the first time humans used gravity to power our spaceships. Voyager 2, a space probe launched in 1977, used the
gravity of Saturn to slingshot over to Uranus and Neptune (illustrated in Figure 1.11), providing the first pictures ever taken of
these planets. Now, almost 40 years after its launch, Voyager 2 is at the very edge of our solar system and is about to enter
interstellar space. Its sister ship, Voyager 1 (illustrated in Figure 1.11), which was also launched in 1977, is already there.

To listen to the sounds of interstellar space or see images that have been transmitted back from the Voyager I or to learn more
about the Voyager mission, visit the Voyager’s Mission website (https://openstax.org/l/28voyager) .

Figure 1.11 a) Voyager 2, launched in 1977, used the gravity of Saturn to slingshot over to Uranus and Neptune. NASA b) A rendering of

Voyager 1, the first space probe to ever leave our solar system and enter interstellar space. NASA

Both Voyagers have electrical power generators based on the decay of radioisotopes. These generators have served them for
almost 40 years. Rosetta, on the other hand, is solar-powered. In fact, Rosetta became the first space probe to travel beyond the
asteroid belt by relying only on solar cells for power generation.

At 800 million kilometers from the sun, Rosetta receives sunlight that is only 4 percent as strong as on Earth. In addition, it is
very cold in space. Therefore, a lot of physics went into developing Rosetta’s low-intensity low-temperature solar cells.

In this sense, the Rosetta project nicely shows the huge range of topics encompassed by physics: from modeling the movement
of gigantic planets over huge distances within our solar systems, to learning how to generate electric power from low-intensity
light. Physics is, by far, the broadest field of science.

GRASP CHECK
What characteristics of the solar system would have to be known or calculated in order to send a probe to a distant planet,
such as Jupiter?
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a. the effects due to the light from the distant stars
b. the effects due to the air in the solar system
c. the effects due to the gravity from the other planets
d. the effects due to the cosmic microwave background radiation

In summary, physics studies many of the most basic aspects of science. A knowledge of physics is, therefore, necessary to
understand all other sciences. This is because physics explains the most basic ways in which our universe works. However, it is
not necessary to formally study all applications of physics. A knowledge of the basic laws of physics will be most useful to you, so
that you can use them to solve some everyday problems. In this way, the study of physics can improve your problem-solving
skills.

Check Your Understanding
1. Which of the following is not an essential feature of scientific explanations?

a. They must be subject to testing.
b. They strictly pertain to the physical world.
c. Their validity is judged based on objective observations.
d. Once supported by observation, they can be viewed as a fact.

2. Which of the following does not represent a question that can be answered by science?
a. How much energy is released in a given nuclear chain reaction?
b. Can a nuclear chain reaction be controlled?
c. Should uncontrolled nuclear reactions be used for military applications?
d. What is the half-life of a waste product of a nuclear reaction?

3. What are the three conditions under which classical physics provides an excellent description of our universe?
a. 1. Matter is moving at speeds less than about 1 percent of the speed of light

2. Objects dealt with must be large enough to be seen with the naked eye.
3. Strong electromagnetic fields are involved.

b. 1. Matter is moving at speeds less than about 1 percent of the speed of light.
2. Objects dealt with must be large enough to be seen with the naked eye.
3. Only weak gravitational fields are involved.

c. 1. Matter is moving at great speeds, comparable to the speed of light.
2. Objects dealt with are large enough to be seen with the naked eye.
3. Strong gravitational fields are involved.

d. 1. Matter is moving at great speeds, comparable to the speed of light.
2. Objects are just large enough to be visible through the most powerful telescope.
3. Only weak gravitational fields are involved.

4. Why is the Greek word for nature appropriate in describing the field of physics?
a. Physics is a natural science that studies life and living organism on habitable planets like Earth.
b. Physics is a natural science that studies the laws and principles of our universe.
c. Physics is a physical science that studies the composition, structure, and changes of matter in our universe.
d. Physics is a social science that studies the social behavior of living beings on habitable planets like Earth.

5. Which aspect of the universe is studied by quantum mechanics?
a. objects at the galactic level
b. objects at the classical level
c. objects at the subatomic level
d. objects at all levels, from subatomic to galactic
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1.2 The Scientific Methods
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain how the methods of science are used to make scientific discoveries
• Define a scientific model and describe examples of physical and mathematical models used in physics
• Compare and contrast hypothesis, theory, and law

Section Key Terms

experiment hypothesis model observation principle

scientific law scientific methods theory universal

Scientific Methods
Scientists often plan and carry out investigations to answer questions about the universe around us. Such laws are intrinsic to
the universe, meaning that humans did not create them and cannot change them. We can only discover and understand them.
Their discovery is a very human endeavor, with all the elements of mystery, imagination, struggle, triumph, and disappointment
inherent in any creative effort. The cornerstone of discovering natural laws is observation. Science must describe the universe as
it is, not as we imagine or wish it to be.

We all are curious to some extent. We look around, make generalizations, and try to understand what we see. For example, we
look up and wonder whether one type of cloud signals an oncoming storm. As we become serious about exploring nature, we
become more organized and formal in collecting and analyzing data. We attempt greater precision, perform controlled
experiments (if we can), and write down ideas about how data may be organized. We then formulate models, theories, and laws
based on the data we have collected, and communicate those results with others. This, in a nutshell, describes the scientific
method that scientists employ to decide scientific issues on the basis of evidence from observation and experiment.

An investigation often begins with a scientist making an observation. The scientist observes a pattern or trend within the
natural world. Observation may generate questions that the scientist wishes to answer. Next, the scientist may perform some
research about the topic and devise a hypothesis. A hypothesis is a testable statement that describes how something in the
natural world works. In essence, a hypothesis is an educated guess that explains something about an observation.

Scientists may test the hypothesis by performing an experiment. During an experiment, the scientist collects data that will help
them learn about the phenomenon they are studying. Then the scientists analyze the results of the experiment (that is, the data),
often using statistical, mathematical, and/or graphical methods. From the data analysis, they draw conclusions. They may
conclude that their experiment either supports or rejects their hypothesis. If the hypothesis is supported, the scientist usually
goes on to test another hypothesis related to the first. If their hypothesis is rejected, they will often then test a new and different
hypothesis in their effort to learn more about whatever they are studying.

Scientific processes can be applied to many situations. Let’s say that you try to turn on your car, but it will not start. You have
just made an observation! You ask yourself, "Why won’t my car start?" You can now use scientific processes to answer this
question. First, you generate a hypothesis such as, "The car won’t start because it has no gasoline in the gas tank." To test this
hypothesis, you put gasoline in the car and try to start it again. If the car starts, then your hypothesis is supported by the
experiment. If the car does not start, then your hypothesis is rejected. You will then need to think up a new hypothesis to test
such as, "My car won’t start because the fuel pump is broken." Hopefully, your investigations lead you to discover why the car
won’t start and enable you to fix it.

Modeling
A model is a representation of something that is often too difficult (or impossible) to study directly. Models can take the form of
physical models, equations, computer programs, or simulations—computer graphics/animations. Models are tools that are
especially useful in modern physics because they let us visualize phenomena that we normally cannot observe with our senses,
such as very small objects or objects that move at high speeds. For example, we can understand the structure of an atom using
models, despite the fact that no one has ever seen an atom with their own eyes. Models are always approximate, so they are
simpler to consider than the real situation; the more complete a model is, the more complicated it must be. Models put the
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intangible or the extremely complex into human terms that we can visualize, discuss, and hypothesize about.

Scientific models are constructed based on the results of previous experiments. Even still, models often only describe a
phenomenon partially or in a few limited situations. Some phenomena are so complex that they may be impossible to model
them in their entirety, even using computers. An example is the electron cloud model of the atom in which electrons are moving
around the atom’s center in distinct clouds (Figure 1.12), that represent the likelihood of finding an electron in different places.
This model helps us to visualize the structure of an atom. However, it does not show us exactly where an electron will be within
its cloud at any one particular time.

Figure 1.12 The electron cloud model of the atom predicts the geometry and shape of areas where different electrons may be found in an

atom. However, it cannot indicate exactly where an electron will be at any one time.

As mentioned previously, physicists use a variety of models including equations, physical models, computer simulations, etc.
For example, three-dimensional models are often commonly used in chemistry and physics to model molecules. Properties
other than appearance or location are usually modelled using mathematics, where functions are used to show how these
properties relate to one another. Processes such as the formation of a star or the planets, can also be modelled using computer
simulations. Once a simulation is correctly programmed based on actual experimental data, the simulation can allow us to view
processes that happened in the past or happen too quickly or slowly for us to observe directly. In addition, scientists can also run
virtual experiments using computer-based models. In a model of planet formation, for example, the scientist could alter the
amount or type of rocks present in space and see how it affects planet formation.

Scientists use models and experimental results to construct explanations of observations or design solutions to problems. For
example, one way to make a car more fuel efficient is to reduce the friction or drag caused by air flowing around the moving car.
This can be done by designing the body shape of the car to be more aerodynamic, such as by using rounded corners instead of
sharp ones. Engineers can then construct physical models of the car body, place them in a wind tunnel, and examine the flow of
air around the model. This can also be done mathematically in a computer simulation. The air flow pattern can be analyzed for
regions smooth air flow and for eddies that indicate drag. The model of the car body may have to be altered slightly to produce
the smoothest pattern of air flow (i.e., the least drag). The pattern with the least drag may be the solution to increasing fuel
efficiency of the car. This solution might then be incorporated into the car design.

Snap Lab

Using Models and the Scientific Processes
Be sure to secure loose items before opening the window or door.

In this activity, you will learn about scientific models by making a model of how air flows through your classroom or a room
in your house.

• One room with at least one window or door that can be opened
• Piece of single-ply tissue paper

1. Work with a group of four, as directed by your teacher. Close all of the windows and doors in the room you are
working in. Your teacher may assign you a specific window or door to study.
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Scientific Laws and Theories
A scientific law is a description of a pattern in nature that is true in all circumstances that have been studied. That is, physical
laws are meant to be universal, meaning that they apply throughout the known universe. Laws are often also concise, whereas
theories are more complicated. A law can be expressed in the form of a single sentence or mathematical equation. For example,
Newton’s second law of motion, which relates the motion of an object to the force applied (F), the mass of the object (m), and the
object’s acceleration (a), is simply stated using the equation

Scientific ideas and explanations that are true in many, but not all situations in the universe are usually called principles. An
example is Pascal’s principle, which explains properties of liquids, but not solids or gases. However, the distinction between laws
and principles is sometimes not carefully made in science.

A theory is an explanation for patterns in nature that is supported by much scientific evidence and verified multiple times by
multiple researchers. While many people confuse theories with educated guesses or hypotheses, theories have withstood more
rigorous testing and verification than hypotheses.

As a closing idea about scientific processes, we want to point out that scientific laws and theories, even those that have been
supported by experiments for centuries, can still be changed by new discoveries. This is especially true when new technologies
emerge that allow us to observe things that were formerly unobservable. Imagine how viewing previously invisible objects with a

2. Before opening any windows or doors, draw a to-scale diagram of your room. First, measure the length and width
of your room using the tape measure. Then, transform the measurement using a scale that could fit on your paper,
such as 5 centimeters = 1 meter.

3. Your teacher will assign you a specific window or door to study air flow. On your diagram, add arrows showing
your hypothesis (before opening any windows or doors) of how air will flow through the room when your assigned
window or door is opened. Use pencil so that you can easily make changes to your diagram.

4. On your diagram, mark four locations where you would like to test air flow in your room. To test for airflow, hold a
strip of single ply tissue paper between the thumb and index finger. Note the direction that the paper moves when
exposed to the airflow. Then, for each location, predict which way the paper will move if your air flow diagram is
correct.

5. Now, each member of your group will stand in one of the four selected areas. Each member will test the airflow
Agree upon an approximate height at which everyone will hold their papers.

6. When you teacher tells you to, open your assigned window and/or door. Each person should note the direction
that their paper points immediately after the window or door was opened. Record your results on your diagram.

7. Did the airflow test data support or refute the hypothetical model of air flow shown in your diagram? Why or why
not? Correct your model based on your experimental evidence.

8. With your group, discuss how accurate your model is. What limitations did it have? Write down the limitations
that your group agreed upon.

GRASP CHECK
Your diagram is a model, based on experimental evidence, of how air flows through the room. Could you use your model
to predict how air would flow through a new window or door placed in a different location in the classroom? Make a new
diagram that predicts the room’s airflow with the addition of a new window or door. Add a short explanation that
describes how.
a. Yes, you could use your model to predict air flow through a new window. The earlier experiment of air flow would

help you model the system more accurately.
b. Yes, you could use your model to predict air flow through a new window. The earlier experiment of air flow is not

useful for modeling the new system.
c. No, you cannot model a system to predict the air flow through a new window. The earlier experiment of air flow

would help you model the system more accurately.
d. No, you cannot model a system to predict the air flow through a new window. The earlier experiment of air flow is

not useful for modeling the new system.
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microscope or viewing Earth for the first time from space may have instantly changed our scientific theories and laws! What
discoveries still await us in the future? The constant retesting and perfecting of our scientific laws and theories allows our
knowledge of nature to progress. For this reason, many scientists are reluctant to say that their studies prove anything. By
saying support instead of prove, it keeps the door open for future discoveries, even if they won’t occur for centuries or even
millennia.

Check Your Understanding
6. Explain why scientists sometimes use a model rather than trying to analyze the behavior of the real system.

a. Models are simpler to analyze.
b. Models give more accurate results.
c. Models provide more reliable predictions.
d. Models do not require any computer calculations.

7. Describe the difference between a question, generated through observation, and a hypothesis.
a. They are the same.
b. A hypothesis has been thoroughly tested and found to be true.
c. A hypothesis is a tentative assumption based on what is already known.
d. A hypothesis is a broad explanation firmly supported by evidence.

8. What is a scientific model and how is it useful?
a. A scientific model is a representation of something that can be easily studied directly. It is useful for studying things

that can be easily analyzed by humans.
b. A scientific model is a representation of something that is often too difficult to study directly. It is useful for studying a

complex system or systems that humans cannot observe directly.
c. A scientific model is a representation of scientific equipment. It is useful for studying working principles of scientific

equipment.
d. A scientific model is a representation of a laboratory where experiments are performed. It is useful for studying

requirements needed inside the laboratory.

9. Which of the following statements is correct about the hypothesis?
a. The hypothesis must be validated by scientific experiments.
b. The hypothesis must not include any physical quantity.
c. The hypothesis must be a short and concise statement.
d. The hypothesis must apply to all the situations in the universe.

10. What is a scientific theory?
a. A scientific theory is an explanation of natural phenomena that is supported by evidence.
b. A scientific theory is an explanation of natural phenomena without the support of evidence.
c. A scientific theory is an educated guess about the natural phenomena occurring in nature.
d. A scientific theory is an uneducated guess about natural phenomena occurring in nature.

11. Compare and contrast a hypothesis and a scientific theory.
a. A hypothesis is an explanation of the natural world with experimental support, while a scientific theory is an educated

guess about a natural phenomenon.
b. A hypothesis is an educated guess about natural phenomenon, while a scientific theory is an explanation of natural

world with experimental support.
c. A hypothesis is experimental evidence of a natural phenomenon, while a scientific theory is an explanation of the

natural world with experimental support.
d. A hypothesis is an explanation of the natural world with experimental support, while a scientific theory is experimental

evidence of a natural phenomenon.
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1.3 The Language of Physics: Physical Quantities and Units
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Associate physical quantities with their International System of Units (SI)and perform conversions among SI

units using scientific notation
• Relate measurement uncertainty to significant figures and apply the rules for using significant figures in

calculations
• Correctly create, label, and identify relationships in graphs using mathematical relationships (e.g., slope,

y-intercept, inverse, quadratic and logarithmic)

Section Key Terms

accuracy ampere constant conversion factor
dependent
variable

derived units English units
exponential
relationship

fundamental physical
units

independent
variable

inverse
relationship

inversely
proportional

kilogram linear relationship
logarithmic (log)
scale

log-log plot meter
method of adding
percents

order of magnitude precision

quadratic
relationship

scientific notation second semi-log plot SI units

significant figures slope uncertainty variable y-intercept

The Role of Units
Physicists, like other scientists, make observations and ask basic questions. For example, how big is an object? How much mass
does it have? How far did it travel? To answer these questions, they make measurements with various instruments (e.g., meter
stick, balance, stopwatch, etc.).

The measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length
of a race, which is a physical quantity, can be expressed in meters (for sprinters) or kilometers (for long distance runners).
Without standardized units, it would be extremely difficult for scientists to express and compare measured values in a
meaningful way (Figure 1.13).

Figure 1.13 Distances given in unknown units are maddeningly useless.

All physical quantities in the International System of Units (SI) are expressed in terms of combinations of seven fundamental
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physical units, which are units for: length, mass, time, electric current, temperature, amount of a substance, and luminous
intensity.

SI Units: Fundamental and Derived Units
There are two major systems of units used in the world: SI units (acronym for the French Le Système International d’Unités, also
known as the metric system), and English units (also known as the imperial system). English units were historically used in
nations once ruled by the British Empire. Today, the United States is the only country that still uses English units extensively.
Virtually every other country in the world now uses the metric system, which is the standard system agreed upon by scientists
and mathematicians.

Some physical quantities are more fundamental than others. In physics, there are seven fundamental physical quantities that
are measured in base or physical fundamental units: length, mass, time, electric current temperature, amount of substance, and
luminous intensity. Units for other physical quantities (such as force, speed, and electric charge) described by mathematically
combining these seven base units. In this course, we will mainly use five of these: length, mass, time, electric current and
temperature. The units in which they are measured are the meter, kilogram, second, ampere, kelvin, mole, and candela (Table
1.1). All other units are made by mathematically combining the fundamental units. These are called derived units.

Quantity Name Symbol

Length Meter m

Mass Kilogram kg

Time Second s

Electric current Ampere a

Temperature Kelvin k

Amount of substance Mole mol

Luminous intensity Candela cd

Table 1.1 SI Base Units

The Meter
The SI unit for length is the meter (m). The definition of the meter has changed over time to become more accurate and precise.
The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This measurement was
improved in 1889 by redefining the meter to be the distance between two engraved lines on a platinum-iridium bar. (The bar is
now housed at the International Bureau of Weights and Meaures, near Paris). By 1960, some distances could be measured more
precisely by comparing them to wavelengths of light. The meter was redefined as 1,650,763.73 wavelengths of orange light
emitted by krypton atoms. In 1983, the meter was given its present definition as the distance light travels in a vacuum in 1/
299,792,458 of a second (Figure 1.14).

Figure 1.14 The meter is defined to be the distance light travels in 1/299,792,458 of a second through a vacuum. Distance traveled is

speed multiplied by time.
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The Kilogram
The SI unit for mass is the kilogram (kg). It is defined to be the mass of a platinum-iridium cylinder, housed at the International
Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram cylinder are kept in numerous locations
throughout the world, such as the National Institute of Standards and Technology in Gaithersburg, Maryland. The
determination of all other masses can be done by comparing them with one of these standard kilograms.

The Second
The SI unit for time, the second (s) also has a long history. For many years it was defined as 1/86,400 of an average solar day.
However, the average solar day is actually very gradually getting longer due to gradual slowing of Earth’s rotation. Accuracy in
the fundamental units is essential, since all other measurements are derived from them. Therefore, a new standard was adopted
to define the second in terms of a non-varying, or constant, physical phenomenon. One constant phenomenon is the very steady
vibration of Cesium atoms, which can be observed and counted. This vibration forms the basis of the cesium atomic clock. In
1967, the second was redefined as the time required for 9,192,631,770 Cesium atom vibrations (Figure 1.15).

Figure 1.15 An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of one microsecond per year.

The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic clock. (Steve

Jurvetson/Flickr)

The Ampere
Electric current is measured in the ampere (A), named after Andre Ampere. You have probably heard of amperes, or amps, when
people discuss electrical currents or electrical devices. Understanding an ampere requires a basic understanding of electricity
and magnetism, something that will be explored in depth in later chapters of this book. Basically, two parallel wires with an
electric current running through them will produce an attractive force on each other. One ampere is defined as the amount of
electric current that will produce an attractive force of 2.7 10–7 newton per meter of separation between the two wires (the
newton is the derived unit of force).

Kelvins
The SI unit of temperature is the kelvin (or kelvins, but not degrees kelvin). This scale is named after physicist William Thomson,
Lord Kelvin, who was the first to call for an absolute temperature scale. The Kelvin scale is based on absolute zero. This is the
point at which all thermal energy has been removed from all atoms or molecules in a system. This temperature, 0 K, is equal to
−273.15 °C and −459.67 °F. Conveniently, the Kelvin scale actually changes in the same way as the Celsius scale. For example, the
freezing point (0 °C) and boiling points of water (100 °C) are 100 degrees apart on the Celsius scale. These two temperatures are
also 100 kelvins apart (freezing point = 273.15 K; boiling point = 373.15 K).

Metric Prefixes
Physical objects or phenomena may vary widely. For example, the size of objects varies from something very small (like an atom)
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to something very large (like a star). Yet the standard metric unit of length is the meter. So, the metric system includes many
prefixes that can be attached to a unit. Each prefix is based on factors of 10 (10, 100, 1,000, etc., as well as 0.1, 0.01, 0.001, etc.).
Table 1.2 gives the metric prefixes and symbols used to denote the different various factors of 10 in the metric system.

Prefix Symbol Value[1]
Example

Name
Example
Symbol

Example
Value

Example Description

exa E 1018 Exameter Em 1018 m
Distance light travels in a
century

peta P 1015 Petasecond Ps 1015 s 30 million years

tera T 1012 Terawatt TW 1012 W Powerful laser output

giga G 109 Gigahertz GHz 109 Hz A microwave frequency

mega M 106 Megacurie MCi 106 Ci High radioactivity

kilo k 103 Kilometer km 103 m About 6/10 mile

hector h 102 Hectoliter hL 102 L 26 gallons

deka da 101 Dekagram dag 101 g Teaspoon of butter

____ ____ 100 (=1)

deci d 10–1 Deciliter dL 10–1 L Less than half a soda

centi c 10–2 Centimeter Cm 10–2 m Fingertip thickness

milli m 10–3 Millimeter Mm 10–3 m Flea at its shoulder

micro µ 10–6 Micrometer µm 10–6 m Detail in microscope

nano n 10–9 Nanogram Ng 10–9 g Small speck of dust

pico p 10–12 Picofarad pF 10–12 F Small capacitor in radio

femto f 10–15 Femtometer Fm 10–15 m Size of a proton

atto a 10–18 Attosecond as 10–18 s
Time light takes to cross an
atom

Table 1.2 Metric Prefixes for Powers of 10 and Their Symbols [1]See Appendix A for a discussion of powers of 10.
Note—Some examples are approximate.

The metric system is convenient because conversions between metric units can be done simply by moving the decimal place of a
number. This is because the metric prefixes are sequential powers of 10. There are 100 centimeters in a meter, 1000 meters in a
kilometer, and so on. In nonmetric systems, such as U.S. customary units, the relationships are less simple—there are 12 inches
in a foot, 5,280 feet in a mile, 4 quarts in a gallon, and so on. Another advantage of the metric system is that the same unit can be
used over extremely large ranges of values simply by switching to the most-appropriate metric prefix. For example, distances in
meters are suitable for building construction, but kilometers are used to describe road construction. Therefore, with the metric
system, there is no need to invent new units when measuring very small or very large objects—you just have to move the decimal
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point (and use the appropriate prefix).

Known Ranges of Length, Mass, and Time
Table 1.3 lists known lengths, masses, and time measurements. You can see that scientists use a range of measurement units.
This wide range demonstrates the vastness and complexity of the universe, as well as the breadth of phenomena physicists
study. As you examine this table, note how the metric system allows us to discuss and compare an enormous range of
phenomena, using one system of measurement (Figure 1.16 and Figure 1.17).

Length
(m)

Phenomenon Measured
Mass
(Kg)

Phenomenon
Measured[1]

Time
(s)

Phenomenon
Measured[1]

10–18 Present experimental limit to
smallest observable detail

10–30 Mass of an electron (9.11
10–31 kg)

10–23 Time for light to cross a
proton

10–15 Diameter of a proton 10–27 Mass of a hydrogen atom
(1.67 10–27 kg)

10–22
Mean life of an
extremely unstable
nucleus

1014 Diameter of a uranium nucleus 10–15 Mass of a bacterium 10–15 Time for one oscillation
of a visible light

10–10 Diameter of a hydrogen atom 10–5 Mass of a mosquito 10–13 Time for one vibration
of an atom in a solid

10–8 Thickness of membranes in cell of
living organism

10–2 Mass of a hummingbird 10–8 Time for one oscillation
of an FM radio wave

10–6 Wavelength of visible light 1
Mass of a liter of water
(about a quart)

10–3 Duration of a nerve
impulse

10–3 Size of a grain of sand 102 Mass of a person 1 Time for one heartbeat

1 Height of a 4-year-old child 103 Mass of a car 105 One day (8.64 104 s)

102 Length of a football field 108 Mass of a large ship 107 One year (3.16 107 s)

104 Greatest ocean depth 1012 Mass of a large iceberg 109 About half the life
expectancy of a human

107 Diameter of Earth 1015 Mass of the nucleus of a
comet

1011 Recorded history

1011 Distance from Earth to the sun 1023 Mass of the moon (7.35
1022 kg)

1017 Age of Earth

1016 Distance traveled by light in 1 year
(a light year)

1025 Mass of Earth (5.97 1024

kg)
1018 Age of the universe

1021 Diameter of the Milky Way Galaxy 1030 Mass of the Sun (1.99 1024

kg)

Table 1.3 Approximate Values of Length, Mass, and Time [1] More precise values are in parentheses.
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Length
(m)

Phenomenon Measured
Mass
(Kg)

Phenomenon
Measured[1]

Time
(s)

Phenomenon
Measured[1]

1022 Distance from Earth to the
nearest large galaxy (Andromeda)

1042 Mass of the Milky Way
galaxy (current upper limit)

1026 Distance from Earth to the edges
of the known universe

1053 Mass of the known universe
(current upper limit)

Table 1.3 Approximate Values of Length, Mass, and Time [1] More precise values are in parentheses.

Figure 1.16 Tiny phytoplankton float among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2

millimeters in length. (Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps Collections)

Figure 1.17 Galaxies collide 2.4 billion light years away from Earth. The tremendous range of observable phenomena in nature challenges

the imagination. (NASA/CXC/UVic./A. Mahdavi et al. Optical/lensing: CFHT/UVic./H. Hoekstra et al.)

Using Scientific Notation with Physical Measurements
Scientific notation is a way of writing numbers that are too large or small to be conveniently written as a decimal. For example,
consider the number 840,000,000,000,000. It’s a rather large number to write out. The scientific notation for this number is
8.40 1014. Scientific notation follows this general format

In this format x is the value of the measurement with all placeholder zeros removed. In the example above, x is 8.4. The x is
multiplied by a factor, 10y, which indicates the number of placeholder zeros in the measurement. Placeholder zeros are those at
the end of a number that is 10 or greater, and at the beginning of a decimal number that is less than 1. In the example above, the
factor is 1014. This tells you that you should move the decimal point 14 positions to the right, filling in placeholder zeros as you
go. In this case, moving the decimal point 14 places creates only 13 placeholder zeros, indicating that the actual measurement
value is 840,000,000,000,000.
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Numbers that are fractions can be indicated by scientific notation as well. Consider the number 0.0000045. Its scientific
notation is 4.5 10–6. Its scientific notation has the same format

Here, x is 4.5. However, the value of y in the 10y factor is negative, which indicates that the measurement is a fraction of 1.
Therefore, we move the decimal place to the left, for a negative y. In our example of 4.5 10–6, the decimal point would be
moved to the left six times to yield the original number, which would be 0.0000045.

The term order of magnitude refers to the power of 10 when numbers are expressed in scientific notation. Quantities that have
the same power of 10 when expressed in scientific notation, or come close to it, are said to be of the same order of magnitude.
For example, the number 800 can be written as 8 102, and the number 450 can be written as 4.5 102. Both numbers have the
same value for y. Therefore, 800 and 450 are of the same order of magnitude. Similarly, 101 and 99 would be regarded as the
same order of magnitude, 102. Order of magnitude can be thought of as a ballpark estimate for the scale of a value. The diameter
of an atom is on the order of 10−9 m, while the diameter of the sun is on the order of 109 m. These two values are 18 orders of
magnitude apart.

Scientists make frequent use of scientific notation because of the vast range of physical measurements possible in the universe,
such as the distance from Earth to the moon (Figure 1.18), or to the nearest star.

Figure 1.18 The distance from Earth to the moon may seem immense, but it is just a tiny fraction of the distance from Earth to our closest

neighboring star. (NASA)

Unit Conversion and Dimensional Analysis
It is often necessary to convert from one type of unit to another. For example, if you are reading a European cookbook in the
United States, some quantities may be expressed in liters and you need to convert them to cups. A Canadian tourist driving
through the United States might want to convert miles to kilometers, to have a sense of how far away his next destination is. A
doctor in the United States might convert a patient’s weight in pounds to kilograms.

Let’s consider a simple example of how to convert units within the metric system. How can we want to convert 1 hour to seconds?

Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio expressing how
many of one unit are equal to another unit. A conversion factor is simply a fraction which equals 1. You can multiply any number
by 1 and get the same value. When you multiply a number by a conversion factor, you are simply multiplying it by one. For
example, the following are conversion factors: (1 foot)/(12 inches) = 1 to convert inches to feet, (1 meter)/(100 centimeters) = 1 to
convert centimeters to meters, (1 minute)/(60 seconds) = 1 to convert seconds to minutes. In this case, we know that there are
1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply them by the conversion factor (1
km/1,000m) = 1, so we are simply multiplying 80m by 1:

When there is a unit in the original number, and a unit in the denominator (bottom) of the conversion factor, the units cancel. In
this case, hours and minutes cancel and the value in seconds remains.

You can use this method to convert between any types of unit, including between the U.S. customary system and metric system.
Notice also that, although you can multiply and divide units algebraically, you cannot add or subtract different units. An
expression like 10 km + 5 kg makes no sense. Even adding two lengths in different units, such as 10 km + 20 m does not make
sense. You express both lengths in the same unit. See Appendix C for a more complete list of conversion factors.

1.1

24 Chapter 1 • What is Physics?

Access for free at openstax.org.



WORKED EXAMPLE

Unit Conversions: A Short Drive Home
Suppose that you drive the 10.0 km from your university to home in 20.0 min. Calculate your average speed (a) in kilometers per
hour (km/h) and (b) in meters per second (m/s). (Note—Average speed is distance traveled divided by time of travel.)
Strategy
First we calculate the average speed using the given units. Then we can get the average speed into the desired units by picking
the correct conversion factor and multiplying by it. The correct conversion factor is the one that cancels the unwanted unit and
leaves the desired unit in its place.

Solution for (a)
1. Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for

now—average speed and other motion concepts will be covered in a later module.) In equation form,

2. Substitute the given values for distance and time.

3. Convert km/min to km/h: multiply by the conversion factor that will cancel minutes and leave hours. That conversion factor
is . Thus,

Discussion for (a)
To check your answer, consider the following:

1. Be sure that you have properly cancelled the units in the unit conversion. If you have written the unit conversion factor
upside down, the units will not cancel properly in the equation. If you accidentally get the ratio upside down, then the units
will not cancel; rather, they will give you the wrong units as follows

which are obviously not the desired units of km/h.

2. Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units of
km/h and we have indeed obtained these units.

3. Check the significant figures. Because each of the values given in the problem has three significant figures, the answer
should also have three significant figures. The answer 30.0 km/h does indeed have three significant figures, so this is
appropriate. Note that the significant figures in the conversion factor are not relevant because an hour is defined to be 60
min, so the precision of the conversion factor is perfect.

4. Next, check whether the answer is reasonable. Let us consider some information from the problem—if you travel 10 km in a
third of an hour (20 min), you would travel three times that far in an hour. The answer does seem reasonable.

Solution (b)
There are several ways to convert the average speed into meters per second.

1. Start with the answer to (a) and convert km/h to m/s. Two conversion factors are needed—one to convert hours to seconds,
and another to convert kilometers to meters.

2. Multiplying by these yields
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Discussion for (b)
If we had started with 0.500 km/min, we would have needed different conversion factors, but the answer would have been the
same: 8.33 m/s.

You may have noted that the answers in the worked example just covered were given to three digits. Why? When do you need to
be concerned about the number of digits in something you calculate? Why not write down all the digits your calculator
produces?

WORKED EXAMPLE

Using Physics to Evaluate Promotional Materials
A commemorative coin that is 2″ in diameter is advertised to be plated with 15 mg of gold. If the density of gold is 19.3 g/cc, and
the amount of gold around the edge of the coin can be ignored, what is the thickness of the gold on the top and bottom faces of
the coin?

Strategy
To solve this problem, the volume of the gold needs to be determined using the gold’s mass and density. Half of that volume is
distributed on each face of the coin, and, for each face, the gold can be represented as a cylinder that is 2″ in diameter with a
height equal to the thickness. Use the volume formula for a cylinder to determine the thickness.

Solution
The mass of the gold is given by the formula where and V is the volume. Solving for

the volume gives

If t is the thickness, the volume corresponding to half the gold is where the 1″ radius

has been converted to cm. Solving for the thickness gives

Discussion
The amount of gold used is stated to be 15 mg, which is equivalent to a thickness of about 0.00019 mm. The mass figure may
make the amount of gold sound larger, both because the number is much bigger (15 versus 0.00019), and because people may
have a more intuitive feel for how much a millimeter is than for how much a milligram is. A simple analysis of this sort can
clarify the significance of claims made by advertisers.

Accuracy, Precision and Significant Figures
Science is based on experimentation that requires good measurements. The validity of a measurement can be described in terms
of its accuracy and its precision (see Figure 1.19 and Figure 1.20). Accuracy is how close a measurement is to the correct value for
that measurement. For example, let us say that you are measuring the length of standard piece of printer paper. The packaging
in which you purchased the paper states that it is 11 inches long, and suppose this stated value is correct. You measure the length
of the paper three times and obtain the following measurements: 11.1 inches, 11.2 inches, and 10.9 inches. These measurements
are quite accurate because they are very close to the correct value of 11.0 inches. In contrast, if you had obtained a measurement
of 12 inches, your measurement would not be very accurate. This is why measuring instruments are calibrated based on a known
measurement. If the instrument consistently returns the correct value of the known measurement, it is safe for use in finding
unknown values.
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Figure 1.19 A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one

pan and objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in both

pans are equal. The known masses are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams. (Serge Melki)

Figure 1.20 Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, some digital scales can

measure the mass of an object up to the nearest thousandth of a gram. As in other measuring devices, the precision of a scale is limited to

the last measured figures. This is the hundredths place in the scale pictured here. (Splarka, Wikimedia Commons)

Precision states how well repeated measurements of something generate the same or similar results. Therefore, the precision of
measurements refers to how close together the measurements are when you measure the same thing several times. One way to
analyze the precision of measurements would be to determine the range, or difference between the lowest and the highest
measured values. In the case of the printer paper measurements, the lowest value was 10.9 inches and the highest value was 11.2
inches. Thus, the measured values deviated from each other by, at most, 0.3 inches. These measurements were reasonably
precise because they varied by only a fraction of an inch. However, if the measured values had been 10.9 inches, 11.1 inches, and
11.9 inches, then the measurements would not be very precise because there is a lot of variation from one measurement to
another.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not
precise, or they are precise but not accurate. Let us consider a GPS system that is attempting to locate the position of a
restaurant in a city. Think of the restaurant location as existing at the center of a bull’s-eye target. Then think of each GPS
attempt to locate the restaurant as a black dot on the bull’s eye.

In Figure 1.21, you can see that the GPS measurements are spread far apart from each other, but they are all relatively close to the
actual location of the restaurant at the center of the target. This indicates a low precision, high accuracy measuring system.
However, in Figure 1.22, the GPS measurements are concentrated quite closely to one another, but they are far away from the
target location. This indicates a high precision, low accuracy measuring system. Finally, in Figure 1.23, the GPS is both precise
and accurate, allowing the restaurant to be located.

1.3 • The Language of Physics: Physical Quantities and Units 27



Figure 1.21 A GPS system attempts to locate a restaurant at the center of the bull’s-eye. The black dots represent each attempt to pinpoint

the location of the restaurant. The dots are spread out quite far apart from one another, indicating low precision, but they are each rather

close to the actual location of the restaurant, indicating high accuracy. (Dark Evil)

Figure 1.22 In this figure, the dots are concentrated close to one another, indicating high precision, but they are rather far away from the

actual location of the restaurant, indicating low accuracy. (Dark Evil)

Figure 1.23 In this figure, the dots are concentrated close to one another, indicating high precision, but they are rather far away from the

actual location of the restaurant, indicating low accuracy. (Dark Evil)

Uncertainty
The accuracy and precision of a measuring system determine the uncertainty of its measurements. Uncertainty is a way to
describe how much your measured value deviates from the actual value that the object has. If your measurements are not very
accurate or precise, then the uncertainty of your values will be very high. In more general terms, uncertainty can be thought of
as a disclaimer for your measured values. For example, if someone asked you to provide the mileage on your car, you might say
that it is 45,000 miles, plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is, you are
indicating that the actual mileage of your car might be as low as 44,500 miles or as high as 45,500 miles, or anywhere in
between. All measurements contain some amount of uncertainty. In our example of measuring the length of the paper, we
might say that the length of the paper is 11 inches plus or minus 0.2 inches or 11.0 ± 0.2 inches. The uncertainty in a
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measurement, A, is often denoted as δA ("delta A"),

The factors contributing to uncertainty in a measurement include the following:

1. Limitations of the measuring device
2. The skill of the person making the measurement
3. Irregularities in the object being measured
4. Any other factors that affect the outcome (highly dependent on the situation)

In the printer paper example uncertainty could be caused by: the fact that the smallest division on the ruler is 0.1 inches, the
person using the ruler has bad eyesight, or uncertainty caused by the paper cutting machine (e.g., one side of the paper is
slightly longer than the other.) It is good practice to carefully consider all possible sources of uncertainty in a measurement and
reduce or eliminate them,

Percent Uncertainty
One method of expressing uncertainty is as a percent of the measured value. If a measurement, A, is expressed with uncertainty,
δA, the percent uncertainty is

WORKED EXAMPLE

Calculating Percent Uncertainty: A Bag of Apples
A grocery store sells 5-lb bags of apples. You purchase four bags over the course of a month and weigh the apples each time. You
obtain the following measurements:

• Week 1 weight:
• Week 2 weight:
• Week 3 weight:
• Week 4 weight:

You determine that the weight of the 5 lb bag has an uncertainty of ±0.4 lb. What is the percent uncertainty of the bag’s weight?
Strategy
First, observe that the expected value of the bag’s weight, , is 5 lb. The uncertainty in this value, , is 0.4 lb. We can use the
following equation to determine the percent uncertainty of the weight

Solution
Plug the known values into the equation

Discussion
We can conclude that the weight of the apple bag is 5 lb ± 8 percent. Consider how this percent uncertainty would change if the
bag of apples were half as heavy, but the uncertainty in the weight remained the same. Hint for future calculations: when
calculating percent uncertainty, always remember that you must multiply the fraction by 100 percent. If you do not do this, you
will have a decimal quantity, not a percent value.

Uncertainty in Calculations
There is an uncertainty in anything calculated from measured quantities. For example, the area of a floor calculated from
measurements of its length and width has an uncertainty because the both the length and width have uncertainties. How big is
the uncertainty in something you calculate by multiplication or division? If the measurements in the calculation have small
uncertainties (a few percent or less), then the method of adding percents can be used. This method says that the percent
uncertainty in a quantity calculated by multiplication or division is the sum of the percent uncertainties in the items used to
make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m, with uncertainties of 2 percent and 1

1.2
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percent, respectively, then the area of the floor is 12.0 m2 and has an uncertainty of 3 percent (expressed as an area this is 0.36
m2, which we round to 0.4 m2 since the area of the floor is given to a tenth of a square meter).

For a quick demonstration of the accuracy, precision, and uncertainty of measurements based upon the units of measurement,
try this simulation (http://openstax.org/l/28precision) . You will have the opportunity to measure the length and weight of a
desk, using milli- versus centi- units. Which do you think will provide greater accuracy, precision and uncertainty when
measuring the desk and the notepad in the simulation? Consider how the nature of the hypothesis or research question might
influence how precise of a measuring tool you need to collect data.

Precision of Measuring Tools and Significant Figures
An important factor in the accuracy and precision of measurements is the precision of the measuring tool. In general, a precise
measuring tool is one that can measure values in very small increments. For example, consider measuring the thickness of a
coin. A standard ruler can measure thickness to the nearest millimeter, while a micrometer can measure the thickness to the
nearest 0.005 millimeter. The micrometer is a more precise measuring tool because it can measure extremely small differences
in thickness. The more precise the measuring tool, the more precise and accurate the measurements can be.

When we express measured values, we can only list as many digits as we initially measured with our measuring tool (such as the
rulers shown in Figure 1.24). For example, if you use a standard ruler to measure the length of a stick, you may measure it with a
decimeter ruler as 3.6 cm. You could not express this value as 3.65 cm because your measuring tool was not precise enough to
measure a hundredth of a centimeter. It should be noted that the last digit in a measured value has been estimated in some way
by the person performing the measurement. For example, the person measuring the length of a stick with a ruler notices that
the stick length seems to be somewhere in between 36 mm and 37 mm. He or she must estimate the value of the last digit. The
rule is that the last digit written down in a measurement is the first digit with some uncertainty. For example, the last measured
value 36.5 mm has three digits, or three significant figures. The number of significant figures in a measurement indicates the
precision of the measuring tool. The more precise a measuring tool is, the greater the number of significant figures it can
report.

Figure 1.24 Three metric rulers are shown. The first ruler is in decimeters and can measure point three decimeters. The second ruler is in

centimeters long and can measure three point six centimeters. The last ruler is in millimeters and can measure thirty-six point five

millimeters.

Zeros
Special consideration is given to zeros when counting significant figures. For example, the zeros in 0.053 are not significant
because they are only placeholders that locate the decimal point. There are two significant figures in 0.053—the 5 and the 3.
However, if the zero occurs between other significant figures, the zeros are significant. For example, both zeros in 10.053 are
significant, as these zeros were actually measured. Therefore, the 10.053 placeholder has five significant figures. The zeros in
1300 may or may not be significant, depending on the style of writing numbers. They could mean the number is known to the
last zero, or the zeros could be placeholders. So 1300 could have two, three, or four significant figures. To avoid this ambiguity,
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write 1300 in scientific notation as 1.3 × 103. Only significant figures are given in the x factor for a number in scientific notation
(in the form ). Therefore, we know that 1 and 3 are the only significant digits in this number. In summary, zeros are
significant except when they serve only as placeholders. Table 1.4 provides examples of the number of significant figures in
various numbers.

Number
Significant

Figures
Rationale

1.657 4 There are no zeros and all non-zero numbers are always significant.

0.4578 4 The first zero is only a placeholder for the decimal point.

0.000458 3
The first four zeros are placeholders needed to report the data to the ten-thoudsandths
place.

2000.56 6 The three zeros are significant here because they occur between other significant figures.

45,600 3
With no underlines or scientific notation, we assume that the last two zeros are
placeholders and are not significant.

15895000 7 The two underlined zeros are significant, while the last zero is not, as it is not underlined.

5.457
1013 4

In scientific notation, all numbers reported in front of the multiplication sign are
significant

6.520
10–23 4

In scientific notation, all numbers reported in front of the multiplication sign are
significant, including zeros.

Table 1.4

Significant Figures in Calculations
When combining measurements with different degrees of accuracy and precision, the number of significant digits in the final
answer can be no greater than the number of significant digits in the least precise measured value. There are two different rules,
one for multiplication and division and another rule for addition and subtraction, as discussed below.

1. For multiplication and division: The answer should have the same number of significant figures as the starting value with
the fewest significant figures. For example, the area of a circle can be calculated from its radius using . Let us see
how many significant figures the area will have if the radius has only two significant figures, for example, r = 2.0 m. Then,
using a calculator that keeps eight significant figures, you would get

But because the radius has only two significant figures, the area calculated is meaningful only to two significant figures or

even though the value of is meaningful to at least eight digits.

2. For addition and subtraction: The answer should have the same number places (e.g. tens place, ones place, tenths place,
etc.) as the least-precise starting value. Suppose that you buy 7.56 kg of potatoes in a grocery store as measured with a scale
having a precision of 0.01 kg. Then you drop off 6.052 kg of potatoes at your laboratory as measured by a scale with a
precision of 0.001 kg. Finally, you go home and add 13.7 kg of potatoes as measured by a bathroom scale with a precision of
0.1 kg. How many kilograms of potatoes do you now have, and how many significant figures are appropriate in the answer?
The mass is found by simple addition and subtraction:
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The least precise measurement is 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final answer must
also be expressed to the 0.1 decimal place. Thus, the answer should be rounded to the tenths place, giving 15.2 kg. The same
is true for non-decimal numbers. For example,

We cannot report the decimal places in the answer because 2 has no decimal places that would be significant. Therefore, we
can only report to the ones place.

It is a good idea to keep extra significant figures while calculating, and to round off to the correct number of significant
figures only in the final answers. The reason is that small errors from rounding while calculating can sometimes produce
significant errors in the final answer. As an example, try calculating to obtain a final answer
to only two significant figures. Keeping all significant during the calculation gives 48. Rounding to two significant figures
in the middle of the calculation changes it to which is way off. You would similarly
avoid rounding in the middle of the calculation in counting and in doing accounting, where many small numbers need to
be added and subtracted accurately to give possibly much larger final numbers.

Significant Figures in this Text
In this textbook, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant
figures are used in all worked examples. You will note that an answer given to three digits is based on input good to at least three
digits. If the input has fewer significant figures, the answer will also have fewer significant figures. Care is also taken that the
number of significant figures is reasonable for the situation posed. In some topics, such as optics, more than three significant
figures will be used. Finally, if a number is exact, such as the 2 in the formula, , it does not affect the number of
significant figures in a calculation.

WORKED EXAMPLE

Approximating Vast Numbers: a Trillion Dollars
The U.S. federal deficit in the 2008 fiscal year was a little greater than $10 trillion. Most of us do not have any concept of how
much even one trillion actually is. Suppose that you were given a trillion dollars in $100 bills. If you made 100-bill stacks, like
that shown in Figure 1.25, and used them to evenly cover a football field (between the end zones), make an approximation of how
high the money pile would become. (We will use feet/inches rather than meters here because football fields are measured in
yards.) One of your friends says 3 in., while another says 10 ft. What do you think?

32 Chapter 1 • What is Physics?

Access for free at openstax.org.



Figure 1.25 A bank stack contains one hundred $100 bills, and is worth $10,000. How many bank stacks make up a trillion dollars?

(Andrew Magill)

Strategy
When you imagine the situation, you probably envision thousands of small stacks of 100 wrapped $100 bills, such as you might
see in movies or at a bank. Since this is an easy-to-approximate quantity, let us start there. We can find the volume of a stack of
100 bills, find out how many stacks make up one trillion dollars, and then set this volume equal to the area of the football field
multiplied by the unknown height.

Solution
1. Calculate the volume of a stack of 100 bills. The dimensions of a single bill are approximately 3 in. by 6 in. A stack of 100 of

these is about 0.5 in. thick. So the total volume of a stack of 100 bills is

2. Calculate the number of stacks. Note that a trillion dollars is equal to , and a stack of one-hundred bills is
equal to or . The number of stacks you will have is

3. Calculate the area of a football field in square inches. The area of a football field is , which gives
. Because we are working in inches, we need to convert square yards to square inches

This conversion gives us for the area of the field. (Note that we are using only one significant figure in these
calculations.)

4. Calculate the total volume of the bills. The volume of all the $100-bill stacks is

5. Calculate the height. To determine the height of the bills, use the following equation

1.3
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The height of the money will be about 100 in. high. Converting this value to feet gives

Discussion
The final approximate value is much higher than the early estimate of 3 in., but the other early estimate of 10 ft (120 in.) was
roughly correct. How did the approximation measure up to your first guess? What can this exercise tell you in terms of rough
guesstimates versus carefully calculated approximations?

In the example above, the final approximate value is much higher than the first friend’s early estimate of 3 in. However, the other
friend’s early estimate of 10 ft. (120 in.) was roughly correct. How did the approximation measure up to your first guess? What
can this exercise suggest about the value of rough guesstimates versus carefully calculated approximations?

Graphing in Physics
Most results in science are presented in scientific journal articles using graphs. Graphs present data in a way that is easy to
visualize for humans in general, especially someone unfamiliar with what is being studied. They are also useful for presenting
large amounts of data or data with complicated trends in an easily-readable way.

One commonly-used graph in physics and other sciences is the line graph, probably because it is the best graph for showing how
one quantity changes in response to the other. Let’s build a line graph based on the data in Table 1.5, which shows the measured
distance that a train travels from its station versus time. Our two variables, or things that change along the graph, are time in
minutes, and distance from the station, in kilometers. Remember that measured data may not have perfect accuracy.

Time (min) Distance from Station (km)

0 0

10 24

20 36

30 60

40 84

50 97

60 116

70 140

Table 1.5

1. Draw the two axes. The horizontal axis, or x-axis, shows the independent variable, which is the variable that is controlled
or manipulated. The vertical axis, or y-axis, shows the dependent variable, the non-manipulated variable that changes
with (or is dependent on) the value of the independent variable. In the data above, time is the independent variable and
should be plotted on the x-axis. Distance from the station is the dependent variable and should be plotted on the y-axis.
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2. Label each axes on the graph with the name of each variable, followed by the symbol for its units in parentheses. Be sure to
leave room so that you can number each axis. In this example, use Time (min) as the label for the x-axis.

3. Next, you must determine the best scale to use for numbering each axis. Because the time values on the x-axis are taken
every 10 minutes, we could easily number the x-axis from 0 to 70 minutes with a tick mark every 10 minutes. Likewise, the
y-axis scale should start low enough and continue high enough to include all of the distance from station values. A scale
from 0 km to 160 km should suffice, perhaps with a tick mark every 10 km.

In general, you want to pick a scale for both axes that 1) shows all of your data, and 2) makes it easy to identify trends in
your data. If you make your scale too large, it will be harder to see how your data change. Likewise, the smaller and more
fine you make your scale, the more space you will need to make the graph. The number of significant figures in the axis
values should be coarser than the number of significant figures in the measurements.

4. Now that your axes are ready, you can begin plotting your data. For the first data point, count along the x-axis until you find
the 10 min tick mark. Then, count up from that point to the 10 km tick mark on the y-axis, and approximate where 22 km is
along the y-axis. Place a dot at this location. Repeat for the other six data points (Figure 1.26).

Figure 1.26 The graph of the train’s distance from the station versus time from the exercise above.

5. Add a title to the top of the graph to state what the graph is describing, such as the y-axis parameter vs. the x-axis
parameter. In the graph shown here, the title is train motion. It could also be titled distance of the train from the station vs.
time.

6. Finally, with data points now on the graph, you should draw a trend line (Figure 1.27). The trend line represents the
dependence you think the graph represents, so that the person who looks at your graph can see how close it is to the real
data. In the present case, since the data points look like they ought to fall on a straight line, you would draw a straight line
as the trend line. Draw it to come closest to all the points. Real data may have some inaccuracies, and the plotted points
may not all fall on the trend line. In some cases, none of the data points fall exactly on the trend line.
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Figure 1.27 The completed graph with the trend line included.

Analyzing a Graph Using Its Equation
One way to get a quick snapshot of a dataset is to look at the equation of its trend line. If the graph produces a straight line, the
equation of the trend line takes the form

The b in the equation is the y-intercept while the m in the equation is the slope. The y-intercept tells you at what y value the line
intersects the y-axis. In the case of the graph above, the y-intercept occurs at 0, at the very beginning of the graph. The
y-intercept, therefore, lets you know immediately where on the y-axis the plot line begins.

The m in the equation is the slope. This value describes how much the line on the graph moves up or down on the y-axis along
the line’s length. The slope is found using the following equation

In order to solve this equation, you need to pick two points on the line (preferably far apart on the line so the slope you calculate
describes the line accurately). The quantities Y2 and Y1 represent the y-values from the two points on the line (not data points)
that you picked, while X2 and X1 represent the two x-values of the those points.

What can the slope value tell you about the graph? The slope of a perfectly horizontal line will equal zero, while the slope of a
perfectly vertical line will be undefined because you cannot divide by zero. A positive slope indicates that the line moves up the
y-axis as the x-value increases while a negative slope means that the line moves down the y-axis. The more negative or positive
the slope is, the steeper the line moves up or down, respectively. The slope of our graph in Figure 1.26 is calculated below based
on the two endpoints of the line

Equation of line:

Because the x axis is time in minutes, we would actually be more likely to use the time t as the independent (x-axis) variable and
write the equation as
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The formula only applies to linear relationships, or ones that produce a straight line. Another common type of line
in physics is the quadratic relationship, which occurs when one of the variables is squared. One quadratic relationship in
physics is the relation between the speed of an object its centripetal acceleration, which is used to determine the force needed to
keep an object moving in a circle. Another common relationship in physics is the inverse relationship, in which one variable
decreases whenever the other variable increases. An example in physics is Coulomb’s law. As the distance between two charged
objects increases, the electrical force between the two charged objects decreases. Inverse proportionality, such the relation
between x and y in the equation

for some number k, is one particular kind of inverse relationship. A third commonly-seen relationship is the exponential
relationship, in which a change in the independent variable produces a proportional change in the dependent variable. As the
value of the dependent variable gets larger, its rate of growth also increases. For example, bacteria often reproduce at an
exponential rate when grown under ideal conditions. As each generation passes, there are more and more bacteria to reproduce.
As a result, the growth rate of the bacterial population increases every generation (Figure 1.28).

Figure 1.28 Examples of (a) linear, (b) quadratic, (c) inverse, and (d) exponential relationship graphs.

Using Logarithmic Scales in Graphing
Sometimes a variable can have a very large range of values. This presents a problem when you’re trying to figure out the best
scale to use for your graph’s axes. One option is to use a logarithmic (log) scale. In a logarithmic scale, the value each mark labels

1.4
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is the previous mark’s value multiplied by some constant. For a log base 10 scale, each mark labels a value that is 10 times the
value of the mark before it. Therefore, a base 10 logarithmic scale would be numbered: 0, 10, 100, 1,000, etc. You can see how the
logarithmic scale covers a much larger range of values than the corresponding linear scale, in which the marks would label the
values 0, 10, 20, 30, and so on.

If you use a logarithmic scale on one axis of the graph and a linear scale on the other axis, you are using a semi-log plot. The
Richter scale, which measures the strength of earthquakes, uses a semi-log plot. The degree of ground movement is plotted on a
logarithmic scale against the assigned intensity level of the earthquake, which ranges linearly from 1-10 (Figure 1.29 (a)).

If a graph has both axes in a logarithmic scale, then it is referred to as a log-log plot. The relationship between the wavelength
and frequency of electromagnetic radiation such as light is usually shown as a log-log plot (Figure 1.29 (b)). Log-log plots are also
commonly used to describe exponential functions, such as radioactive decay.

Figure 1.29 (a) The Richter scale uses a log base 10 scale on its y-axis (microns of amplified maximum ground motion). (b) The relationship

between the frequency and wavelength of electromagnetic radiation can be plotted as a straight line if a log-log plot is used.

Virtual Physics

Graphing Lines
In this simulation you will examine how changing the slope and y-intercept of an equation changes the appearance of a
plotted line. Select slope-intercept form and drag the blue circles along the line to change the line’s characteristics. Then,
play the line game and see if you can determine the slope or y-intercept of a given line.

Click to view content (https://phet.colorado.edu/sims/html/graphing-lines/latest/graphing-lines_en.html)

GRASP CHECK
How would the following changes affect a line that is neither horizontal nor vertical and has a positive slope?

1. increase the slope but keeping the y-intercept constant
2. increase the y-intercept but keeping the slope constant

a. Increasing the slope will cause the line to rotate clockwise around the y-intercept. Increasing the y-intercept will
cause the line to move vertically up on the graph without changing the line’s slope.

b. Increasing the slope will cause the line to rotate counter-clockwise around the y-intercept. Increasing the
y-intercept will cause the line to move vertically up on the graph without changing the line’s slope.

c. Increasing the slope will cause the line to rotate clockwise around the y-intercept. Increasing the y-intercept will
cause the line to move horizontally right on the graph without changing the line’s slope.
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Check Your Understanding
12. Identify some advantages of metric units.

a. Conversion between units is easier in metric units.
b. Comparison of physical quantities is easy in metric units.
c. Metric units are more modern than English units.
d. Metric units are based on powers of 2.

13. The length of an American football field is , excluding the end zones. How long is the field in meters? Round to the
nearest .
a.
b.
c.
d.

14. The speed limit on some interstate highways is roughly . How many miles per hour is this if is about
?

a. 0.1 mi/h
b. 27.8 mi/h
c. 62 mi/h
d. 160 mi/h

15. Briefly describe the target patterns for accuracy and precision and explain the differences between the two.
a. Precision states how much repeated measurements generate the same or closely similar results, while accuracy states

how close a measurement is to the true value of the measurement.
b. Precision states how close a measurement is to the true value of the measurement, while accuracy states how much

repeated measurements generate the same or closely similar result.
c. Precision and accuracy are the same thing. They state how much repeated measurements generate the same or closely

similar results.
d. Precision and accuracy are the same thing. They state how close a measurement is to the true value of the

measurement.

d. Increasing the slope will cause the line to rotate counter-clockwise around the y-intercept. Increasing the
y-intercept will cause the line to move horizontally right on the graph without changing the line’s slope.
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KEY TERMS
accuracy how close a measurement is to the correct value

for that measurement
ampere the SI unit for electrical current
atom smallest and most basic units of matter
classical physics physics, as it developed from the

Renaissance to the end of the nineteenth century
constant a quantity that does not change
conversion factor a ratio expressing how many of one unit

are equal to another unit
dependent variable the vertical, or y-axis, variable, which

changes with (or is dependent on) the value of the
independent variable

derived units units that are derived by combining the
fundamental physical units

English units (also known as the customary or imperial
system) system of measurement used in the United
States; includes units of measurement such as feet,
gallons, degrees Fahrenheit, and pounds

experiment process involved with testing a hypothesis
exponential relationship relation between variables in

which a constant change in the independent variable is
accompanied by change in the dependent variable that is
proportional to the value it already had

fundamental physical units the seven fundamental
physical units in the SI system of units are length, mass,
time, electric current, temperature, amount of a
substance, and luminous intensity

hypothesis testable statement that describes how
something in the natural world works

independent variable the horizontal, or x-axis, variable,
which is not influence by the second variable on the
graph, the dependent variable

inverse proportionality a relation between two variables
expressible by an equation of the form where k
stays constant when x and y change; the special form of
inverse relationship that satisfies this equation

inverse relationship any relation between variables where
one variable decreases as the other variable increases

kilogram the SI unit for mass, abbreviated (kg)
linear relationships relation between variables that

produce a straight line when graphed
log-log plot a plot that uses a logarithmic scale in both axes
logarithmic scale a graphing scale in which each tick on an

axis is the previous tick multiplied by some value
meter the SI unit for length, abbreviated (m)
method of adding percents calculating the percent

uncertainty of a quantity in multiplication or division by
adding the percent uncertainties in the quantities being
added or divided

model system that is analogous to the real system of
interest in essential ways but more easily analyzed

modern physics physics as developed from the twentieth

century to the present, involving the theories of relativity
and quantum mechanics

observation step where a scientist observes a pattern or
trend within the natural world

order of magnitude the size of a quantity in terms of its
power of 10 when expressed in scientific notation

physics science aimed at describing the fundamental
aspects of our universe—energy, matter, space, motion,
and time

precision how well repeated measurements generate the
same or closely similar results

principle description of nature that is true in many, but not
all situations

quadratic relationship relation between variables that can
be expressed in the form , which
produces a curved line when graphed

quantum mechanics major theory of modern physics which
describes the properties and nature of atoms and their
subatomic particles

science the study or knowledge of how the physical world
operates, based on objective evidence determined
through observation and experimentation

scientific law pattern in nature that is true in all
circumstances studied thus far

scientific methods techniques and processes used in the
constructing and testing of scientific hypotheses, laws,
and theories, and in deciding issues on the basis of
experiment and observation

scientific notation way of writing numbers that are too
large or small to be conveniently written in simple
decimal form; the measurement is multiplied by a power
of 10, which indicates the number of placeholder zeros in
the measurement

second the SI unit for time, abbreviated (s)
semi-log plot A plot that uses a logarithmic scale on one

axis of the graph and a linear scale on the other axis.
SI units International System of Units (SI); the

international system of units that scientists in most
countries have agreed to use; includes units such as
meters, liters, and grams; also known as the metric
system

significant figures when writing a number, the digits, or
number of digits, that express the precision of a
measuring tool used to measure the number

slope the ratio of the change of a graph on the y axis to the
change along the x-axis, the value of m in the equation of
a line,

theory explanation of patterns in nature that is supported
by much scientific evidence and verified multiple times
by various groups of researchers

theory of relativity theory constructed by Albert Einstein
which describes how space, time and energy are different
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for different observers in relative motion
uncertainty a quantitative measure of how much measured

values deviate from a standard or expected value

universal applies throughout the known universe
y-intercept the point where a plot line intersects the y-axis

SECTION SUMMARY
1.1 Physics: Definitions and
Applications

• Physics is the most fundamental of the sciences,
concerning itself with energy, matter, space and time,
and their interactions.

• Modern physics involves the theory of relativity, which
describes how time, space and gravity are not constant
in our universe can be different for different observers,
and quantum mechanics, which describes the behavior
of subatomic particles.

• Physics is the basis for all other sciences, such as
chemistry, biology and geology, because physics
describes the fundamental way in which the universe
functions.

1.2 The Scientific Methods
• Science seeks to discover and describe the underlying

order and simplicity in nature.
• The processes of science include observation,

hypothesis, experiment, and conclusion.
• Theories are scientific explanations that are supported

by a large body experimental results.
• Scientific laws are concise descriptions of the universe

that are universally true.

1.3 The Language of Physics:
Physical Quantities and Units

• Physical quantities are a characteristic or property of an

object that can be measured or calculated from other
measurements.

• The four fundamental units we will use in this textbook
are the meter (for length), the kilogram (for mass), the
second (for time), and the ampere (for electric current).
These units are part of the metric system, which uses
powers of 10 to relate quantities over the vast ranges
encountered in nature.

• Unit conversions involve changing a value expressed in
one type of unit to another type of unit. This is done by
using conversion factors, which are ratios relating equal
quantities of different units.

• Accuracy of a measured value refers to how close a
measurement is to the correct value. The uncertainty in
a measurement is an estimate of the amount by which
the measurement result may differ from this value.

• Precision of measured values refers to how close the
agreement is between repeated measurements.

• Significant figures express the precision of a measuring
tool.

• When multiplying or dividing measured values, the
final answer can contain only as many significant
figures as the least precise value.

• When adding or subtracting measured values, the final
answer cannot contain more decimal places than the
least precise value.

KEY EQUATIONS
1.3 The Language of Physics:
Physical Quantities and Units

slope intercept form

quadratic formula

positive exponential formula

negative exponential formula

CHAPTER REVIEW
Concept Items
1.1 Physics: Definitions and Applications
1. Which statement best compares and contrasts the aims

and topics of natural philosophy had versus physics?

a. Natural philosophy included all aspects of nature
including physics.

b. Natural philosophy included all aspects of nature
excluding physics.

c. Natural philosophy and physics are different.
d. Natural philosophy and physics are essentially the
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same thing.

2. Which of the following is not an underlying assumption
essential to scientific understanding?
a. Characteristics of the physical universe can be

perceived and objectively measured by human
beings.

b. Explanations of natural phenomena can be
established with absolute certainty.

c. Fundamental physical processes dictate how
characteristics of the physical universe evolve.

d. The fundamental processes of nature operate the
same way everywhere and at all times.

3. Which of the following questions regarding a strain of
genetically modified rice is not one that can be answered
by science?
a. How does the yield of the genetically modified rice

compare with that of existing rice?
b. Is the genetically modified rice more resistant to

infestation than existing rice?
c. How does the nutritional value of the genetically

modified rice compare to that of existing rice?
d. Should the genetically modified rice be grown

commercially and sold in the marketplace?

4. What conditions imply that we can use classical physics
without considering special relativity or quantum
mechanics?
a. 1. matter is moving at speeds of less than roughly 1

percent the speed of light,
2. objects are large enough to be seen with the

naked eye, and
3. there is the involvement of a strong gravitational

field.

b. 1. matter is moving at speeds greater than roughly 1
percent the speed of light,

2. objects are large enough to be seen with the
naked eye, and

3. there is the involvement of a strong gravitational
field.

c. 1. matter is moving at speeds of less than roughly 1
percent the speed of light,

2. objects are too small to be seen with the naked
eye, and

3. there is the involvement of only a weak
gravitational field.

d. 1. matter is moving at speeds of less than roughly 1
percent the speed of light,

2. objects are large enough to be seen with the
naked eye, and

3. there is the involvement of a weak gravitational
field.

5. How could physics be useful in weather prediction?
a. Physics helps in predicting how burning fossil fuel

releases pollutants.
b. Physics helps in predicting dynamics and movement

of weather phenomena.
c. Physics helps in predicting the motion of tectonic

plates.
d. Physics helps in predicting how the flowing water

affects Earth’s surface.

6. How do physical therapists use physics while on the job?
Explain.
a. Physical therapists do not require knowledge of

physics because their job is mainly therapy and not
physics.

b. Physical therapists do not require knowledge of
physics because their job is more social in nature
and unscientific.

c. Physical therapists require knowledge of physics
know about muscle contraction and release of
energy.

d. Physical therapists require knowledge of physics to
know about chemical reactions inside the body and
make decisions accordingly.

7. What is meant when a physical law is said to be universal?
a. The law can explain everything in the universe.
b. The law is applicable to all physical phenomena.
c. The law applies everywhere in the universe.
d. The law is the most basic one and all laws are derived

from it.

8. What subfield of physics could describe small objects
traveling at high speeds or experiencing a strong
gravitational field?
a. general theory of relativity
b. classical physics
c. quantum relativity
d. special theory of relativity

9. Why is Einstein’s theory of relativity considered part of
modern physics, as opposed to classical physics?
a. Because it was considered less outstanding than the

classics of physics, such as classical mechanics.
b. Because it was popular physics enjoyed by average

people today, instead of physics studied by the elite.
c. Because the theory deals with very slow-moving

objects and weak gravitational fields.
d. Because it was among the new 19th-century

discoveries that changed physics.

1.2 The Scientific Methods
10. Describe the difference between an observation and a

hypothesis.
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a. An observation is seeing what happens; a
hypothesis is a testable, educated guess.

b. An observation is a hypothesis that has been
confirmed.

c. Hypotheses and observations are independent of
each other.

d. Hypotheses are conclusions based on some
observations.

11. Describe how modeling is useful in studying the
structure of the atom.
a. Modeling replaces the real system by something

similar but easier to examine.
b. Modeling replaces the real system by something

more interesting to examine.
c. Modeling replaces the real system by something

with more realistic properties.
d. Modeling includes more details than are present in

the real system.

12. How strongly is a hypothesis supported by evidence
compared to a theory?
a. A theory is supported by little evidence, if any, at

first, while a hypothesis is supported by a large
amount of available evidence.

b. A hypothesis is supported by little evidence, if any,
at first. A theory is supported by a large amount of
available evidence.

c. A hypothesis is supported by little evidence, if any,
at first. A theory does not need any experiments in
support.

d. A theory is supported by little evidence, if any, at
first. A hypothesis does not need any experiments
in support.

1.3 The Language of Physics: Physical
Quantities and Units
13. Which of the following does not contribute to the

uncertainty?
a. the limitations of the measuring device
b. the skill of the person making the measurement
c. the regularities in the object being measured
d. other factors that affect the outcome (depending on

the situation)

14. How does the independent variable in a graph differ
from the dependent variable?
a. The dependent variable varies linearly with the

independent variable.
b. The dependent variable depends on the scale of the

axis chosen while independent variable does not.
c. The independent variable is directly manipulated or

controlled by the person doing the experiment,
while dependent variable is the one that changes as

a result.
d. The dependent and independent variables are fixed

by a convention and hence they are the same.

15. What could you conclude about these two lines?

1. Line A has a slope of
2. Line B has a slope of

a. Line A is a decreasing line while line B is an
increasing line, with line A being much steeper
than line B.

b. Line A is a decreasing line while line B is an
increasing line, with line B being much steeper
than line A.

c. Line B is a decreasing line while line A is an
increasing line, with line A being much steeper
than line B.

d. Line B is a decreasing line while line A is an
increasing line, with line B being much steeper
than line A.

16. Velocity, or speed, is measured using the following
formula: where v is velocity, d is the distance
travelled, and t is the time the object took to travel the
distance. If the velocity-time data are plotted on a
graph, which variable will be on which axis? Why?
a. Time would be on the x-axis and velocity on the y-

axis, because time is an independent variable and
velocity is a dependent variable.

b. Velocity would be on the x-axis and time on the y-
axis, because time is the independent variable and
velocity is the dependent variable.

c. Time would be on the x-axis and velocity on the y-
axis, because time is a dependent variable and
velocity is a independent variable.

d. Velocity would be on x-axis and time on the y-axis,
because time is a dependent variable and velocity is
a independent variable.

17. The uncertainty of a triple-beam balance is . What
is the percent uncertainty in a measurement of

?
a.
b.
c.
d.

18. What is the definition of uncertainty?
a. Uncertainty is the number of assumptions made

prior to the measurement of a physical quantity.
b. Uncertainty is a measure of error in a measurement

due to the use of a non-calibrated instrument.
c. Uncertainty is a measure of deviation of the

measured value from the standard value.
d. Uncertainty is a measure of error in measurement
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due to external factors like air friction and temperature.

Critical Thinking Items
1.1 Physics: Definitions and Applications
19. In what sense does Einstein’s theory of relativity

illustrate that physics describes fundamental aspects of
our universe?
a. It describes how speed affects different observers’

measurements of time and space.
b. It describes how different parts of the universe are

far apart and do not affect each other.
c. It describes how people think of other people’s

views from their own frame of reference.
d. It describes how a frame of reference is necessary

to describe position or motion.

20. Can classical physics be used to accurately describe a
satellite moving at a speed of 7500 m/s? Explain why or
why not.
a. No, because the satellite is moving at a speed much

smaller than the speed of the light and is not in a
strong gravitational field.

b. No, because the satellite is moving at a speed much
smaller than the speed of the light and is in a
strong gravitational field.

c. Yes, because the satellite is moving at a speed
much smaller than the speed of the light and it is
not in a strong gravitational field.

d. Yes, because the satellite is moving at a speed
much smaller than the speed of the light and is in a
strong gravitational field.

21. What would be some ways in which physics was involved
in building the features of the room you are in right
now?
a. Physics is involved in structural strength,

dimensions, etc., of the room.
b. Physics is involved in the air composition inside the

room.
c. Physics is involved in the desk arrangement inside

the room.
d. Physics is involved in the behavior of living beings

inside the room.

22. What theory of modern physics describes the
interrelationships between space, time, speed, and
gravity?
a. atomic theory
b. nuclear physics
c. quantum mechanics
d. general relativity

23. According to Einstein’s theory of relativity, how could
you effectively travel many years into Earth’s future, but

not age very much yourself?
a. by traveling at a speed equal to the speed of light
b. by traveling at a speed faster than the speed of light
c. by traveling at a speed much slower than the speed

of light
d. by traveling at a speed slightly slower than the

speed of light

1.2 The Scientific Methods
24. You notice that the water level flowing in a stream near

your house increases when it rains and the water turns
brown. Which of these are the best hypothesis to explain
why the water turns brown. Assume you have all of the
means to test the contents of the stream water.
a. The water in the stream turns brown because

molecular forces between water molecules are
stronger than mud molecules

b. The water in the stream turns brown because of the
breakage of a weak chemical bond with the
hydrogen atom in the water molecule.

c. The water in the stream turns brown because it
picks up dirt from the bank as the water level
increases when it rains.

d. The water in the stream turns brown because the
density of the water increases with increase in
water level.

25. Light travels as waves at an approximate speed of
300,000,000 m/s (186,000 mi/s). Designers of devices
that use mirrors and lenses model the traveling light by
straight lines, or light rays. Describe why it would be
useful to model the light as rays of light instead of
describing them accurately as electromagnetic waves.
a. A model can be constructed in such a way that the

speed of light decreases.
b. Studying a model makes it easier to analyze the

path that the light follows.
c. Studying a model will help us to visualize why light

travels at such great speed.
d. Modeling cannot be used to study traveling light as

our eyes cannot track the motion of light.

26. A friend says that he doesn’t trust scientific explanations
because they are just theories, which are basically
educated guesses. What could you say to convince him
that scientific theories are different from the everyday
use of the word theory?
a. A theory is a scientific explanation that has been

repeatedly tested and supported by many
experiments.

b. A theory is a hypothesis that has been tested and
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supported by some experiments.
c. A theory is a set of educated guesses, but at least

one of the guesses remain true in each experiment.
d. A theory is a set of scientific explanations that has

at least one experiment in support of it.

27. Give an example of a hypothesis that cannot be tested
experimentally.
a. The structure of any part of the broccoli is similar

to the whole structure of the broccoli.
b. Ghosts are the souls of people who have died.
c. The average speed of air molecules increases with

temperature.
d. A vegetarian is less likely to be affected by night

blindness.

28. Would it be possible to scientifically prove that a
supreme being exists or not? Briefly explain your
answer.
a. It can be proved scientifically because it is a

testable hypothesis.
b. It cannot be proved scientifically because it is not a

testable hypothesis.
c. It can be proved scientifically because it is not a

testable hypothesis.
d. It cannot be proved scientifically because it is a

testable hypothesis.

1.3 The Language of Physics: Physical
Quantities and Units
29. A marathon runner completes a course in

, , and . There is an uncertainty of
in the distance traveled and an uncertainty of in the
elapsed time.

1. Calculate the percent uncertainty in the distance.
2. Calculate the uncertainty in the elapsed time.
3. What is the average speed in meters per second?
4. What is the uncertainty in the average speed?

a. , , ,
b. , , ,

c. , , ,
d. , , ,

30. A car engine moves a piston with a circular cross section
of diameter a distance of

to compress the gas in the cylinder.
By what amount did the gas decrease in volume in cubic
centimeters? Find the uncertainty in this volume.
a.
b.
c.
d.

31. What would be the slope for a line passing through the
two points below?

Point 1: (1, 0.1) Point 2: (7, 26.8)

a.
b.
c.
d.

32. The sides of a small rectangular box are measured
and long and high. Calculate

its volume and uncertainty in cubic centimeters.
Assume the measuring device is accurate to .
a.
b.
c.
d.

33. Calculate the approximate number of atoms in a
bacterium. Assume that the average mass of an atom in
the bacterium is ten times the mass of a hydrogen atom.
(Hint—The mass of a hydrogen atom is on the order of
10−27 kg and the mass of a bacterium is on the order of
10−15 kg .)
a. 1010 atoms
b. 1011 atoms
c. 1012 atoms
d. 1013 atoms

Problems
1.3 The Language of Physics: Physical
Quantities and Units
34. A commemorative coin that sells for $40 is advertised to

be plated with 15 mg of gold. Suppose gold is worth
about $1,300 per ounce. Which of the following best
represents the value of the gold in the coin?
a. $0.33
b. $0.69

c. $3.30
d. $6.90

35. If a marathon runner runs in one direction,
in another direction and in a

third direction, how much distance did the runner run?
Be sure to report your answer using the proper number
of significant figures.
a.
b.
c.
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d.

36. The speed limit on some interstate highways is roughly
. What is this in meters per second? How many

miles per hour is this?
a. ,
b. ,
c. ,
d. ,

37. The length and width of a rectangular room are
measured to be by
. Calculate the area of the room and its uncertainty in
square meters.
a.
b.
c.
d.

Performance Task
1.3 The Language of Physics: Physical
Quantities and Units
38. a. Create a new system of units to describe something

that interests you. Your unit should be described
using at least two subunits. For example, you can
decide to measure the quality of songs using a new
unit called song awesomeness. Song awesomeness

is measured by: the number of songs downloaded
and the number of times the song was used in
movies.

b. Create an equation that shows how to calculate
your unit. Then, using your equation, create a
sample dataset that you could graph. Are your two
subunits related linearly, quadratically, or
inversely?

TEST PREP
Multiple Choice
1.1 Physics: Definitions and Applications
39. Modern physics could best be described as the

combination of which theories?
a. quantum mechanics and Einstein’s theory of

relativity
b. quantum mechanics and classical physics
c. Newton’s laws of motion and classical physics
d. Newton’s laws of motion and Einstein’s theory of

relativity

40. Which of the following could be studied accurately
using classical physics?
a. the strength of gravity within a black hole
b. the motion of a plane through the sky
c. the collisions of subatomic particles
d. the effect of gravity on the passage of time

41. Which of the following best describes why knowledge of
physics is necessary to understand all other sciences?
a. Physics explains how energy passes from one object

to another.
b. Physics explains how gravity works.
c. Physics explains the motion of objects that can be

seen with the naked eye.
d. Physics explains the fundamental aspects of the

universe.

42. What does radiation therapy, used to treat cancer
patients, have to do with physics?
a. Understanding how cells reproduce is mainly about

physics.
b. Predictions of the side effects from the radiation

therapy are based on physics.
c. The devices used for generating some kinds of

radiation are based on principles of physics.
d. Predictions of the life expectancy of patients

receiving radiation therapy are based on physics.

1.2 The Scientific Methods
43. The free-electron model of metals explains some of the

important behaviors of metals by assuming the metal’s
electrons move freely through the metal without
repelling one another. In what sense is the free-electron
theory based on a model?
a. Its use requires constructing replicas of the metal

wire in the lab.
b. It involves analyzing an imaginary system simpler

than the real wire it resembles.
c. It examines a model, or ideal, behavior that other

metals should imitate.
d. It attempts to examine the metal in a very realistic,

or model, way.

44. A scientist wishes to study the motion of about 1,000
molecules of gas in a container by modeling them as tiny
billiard balls bouncing randomly off one another. Which
of the following is needed to calculate and store data on
their detailed motion?
a. a group of hypotheses that cannot be practically

tested in real life
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b. a computer that can store and perform calculations
on large data sets

c. a large amount of experimental results on the
molecules and their motion

d. a collection of hypotheses that have not yet been
tested regarding the molecules

45. When a large body of experimental evidence supports a
hypothesis, what may the hypothesis eventually be
considered?
a. observation
b. insight
c. conclusion
d. law

46. While watching some ants outside of your house, you
notice that the worker ants gather in a specific area on
your lawn. Which of the following is a testable
hypothesis that attempts to explain why the ants gather
in that specific area on the lawn.
a. The worker thought it was a nice location.
b. because ants may have to find a spot for the queen

to lay eggs
c. because there may be some food particles lying

there
d. because the worker ants are supposed to group

together at a place.

1.3 The Language of Physics: Physical
Quantities and Units
47. Which of the following would describe a length that is

of a meter?
a. kilometers
b. megameters

c. millimeters
d. micrometers

48. Suppose that a bathroom scale reads a person’s mass as
65 kg with a 3 percent uncertainty. What is the
uncertainty in their mass in kilograms?
a. a. 2 kg
b. b. 98 kg
c. c. 5 kg
d. d. 0

49. Which of the following best describes a variable?
a. a trend that shows an exponential relationship
b. something whose value can change over multiple

measurements
c. a measure of how much a plot line changes along

the y-axis
d. something that remains constant over multiple

measurements

50. A high school track coach has just purchased a new
stopwatch that has an uncertainty of ±0.05 s . Runners
on the team regularly clock 100-m sprints in 12.49 s to
15.01 s . At the school’s last track meet, the first-place
sprinter came in at 12.04 s and the second-place sprinter
came in at 12.07 s . Will the coach’s new stopwatch be
helpful in timing the sprint team? Why or why not?
a. No, the uncertainty in the stopwatch is too large to

effectively differentiate between the sprint times.
b. No, the uncertainty in the stopwatch is too small to

effectively differentiate between the sprint times.
c. Yes, the uncertainty in the stopwatch is too large to

effectively differentiate between the sprint times.
d. Yes, the uncertainty in the stopwatch is too small to

effectively differentiate between the sprint times.

Short Answer
1.1 Physics: Definitions and Applications
51. Describe the aims of physics.

a. Physics aims to explain the fundamental aspects of
our universe and how these aspects interact with
one another.

b. Physics aims to explain the biological aspects of our
universe and how these aspects interact with one
another.

c. Physics aims to explain the composition, structure
and changes in matter occurring in the universe.

d. Physics aims to explain the social behavior of living
beings in the universe.

52. Define the fields of magnetism and electricity and state
how are they are related.
a. Magnetism describes the attractive force between a

magnetized object and a metal like iron. Electricity
involves the study of electric charges and their
movements. Magnetism is not related to the
electricity.

b. Magnetism describes the attractive force between a
magnetized object and a metal like iron. Electricity
involves the study of electric charges and their
movements. Magnetism is produced by a flow
electrical charges.

c. Magnetism involves the study of electric charges
and their movements. Electricity describes the
attractive force between a magnetized object and a
metal. Magnetism is not related to the electricity.

d. Magnetism involves the study of electric charges
and their movements. Electricity describes the
attractive force between a magnetized object and a
metal. Magnetism is produced by the flow electrical
charges.
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53. Describe what two topics physicists are trying to unify
with relativistic quantum mechanics. How will this
unification create a greater understanding of our
universe?
a. Relativistic quantum mechanics unifies quantum

mechanics with Einstein’s theory of relativity. The
unified theory creates a greater understanding of
our universe because it can explain objects of all
sizes and masses.

b. Relativistic quantum mechanics unifies classical
mechanics with Einstein’s theory of relativity. The
unified theory creates a greater understanding of
our universe because it can explain objects of all
sizes and masses.

c. Relativistic quantum mechanics unifies quantum
mechanics with Einstein’s theory of relativity. The
unified theory creates a greater understanding of
our universe because it is unable to explain objects
of all sizes and masses.

d. Relativistic quantum mechanics unifies classical
mechanics with the Einstein’s theory of relativity.
The unified theory creates a greater understanding
of our universe because it is unable to explain
objects of all sizes and masses.

54. The findings of studies in quantum mechanics have
been described as strange or weird compared to those of
classical physics. Explain why this would be so.
a. It is because the phenomena it explains are outside

the normal range of human experience which deals
with much larger objects.

b. It is because the phenomena it explains can be
perceived easily, namely, ordinary-sized objects.

c. It is because the phenomena it explains are outside
the normal range of human experience, namely,
the very large and the very fast objects.

d. It is because the phenomena it explains can be
perceived easily, namely, the very large and the very
fast objects.

55. How could knowledge of physics help you find a faster
way to drive from your house to your school?
a. Physics can explain the traffic on a particular street

and help us know about the traffic in advance.
b. Physics can explain about the ongoing construction

of roads on a particular street and help us know
about delays in the traffic in advance.

c. Physics can explain distances, speed limits on a
particular street and help us categorize faster
routes.

d. Physics can explain the closing of a particular street
and help us categorize faster routes.

56. How could knowledge of physics help you build a sound
and energy-efficient house?

a. An understanding of force, pressure, heat,
electricity, etc., which all involve physics, will help
me design a sound and energy-efficient house.

b. An understanding of the air composition, chemical
composition of matter, etc., which all involves
physics, will help me design a sound and energy-
efficient house.

c. An understanding of material cost and economic
factors involving physics will help me design a
sound and energy-efficient house.

d. An understanding of geographical location and
social environment which involves physics will help
me design a sound and energy-efficient house.

57. What aspects of physics would a chemist likely study in
trying to discover a new chemical reaction?
a. Physics is involved in understanding whether the

reactants and products dissolve in water.
b. Physics is involved in understanding the amount of

energy released or required in a chemical reaction.
c. Physics is involved in what the products of the

reaction will be.
d. Physics is involved in understanding the types of

ions produced in a chemical reaction.

1.2 The Scientific Methods
58. You notice that it takes more force to get a large box to

start sliding across the floor than it takes to get the box
sliding faster once it is already moving. Create a testable
hypothesis that attempts to explain this observation.
a. The floor has greater distortions of space-time for

moving the sliding box faster than for the box at
rest.

b. The floor has greater distortions of space-time for
the box at rest than for the sliding box.

c. The resistance between the floor and the box is less
when the box is sliding then when the box is at rest.

d. The floor dislikes having objects move across it and
therefore holds the box rigidly in place until it
cannot resist the force.

59. Design an experiment that will test the following
hypothesis: driving on a gravel road causes greater
damage to a car than driving on a dirt road.
a. To test the hypothesis, compare the damage to the

car by driving it on a smooth road and a gravel
road.

b. To test the hypothesis, compare the damage to the
car by driving it on a smooth road and a dirt road.

c. To test the hypothesis, compare the damage to the
car by driving it on a gravel road and the dirt road.

d. This is not a testable hypothesis.

60. How is a physical model, such as a spherical mass held
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in place by springs, used to represent an atom vibrating
in a solid, similar to a computer-based model, such as
that predicting how gravity affects the orbits of the
planets?
a. Both a physical model and a computer-based

model should be built around a hypothesis and
could be able to test the hypothesis.

b. Both a physical model and a computer-based
model should be built around a hypothesis but they
cannot be used to test the hypothesis.

c. Both a physical model and a computer-based
model should be built around the results of
scientific studies and could be used to make
predictions about the system under study.

d. Both a physical model and a computer-based
model should be built around the results of
scientific studies but cannot be used to make
predictions about the system under study.

61. Explain the advantages and disadvantages of using a
model to predict a life-or-death situation, such as
whether or not an asteroid will strike Earth.
a. The advantage of using a model is that it provides

predictions quickly, but the disadvantage of using a
model is that it could make erroneous predictions.

b. The advantage of using a model is that it provides
accurate predictions, but the disadvantage of using
a model is that it takes a long time to make
predictions.

c. The advantage of using a model is that it provides
predictions quickly without any error. There are no
disadvantages of using a scientific model.

d. The disadvantage of using models is that it takes
longer time to make predictions and the
predictions are inaccurate. There are no advantages
to using a scientific model.

62. A friend tells you that a scientific law cannot be
changed. State whether or not your friend is correct and
then briefly explain your answer.
a. Correct, because laws are theories that have been

proved true.
b. Correct, because theories are laws that have been

proved true.
c. Incorrect, because a law is changed if new evidence

contradicts it.
d. Incorrect, because a law is changed when a theory

contradicts it.

63. How does a scientific law compare to a local law, such as
that governing parking at your school, in terms of
whether or not laws can be changed, and how universal
a law is?
a. A local law applies only in a specific area, but a

scientific law is applicable throughout the universe.
Both the local law and the scientific law can change.

b. A local law applies only in a specific area, but a
scientific law is applicable throughout the universe.
A local law can change, but a scientific law cannot
be changed.

c. A local law applies throughout the universe but a
scientific law is applicable only in a specific area.
Both the local and the scientific law can change.

d. A local law applies throughout the universe, but a
scientific law is applicable only in a specific area. A
local law can change, but a scientific law cannot be
changed.

64. Can the validity of a model be limited, or must it be
universally valid? How does this compare to the
required validity of a theory or a law?
a. Models, theories and laws must be universally

valid.
b. Models, theories, and laws have only limited

validity.
c. Models have limited validity while theories and

laws are universally valid.
d. Models and theories have limited validity while

laws are universally valid.

1.3 The Language of Physics: Physical
Quantities and Units
65. The speed of sound is measured at on a certain

day. What is this in ? Report your answer in
scientific notation.
a.
b.
c.
d.

66. Describe the main difference between the metric system
and the U.S. Customary System.
a. In the metric system, unit changes are based on

powers of 10, while in the U.S. customary system,
each unit conversion has unrelated conversion
factors.

b. In the metric system, each unit conversion has
unrelated conversion factors, while in the U.S.
customary system, unit changes are based on
powers of 10.

c. In the metric system, unit changes are based on
powers of 2, while in the U.S. customary system,
each unit conversion has unrelated conversion
factors.

d. In the metric system, each unit conversion has
unrelated conversion factors, while in the U.S.
customary system, unit changes are based on
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powers of 2.

67. An infant’s pulse rate is measured to be
. What is the percent uncertainty in

this measurement?
a.
b.
c.
d.

68. Explain how the uncertainty of a measurement relates
to the accuracy and precision of the measuring device.
Include the definitions of accuracy and precision in your
answer.
a. A decrease in the precision of a measurement

increases the uncertainty of the measurement,
while a decrease in accuracy does not.

b. A decrease in either the precision or accuracy of a
measurement increases the uncertainty of the
measurement.

c. An increase in either the precision or accuracy of a
measurement will increase the uncertainty of that
measurement.

d. An increase in the accuracy of a measurement will
increase the uncertainty of that measurement,
while an increase in precision will not.

69. Describe all of the characteristics that can be
determined about a straight line with a slope of and
a y-intercept of on a graph.
a. Based on the information, the line has a negative

slope. Because its y-intercept is 50 and its slope is
negative, this line gradually rises on the graph as
the x-value increases.

b. Based on the information, the line has a negative
slope. Because its y-intercept is 50 and its slope is
negative, this line gradually moves downward on

the graph as the x-value increases.
c. Based on the information, the line has a positive

slope. Because its y-intercept is 50 and its slope is
positive, this line gradually rises on the graph as
the x-value increases.

d. Based on the information, the line has a positive
slope. Because its y-intercept is 50 and its slope is
positive, this line gradually moves downward on
the graph as the x-value increases.

70. The graph shows the temperature change over time of a
heated cup of water.

What is the slope of the graph between the time period 2
min and 5 min?
a. –15 ºC/min
b. –0.07 ºC/min
c. 0.07 ºC/min
d. 15 ºC/min

Extended Response
1.2 The Scientific Methods
71. You wish to perform an experiment on the stopping

distance of your new car. Create a specific experiment to
measure the distance. Be sure to specifically state how
you will set up and take data during your experiment.
a. Drive the car at exactly 50 mph and then press

harder on the accelerator pedal until the velocity
reaches the speed 60 mph and record the distance
this takes.

b. Drive the car at exactly 50 mph and then apply the
brakes until it stops and record the distance this
takes.

c. Drive the car at exactly 50 mph and then apply the
brakes until it stops and record the time it takes.

d. Drive the car at exactly 50 mph and then apply the
accelerator until it reaches the speed of 60 mph and
record the time it takes.

72. You wish to make a model showing how traffic flows
around your city or local area. Describe the steps you
would take to construct your model as well as some
hypotheses that your model could test and the model’s
limitations in terms of what could not be tested.
a. 1. Testable hypotheses like the gravitational pull

on each vehicle while in motion and the average
speed of vehicles is 40 mph

2. Non-testable hypotheses like the average
number of vehicles passing is 935 per day and
carbon emission from each of the moving
vehicle
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b. 1. Testable hypotheses like the average number of
vehicles passing is 935 per day and the average
speed of vehicles is 40 mph

2. Non-testable hypotheses like the gravitational
pull on each vehicle while in motion and the
carbon emission from each of the moving
vehicle

c. 1. Testable hypotheses like the average number of
vehicles passing is 935 per day and the carbon
emission from each of the moving vehicle

2. Non-testable hypotheses like the gravitational
pull on each vehicle while in motion and the
average speed of the vehicles is 40 mph

d. 1. Testable hypotheses like the average number of
vehicles passing is 935 per day and the
gravitational pull on each vehicle while in
motion

2. Non-testable hypotheses like the average speed
of vehicles is 40 mph and the carbon emission
from each of the moving vehicle

73. What would play the most important role in leading to
an experiment in the scientific world becoming a
scientific law?
a. Further testing would need to show it is a

universally followed rule.
b. The observation would have to be described in a

published scientific article.
c. The experiment would have to be repeated once or

twice.
d. The observer would need to be a well-known

scientist whose authority was accepted.

1.3 The Language of Physics: Physical
Quantities and Units
74. Tectonic plates are large segments of the Earth’s crust

that move slowly. Suppose that one such plate has an
average speed of . What distance does it
move in at this speed? What is its speed in
kilometers per million years? Report all of your answers
using scientific notation.
a.
b.
c.
d.

75. At x = 3, a function f(x) has a positive value, with a
positive slope that is decreasing in magnitude with
increasing x. Which option could correspond to f(x)?
a.
b.
c.
d.
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INTRODUCTION

CHAPTER 2
Motion in One Dimension

2.1 Relative Motion, Distance, and Displacement

2.2 Speed and Velocity

2.3 Position vs. Time Graphs

2.4 Velocity vs. Time Graphs

Unless you have flown in an airplane, you have probably never traveled faster than 150 mph. Can you imagine
traveling in a train like the one shown in Figure 2.1 that goes over 300 mph? Despite the high speed, the people riding in this
train may not notice that they are moving at all unless they look out the window! This is because motion, even motion at 300
mph, is relative to the observer.

In this chapter, you will learn why it is important to identify a reference frame in order to clearly describe motion. For now, the
motion you describe will be one-dimensional. Within this context, you will learn the difference between distance and
displacement as well as the difference between speed and velocity. Then you will look at some graphing and problem-solving
techniques.

Figure 2.1 Shanghai Maglev. At this rate, a train traveling from Boston to Washington, DC, a distance of 439 miles,
could make the trip in under an hour and a half. Presently, the fastest train on this route takes over six hours to cover
this distance. (Alex Needham, Public Domain)

Chapter Outline



2.1 Relative Motion, Distance, and Displacement
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe motion in different reference frames
• Define distance and displacement, and distinguish between the two
• Solve problems involving distance and displacement

Section Key Terms

displacement distance kinematics magnitude

position reference frame scalar vector

Defining Motion
Our study of physics opens with kinematics—the study of motion without considering its causes. Objects are in motion
everywhere you look. Everything from a tennis game to a space-probe flyby of the planet Neptune involves motion. When you
are resting, your heart moves blood through your veins. Even in inanimate objects, atoms are always moving.

How do you know something is moving? The location of an object at any particular time is its position. More precisely, you need
to specify its position relative to a convenient reference frame. Earth is often used as a reference frame, and we often describe
the position of an object as it relates to stationary objects in that reference frame. For example, a rocket launch would be
described in terms of the position of the rocket with respect to Earth as a whole, while a professor’s position could be described
in terms of where she is in relation to the nearby white board. In other cases, we use reference frames that are not stationary but
are in motion relative to Earth. To describe the position of a person in an airplane, for example, we use the airplane, not Earth,
as the reference frame. (See Figure 2.2.) Thus, you can only know how fast and in what direction an object's position is changing
against a background of something else that is either not moving or moving with a known speed and direction. The reference
frame is the coordinate system from which the positions of objects are described.

Figure 2.2 Are clouds a useful reference frame for airplane passengers? Why or why not? (Paul Brennan, Public Domain)

Your classroom can be used as a reference frame. In the classroom, the walls are not moving. Your motion as you walk to the
door, can be measured against the stationary background of the classroom walls. You can also tell if other things in the
classroom are moving, such as your classmates entering the classroom or a book falling off a desk. You can also tell in what
direction something is moving in the classroom. You might say, “The teacher is moving toward the door.” Your reference frame
allows you to determine not only that something is moving but also the direction of motion.

You could also serve as a reference frame for others’ movement. If you remained seated as your classmates left the room, you
would measure their movement away from your stationary location. If you and your classmates left the room together, then
your perspective of their motion would be change. You, as the reference frame, would be moving in the same direction as your
other moving classmates. As you will learn in the Snap Lab, your description of motion can be quite different when viewed from
different reference frames.
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LINKS TO PHYSICS

History: Galileo's Ship

Figure 2.3 Galileo Galilei (1564–1642) studied motion and developed the concept of a reference frame. (Domenico Tintoretto)

The idea that a description of motion depends on the reference frame of the observer has been known for hundreds of years. The
17th-century astronomer Galileo Galilei (Figure 2.3) was one of the first scientists to explore this idea. Galileo suggested the
following thought experiment: Imagine a windowless ship moving at a constant speed and direction along a perfectly calm sea.
Is there a way that a person inside the ship can determine whether the ship is moving? You can extend this thought experiment

Snap Lab

Looking at Motion from Two Reference Frames
In this activity you will look at motion from two reference frames. Which reference frame is correct?

• Choose an open location with lots of space to spread out so there is less chance of tripping or falling due to a collision
and/or loose basketballs.

• 1 basketball

Procedure
1. Work with a partner. Stand a couple of meters away from your partner. Have your partner turn to the side so that you

are looking at your partner’s profile. Have your partner begin bouncing the basketball while standing in place. Describe
the motion of the ball.

2. Next, have your partner again bounce the ball, but this time your partner should walk forward with the bouncing ball.
You will remain stationary. Describe the ball's motion.

3. Again have your partner walk forward with the bouncing ball. This time, you should move alongside your partner while
continuing to view your partner’s profile. Describe the ball's motion.

4. Switch places with your partner, and repeat Steps 1–3.

GRASP CHECK
How do the different reference frames affect how you describe the motion of the ball?
a. The motion of the ball is independent of the reference frame and is same for different reference frames.
b. The motion of the ball is independent of the reference frame and is different for different reference frames.
c. The motion of the ball is dependent on the reference frame and is same for different reference frames.
d. The motion of the ball is dependent on the reference frames and is different for different reference frames.
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by also imagining a person standing on the shore. How can a person on the shore determine whether the ship is moving?

Galileo came to an amazing conclusion. Only by looking at each other can a person in the ship or a person on shore describe the
motion of one relative to the other. In addition, their descriptions of motion would be identical. A person inside the ship would
describe the person on the land as moving past the ship. The person on shore would describe the ship and the person inside it as
moving past. Galileo realized that observers moving at a constant speed and direction relative to each other describe motion in
the same way. Galileo had discovered that a description of motion is only meaningful if you specify a reference frame.

GRASP CHECK
Imagine standing on a platform watching a train pass by. According to Galileo’s conclusions, how would your description of
motion and the description of motion by a person riding on the train compare?
a. I would see the train as moving past me, and a person on the train would see me as stationary.
b. I would see the train as moving past me, and a person on the train would see me as moving past the train.
c. I would see the train as stationary, and a person on the train would see me as moving past the train.
d. I would see the train as stationary, and a person on the train would also see me as stationary.

Distance vs. Displacement
As we study the motion of objects, we must first be able to describe the object’s position. Before your parent drives you to school,
the car is sitting in your driveway. Your driveway is the starting position for the car. When you reach your high school, the car
has changed position. Its new position is your school.

Figure 2.4 Your total change in position is measured from your house to your school.

Physicists use variables to represent terms. We will use d to represent car’s position. We will use a subscript to differentiate
between the initial position, d0, and the final position, df. In addition, vectors, which we will discuss later, will be in bold or will
have an arrow above the variable. Scalars will be italicized.

TIPS FOR SUCCESS
In some books, x or s is used instead of d to describe position. In d0, said d naught, the subscript 0 stands for initial. When
we begin to talk about two-dimensional motion, sometimes other subscripts will be used to describe horizontal position, dx,
or vertical position, dy. So, you might see references to d0x and dfy.

Now imagine driving from your house to a friend's house located several kilometers away. How far would you drive? The
distance an object moves is the length of the path between its initial position and its final position. The distance you drive to
your friend's house depends on your path. As shown in Figure 2.5, distance is different from the length of a straight line between
two points. The distance you drive to your friend's house is probably longer than the straight line between the two houses.
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Figure 2.5 A short line separates the starting and ending points of this motion, but the distance along the path of motion is considerably

longer.

We often want to be more precise when we talk about position. The description of an object’s motion often includes more than
just the distance it moves. For instance, if it is a five kilometer drive to school, the distance traveled is 5 kilometers. After
dropping you off at school and driving back home, your parent will have traveled a total distance of 10 kilometers. The car and
your parent will end up in the same starting position in space. The net change in position of an object is its displacement, or

The Greek letter delta, , means change in.

Figure 2.6 The total distance that your car travels is 10 km, but the total displacement is 0.

Snap Lab

Distance vs. Displacement
In this activity you will compare distance and displacement. Which term is more useful when making measurements?

• 1 recorded song available on a portable device
• 1 tape measure
• 3 pieces of masking tape
• A room (like a gym) with a wall that is large and clear enough for all pairs of students to walk back and forth without

running into each other.

Procedure
1. One student from each pair should stand with their back to the longest wall in the classroom. Students should stand at

least 0.5 meters away from each other. Mark this starting point with a piece of masking tape.
2. The second student from each pair should stand facing their partner, about two to three meters away. Mark this point
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If you are describing only your drive to school, then the distance traveled and the displacement are the same—5 kilometers.
When you are describing the entire round trip, distance and displacement are different. When you describe distance, you only
include the magnitude, the size or amount, of the distance traveled. However, when you describe the displacement, you take
into account both the magnitude of the change in position and the direction of movement.

In our previous example, the car travels a total of 10 kilometers, but it drives five of those kilometers forward toward school and
five of those kilometers back in the opposite direction. If we ascribe the forward direction a positive (+) and the opposite
direction a negative (–), then the two quantities will cancel each other out when added together.

A quantity, such as distance, that has magnitude (i.e., how big or how much) but does not take into account direction is called a
scalar. A quantity, such as displacement, that has both magnitude and direction is called a vector.

WATCH PHYSICS

Vectors & Scalars
This video (http://openstax.org/l/28vectorscalar) introduces and differentiates between vectors and scalars. It also introduces
quantities that we will be working with during the study of kinematics.

Click to view content (https://www.khanacademy.org/embed_video?v=ihNZlp7iUHE)

with a second piece of masking tape.
3. Student pairs line up at the starting point along the wall.
4. The teacher turns on the music. Each pair walks back and forth from the wall to the second marked point until the

music stops playing. Keep count of the number of times you walk across the floor.
5. When the music stops, mark your ending position with the third piece of masking tape.
6. Measure from your starting, initial position to your ending, final position.
7. Measure the length of your path from the starting position to the second marked position. Multiply this measurement

by the total number of times you walked across the floor. Then add this number to your measurement from step 6.
8. Compare the two measurements from steps 6 and 7.

GRASP CHECK
1. Which measurement is your total distance traveled?
2. Which measurement is your displacement?
3. When might you want to use one over the other?

a. Measurement of the total length of your path from the starting position to the final position gives the distance
traveled, and the measurement from your initial position to your final position is the displacement. Use distance to
describe the total path between starting and ending points,and use displacement to describe the shortest path
between starting and ending points.

b. Measurement of the total length of your path from the starting position to the final position is distance traveled,
and the measurement from your initial position to your final position is displacement. Use distance to describe the
shortest path between starting and ending points, and use displacement to describe the total path between starting
and ending points.

c. Measurement from your initial position to your final position is distance traveled, and the measurement of the total
length of your path from the starting position to the final position is displacement. Use distance to describe the
total path between starting and ending points, and use displacement to describe the shortest path between starting
and ending points.

d. Measurement from your initial position to your final position is distance traveled, and the measurement of the total
length of your path from the starting position to the final position is displacement. Use distance to describe the
shortest path between starting and ending points, and use displacement to describe the total path between starting
and ending points.
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GRASP CHECK
How does this video (https://www.khanacademy.org/science/ap-physics-1/ap-one-dimensional-motion/ap-physics-
foundations/v/introduction-to-vectors-and-scalars) help you understand the difference between distance and displacement?
Describe the differences between vectors and scalars using physical quantities as examples.
a. It explains that distance is a vector and direction is important, whereas displacement is a scalar and it has no direction

attached to it.
b. It explains that distance is a scalar and direction is important, whereas displacement is a vector and it has no direction

attached to it.
c. It explains that distance is a scalar and it has no direction attached to it, whereas displacement is a vector and direction

is important.
d. It explains that both distance and displacement are scalar and no directions are attached to them.

Displacement Problems
Hopefully you now understand the conceptual difference between distance and displacement. Understanding concepts is half
the battle in physics. The other half is math. A stumbling block to new physics students is trying to wade through the math of
physics while also trying to understand the associated concepts. This struggle may lead to misconceptions and answers that
make no sense. Once the concept is mastered, the math is far less confusing.

So let’s review and see if we can make sense of displacement in terms of numbers and equations. You can calculate an object's
displacement by subtracting its original position, d0, from its final position df. In math terms that means

If the final position is the same as the initial position, then .

To assign numbers and/or direction to these quantities, we need to define an axis with a positive and a negative direction. We
also need to define an origin, or O. In Figure 2.6, the axis is in a straight line with home at zero and school in the positive
direction. If we left home and drove the opposite way from school, motion would have been in the negative direction. We would
have assigned it a negative value. In the round-trip drive, df and d0 were both at zero kilometers. In the one way trip to school, df

was at 5 kilometers and d0 was at zero km. So, was 5 kilometers.

TIPS FOR SUCCESS
You may place your origin wherever you would like. You have to make sure that you calculate all distances consistently from
your zero and you define one direction as positive and the other as negative. Therefore, it makes sense to choose the easiest
axis, direction, and zero. In the example above, we took home to be zero because it allowed us to avoid having to interpret a
solution with a negative sign.

WORKED EXAMPLE

Calculating Distance and Displacement
A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does she
ride? (c) What is the magnitude of her displacement?

2.1 • Relative Motion, Distance, and Displacement 59

https://www.khanacademy.org/science/ap-physics-1/ap-one-dimensional-motion/ap-physics-foundations/v/introduction-to-vectors-and-scalars
https://www.khanacademy.org/science/ap-physics-1/ap-one-dimensional-motion/ap-physics-foundations/v/introduction-to-vectors-and-scalars


Strategy
To solve this problem, we need to find the difference between the final position and the initial position while taking care to note
the direction on the axis. The final position is the sum of the two displacements, and .

Solution
a. Displacement: The rider’s displacement is .
b. Distance: The distance traveled is 3 km + 2 km = 5 km.
c. The magnitude of the displacement is 1 km.

Discussion
The displacement is negative because we chose east to be positive and west to be negative. We could also have described the
displacement as 1 km west. When calculating displacement, the direction mattered, but when calculating distance, the direction
did not matter. The problem would work the same way if the problem were in the north–south or y-direction.

TIPS FOR SUCCESS
Physicists like to use standard units so it is easier to compare notes. The standard units for calculations are called SI units
(International System of Units). SI units are based on the metric system. The SI unit for displacement is the meter (m), but
sometimes you will see a problem with kilometers, miles, feet, or other units of length. If one unit in a problem is an SI unit
and another is not, you will need to convert all of your quantities to the same system before you can carry out the calculation.

Practice Problems
1. On an axis in which moving from right to left is positive, what is the displacement and distance of a student who walks 32 m

to the right and then 17 m to the left?
a. Displacement is -15 m and distance is -49 m.
b. Displacement is -15 m and distance is 49 m.
c. Displacement is 15 m and distance is -49 m.
d. Displacement is 15 m and distance is 49 m.

2. Tiana jogs 1.5 km along a straight path and then turns and jogs 2.4 km in the opposite direction. She then turns back and
jogs 0.7 km in the original direction. Let Tiana’s original direction be the positive direction. What are the displacement and
distance she jogged?
a. Displacement is 4.6 km,and distance is -0.2 km.
b. Displacement is -0.2 km, and distance is 4.6 km.
c. Displacement is 4.6 km, and distance is +0.2 km.
d. Displacement is +0.2 km, and distance is 4.6 km.

WORK IN PHYSICS

Mars Probe Explosion

Figure 2.7 The Mars Climate Orbiter disaster illustrates the importance of using the correct calculations in physics. (NASA)
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Physicists make calculations all the time, but they do not always get the right answers. In 1998, NASA, the National Aeronautics
and Space Administration, launched the Mars Climate Orbiter, shown in Figure 2.7, a $125-million-dollar satellite designed to
monitor the Martian atmosphere. It was supposed to orbit the planet and take readings from a safe distance. The American
scientists made calculations in English units (feet, inches, pounds, etc.) and forgot to convert their answers to the standard
metric SI units. This was a very costly mistake. Instead of orbiting the planet as planned, the Mars Climate Orbiter ended up
flying into the Martian atmosphere. The probe disintegrated. It was one of the biggest embarrassments in NASA’s history.

GRASP CHECK
In 1999 the Mars Climate Orbiter crashed because calculation were performed in English units instead of SI units. At one
point the orbiter was just 187,000 feet above the surface, which was too close to stay in orbit. What was the height of the
orbiter at this time in kilometers? (Assume 1 meter equals 3.281 feet.)
a. 16 km
b. 18 km
c. 57 km
d. 614 km

Check Your Understanding
3. What does it mean when motion is described as relative?

a. It means that motion of any object is described relative to the motion of Earth.
b. It means that motion of any object is described relative to the motion of any other object.
c. It means that motion is independent of the frame of reference.
d. It means that motion depends on the frame of reference selected.

4. If you and a friend are standing side-by-side watching a soccer game, would you both view the motion from the same
reference frame?
a. Yes, we would both view the motion from the same reference point because both of us are at rest in Earth’s frame of

reference.
b. Yes, we would both view the motion from the same reference point because both of us are observing the motion from

two points on the same straight line.
c. No, we would both view the motion from different reference points because motion is viewed from two different points;

the reference frames are similar but not the same.
d. No, we would both view the motion from different reference points because response times may be different; so, the

motion observed by both of us would be different.

5. What is the difference between distance and displacement?
a. Distance has both magnitude and direction, while displacement has magnitude but no direction.
b. Distance has magnitude but no direction, while displacement has both magnitude and direction.
c. Distance has magnitude but no direction, while displacement has only direction.
d. There is no difference. Both distance and displacement have magnitude and direction.

6. Which situation correctly identifies a race car’s distance traveled and the magnitude of displacement during a one-lap car
race?
a. The perimeter of the race track is the distance, and the shortest distance between the start line and the finish line is the

magnitude of displacement.
b. The perimeter of the race track is the magnitude of displacement, and the shortest distance between the start and finish

line is the distance.
c. The perimeter of the race track is both the distance and magnitude of displacement.
d. The shortest distance between the start line and the finish line is both the distance and magnitude of displacement.

7. Why is it important to specify a reference frame when describing motion?
a. Because Earth is continuously in motion; an object at rest on Earth will be in motion when viewed from outer space.
b. Because the position of a moving object can be defined only when there is a fixed reference frame.
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c. Because motion is a relative term; it appears differently when viewed from different reference frames.
d. Because motion is always described in Earth’s frame of reference; if another frame is used, it has to be specified with

each situation.

2.2 Speed and Velocity
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Calculate the average speed of an object
• Relate displacement and average velocity

Section Key Terms

average speed average velocity instantaneous speed

instantaneous velocity speed velocity

Speed
There is more to motion than distance and displacement. Questions such as, “How long does a foot race take?” and “What was
the runner’s speed?” cannot be answered without an understanding of other concepts. In this section we will look at time, speed,
and velocity to expand our understanding of motion.

A description of how fast or slow an object moves is its speed. Speed is the rate at which an object changes its location. Like
distance, speed is a scalar because it has a magnitude but not a direction. Because speed is a rate, it depends on the time interval
of motion. You can calculate the elapsed time or the change in time, , of motion as the difference between the ending time
and the beginning time

The SI unit of time is the second (s), and the SI unit of speed is meters per second (m/s), but sometimes kilometers per hour
(km/h), miles per hour (mph) or other units of speed are used.

When you describe an object's speed, you often describe the average over a time period. Average speed, vavg, is the distance
traveled divided by the time during which the motion occurs.

You can, of course, rearrange the equation to solve for either distance or time

Suppose, for example, a car travels 150 kilometers in 3.2 hours. Its average speed for the trip is

A car's speed would likely increase and decrease many times over a 3.2 hour trip. Its speed at a specific instant in time, however,
is its instantaneous speed. A car's speedometer describes its instantaneous speed.

62 Chapter 2 • Motion in One Dimension

Access for free at openstax.org.



Figure 2.8 During a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is 12 km/h. The displacement

for the round trip is zero, because there was no net change in position.

WORKED EXAMPLE

Calculating Average Speed
A marble rolls 5.2 m in 1.8 s. What was the marble's average speed?
Strategy
We know the distance the marble travels, 5.2 m, and the time interval, 1.8 s. We can use these values in the average speed
equation.

Solution

Discussion
Average speed is a scalar, so we do not include direction in the answer. We can check the reasonableness of the answer by
estimating: 5 meters divided by 2 seconds is 2.5 m/s. Since 2.5 m/s is close to 2.9 m/s, the answer is reasonable. This is about the
speed of a brisk walk, so it also makes sense.

Practice Problems
8. A pitcher throws a baseball from the pitcher’s mound to home plate in 0.46 s. The distance is 18.4 m. What was the average

speed of the baseball?
a. 40 m/s
b. - 40 m/s
c. 0.03 m/s
d. 8.5 m/s

9. Cassie walked to her friend’s house with an average speed of 1.40 m/s. The distance between the houses is 205 m. How long
did the trip take her?
a. 146 s
b. 0.01 s
c. 2.50 min
d. 287 s

Velocity
The vector version of speed is velocity. Velocity describes the speed and direction of an object. As with speed, it is useful to
describe either the average velocity over a time period or the velocity at a specific moment. Average velocity is displacement
divided by the time over which the displacement occurs.
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Velocity, like speed, has SI units of meters per second (m/s), but because it is a vector, you must also include a direction.
Furthermore, the variable v for velocity is bold because it is a vector, which is in contrast to the variable v for speed which is
italicized because it is a scalar quantity.

TIPS FOR SUCCESS
It is important to keep in mind that the average speed is not the same thing as the average velocity without its direction. Like
we saw with displacement and distance in the last section, changes in direction over a time interval have a bigger effect on
speed and velocity.

Suppose a passenger moved toward the back of a plane with an average velocity of –4 m/s. We cannot tell from the average
velocity whether the passenger stopped momentarily or backed up before he got to the back of the plane. To get more details, we
must consider smaller segments of the trip over smaller time intervals such as those shown in Figure 2.9. If you consider
infinitesimally small intervals, you can define instantaneous velocity, which is the velocity at a specific instant in time.
Instantaneous velocity and average velocity are the same if the velocity is constant.

Figure 2.9 The diagram shows a more detailed record of an airplane passenger heading toward the back of the plane, showing smaller

segments of his trip.

Earlier, you have read that distance traveled can be different than the magnitude of displacement. In the same way, speed can be
different than the magnitude of velocity. For example, you drive to a store and return home in half an hour. If your car’s
odometer shows the total distance traveled was 6 km, then your average speed was 12 km/h. Your average velocity, however, was
zero because your displacement for the round trip is zero.

WATCH PHYSICS

Calculating Average Velocity or Speed
This video (http://openstax.org/l/28avgvelocity) reviews vectors and scalars and describes how to calculate average velocity and
average speed when you know displacement and change in time. The video also reviews how to convert km/h to m/s.

Click to view content (https://www.khanacademy.org/embed_video?v=MAS6mBRZZXA)

GRASP CHECK
Which of the following fully describes a vector and a scalar quantity and correctly provides an example of each?
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a. A scalar quantity is fully described by its magnitude, while a vector needs both magnitude and direction to fully
describe it. Displacement is an example of a scalar quantity and time is an example of a vector quantity.

b. A scalar quantity is fully described by its magnitude, while a vector needs both magnitude and direction to fully
describe it. Time is an example of a scalar quantity and displacement is an example of a vector quantity.

c. A scalar quantity is fully described by its magnitude and direction, while a vector needs only magnitude to fully describe
it. Displacement is an example of a scalar quantity and time is an example of a vector quantity.

d. A scalar quantity is fully described by its magnitude and direction, while a vector needs only magnitude to fully describe
it. Time is an example of a scalar quantity and displacement is an example of a vector quantity.

WORKED EXAMPLE

Calculating Average Velocity
A student has a displacement of 304 m north in 180 s. What was the student's average velocity?
Strategy
We know that the displacement is 304 m north and the time is 180 s. We can use the formula for average velocity to solve the
problem.

Solution

Discussion
Since average velocity is a vector quantity, you must include direction as well as magnitude in the answer. Notice, however, that
the direction can be omitted until the end to avoid cluttering the problem. Pay attention to the significant figures in the
problem. The distance 304 m has three significant figures, but the time interval 180 s has only two, so the quotient should have
only two significant figures.

TIPS FOR SUCCESS
Note the way scalars and vectors are represented. In this book d represents distance and displacement. Similarly, v
represents speed, and v represents velocity. A variable that is not bold indicates a scalar quantity, and a bold variable
indicates a vector quantity. Vectors are sometimes represented by small arrows above the variable.

WORKED EXAMPLE

Solving for Displacement when Average Velocity and Time are Known
Layla jogs with an average velocity of 2.4 m/s east. What is her displacement after 46 seconds?
Strategy
We know that Layla's average velocity is 2.4 m/s east, and the time interval is 46 seconds. We can rearrange the average velocity
formula to solve for the displacement.

Solution

Discussion
The answer is about 110 m east, which is a reasonable displacement for slightly less than a minute of jogging. A calculator shows
the answer as 110.4 m. We chose to write the answer using scientific notation because we wanted to make it clear that we only
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used two significant figures.

TIPS FOR SUCCESS
Dimensional analysis is a good way to determine whether you solved a problem correctly. Write the calculation using only
units to be sure they match on opposite sides of the equal mark. In the worked example, you have
m = (m/s)(s). Since seconds is in the denominator for the average velocity and in the numerator for the time, the unit cancels
out leaving only m and, of course, m = m.

WORKED EXAMPLE

Solving for Time when Displacement and Average Velocity are Known
Phillip walks along a straight path from his house to his school. How long will it take him to get to school if he walks 428 m west
with an average velocity of 1.7 m/s west?
Strategy
We know that Phillip's displacement is 428 m west, and his average velocity is 1.7 m/s west. We can calculate the time required
for the trip by rearranging the average velocity equation.

Solution

Discussion
Here again we had to use scientific notation because the answer could only have two significant figures. Since time is a scalar,
the answer includes only a magnitude and not a direction.

Practice Problems
10. A trucker drives along a straight highway for 0.25 h with a displacement of 16 km south. What is the trucker’s average

velocity?
a. 4 km/h north
b. 4 km/h south
c. 64 km/h north
d. 64 km/h south

11. A bird flies with an average velocity of 7.5 m/s east from one branch to another in 2.4 s. It then pauses before flying with an
average velocity of 6.8 m/s east for 3.5 s to another branch. What is the bird’s total displacement from its starting point?
a. 42 m west
b. 6 m west
c. 6 m east
d. 42 m east

2.3

Virtual Physics

The Walking Man
In this simulation you will put your cursor on the man and move him first in one direction and then in the opposite
direction. Keep the Introduction tab active. You can use the Charts tab after you learn about graphing motion later in this
chapter. Carefully watch the sign of the numbers in the position and velocity boxes. Ignore the acceleration box for now. See
if you can make the man’s position positive while the velocity is negative. Then see if you can do the opposite.
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Check Your Understanding
12. Two runners travel along the same straight path. They start at the same time, and they end at the same time, but at the

halfway mark, they have different instantaneous velocities. Is it possible for them to have the same average velocity for the
trip?
a. Yes, because average velocity depends on the net or total displacement.
b. Yes, because average velocity depends on the total distance traveled.
c. No, because the velocities of both runners must remain the exactly same throughout the journey.
d. No, because the instantaneous velocities of the runners must remain same midway but can be different elsewhere.

13. If you divide the total distance traveled on a car trip (as determined by the odometer) by the time for the trip, are you
calculating the average speed or the magnitude of the average velocity, and under what circumstances are these two
quantities the same?
a. Average speed. Both are the same when the car is traveling at a constant speed and changing direction.
b. Average speed. Both are the same when the speed is constant and the car does not change its direction.
c. Magnitude of average velocity. Both are same when the car is traveling at a constant speed.
d. Magnitude of average velocity. Both are same when the car does not change its direction.

14. Is it possible for average velocity to be negative?
a. Yes, in cases when the net displacement is negative.
b. Yes, if the body keeps changing its direction during motion.
c. No, average velocity describes only magnitude and not the direction of motion.
d. No, average velocity describes only the magnitude in the positive direction of motion.

2.3 Position vs. Time Graphs
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain the meaning of slope in position vs. time graphs
• Solve problems using position vs. time graphs

Section Key Terms

dependent variable independent variable tangent

Graphing Position as a Function of Time
A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information, they also reveal
relationships between physical quantities. In this section, we will investigate kinematics by analyzing graphs of position over
time.

Graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities are plotted
against each other, the horizontal axis is usually considered the independent variable, and the vertical axis is the dependent
variable. In algebra, you would have referred to the horizontal axis as the x-axis and the vertical axis as the y-axis. As in Figure
2.10, a straight-line graph has the general form .

Click to view content (https://archive.cnx.org/specials/e2ca52af-8c6b-450e-ac2f-9300b38e8739/moving-man/)

GRASP CHECK
Which situation correctly describes when the moving man’s position was negative but his velocity was positive?
a. Man moving toward 0 from left of 0
b. Man moving toward 0 from right of 0
c. Man moving away from 0 from left of 0
d. Man moving away from 0 from right of 0
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Here m is the slope, defined as the rise divided by the run (as seen in the figure) of the straight line. The letter b is the y-intercept
which is the point at which the line crosses the vertical, y-axis. In terms of a physical situation in the real world, these quantities
will take on a specific significance, as we will see below. (Figure 2.10.)

Figure 2.10 The diagram shows a straight-line graph. The equation for the straight line is y equals mx + b.

In physics, time is usually the independent variable. Other quantities, such as displacement, are said to depend upon it. A graph
of position versus time, therefore, would have position on the vertical axis (dependent variable) and time on the horizontal axis
(independent variable). In this case, to what would the slope and y-intercept refer? Let’s look back at our original example when
studying distance and displacement.

The drive to school was 5 km from home. Let’s assume it took 10 minutes to make the drive and that your parent was driving at a
constant velocity the whole time. The position versus time graph for this section of the trip would look like that shown in Figure
2.11.

Figure 2.11 A graph of position versus time for the drive to school is shown. What would the graph look like if we added the return trip?

As we said before, d0 = 0 because we call home our O and start calculating from there. In Figure 2.11, the line starts at d = 0, as
well. This is the b in our equation for a straight line. Our initial position in a position versus time graph is always the place where
the graph crosses the x-axis at t = 0. What is the slope? The rise is the change in position, (i.e., displacement) and the run is the
change in time. This relationship can also be written

This relationship was how we defined average velocity. Therefore, the slope in a d versus t graph, is the average velocity.

TIPS FOR SUCCESS
Sometimes, as is the case where we graph both the trip to school and the return trip, the behavior of the graph looks different
during different time intervals. If the graph looks like a series of straight lines, then you can calculate the average velocity for
each time interval by looking at the slope. If you then want to calculate the average velocity for the entire trip, you can do a

2.4
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weighted average.

Let’s look at another example. Figure 2.12 shows a graph of position versus time for a jet-powered car on a very flat dry lake bed
in Nevada.

Figure 2.12 The diagram shows a graph of position versus time for a jet-powered car on the Bonneville Salt Flats.

Using the relationship between dependent and independent variables, we see that the slope in the graph in Figure 2.12 is average
velocity, vavg and the intercept is displacement at time zero—that is, d0. Substituting these symbols into y = mx + b gives

or

Thus a graph of position versus time gives a general relationship among displacement, velocity, and time, as well as giving
detailed numerical information about a specific situation. From the figure we can see that the car has a position of 400 m at t = 0
s, 650 m at t = 1.0 s, and so on. And we can learn about the object’s velocity, as well.

2.5

2.6

Snap Lab

Graphing Motion
In this activity, you will release a ball down a ramp and graph the ball’s displacement vs. time.

• Choose an open location with lots of space to spread out so there is less chance for tripping or falling due to rolling
balls.

• 1 ball
• 1 board
• 2 or 3 books
• 1 stopwatch
• 1 tape measure
• 6 pieces of masking tape
• 1 piece of graph paper
• 1 pencil

Procedure
1. Build a ramp by placing one end of the board on top of the stack of books. Adjust location, as necessary, until there is

no obstacle along the straight line path from the bottom of the ramp until at least the next 3 m.
2. Mark distances of 0.5 m, 1.0 m, 1.5 m, 2.0 m, 2.5 m, and 3.0 m from the bottom of the ramp. Write the distances on the

tape.
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Solving Problems Using Position vs. Time Graphs
So how do we use graphs to solve for things we want to know like velocity?

WORKED EXAMPLE

Using Position–Time Graph to Calculate Average Velocity: Jet Car
Find the average velocity of the car whose position is graphed in Figure 1.13.
Strategy
The slope of a graph of d vs. t is average velocity, since slope equals rise over run.

Since the slope is constant here, any two points on the graph can be used to find the slope.

Solution
1. Choose two points on the line. In this case, we choose the points labeled on the graph: (6.4 s, 2000 m) and (0.50 s, 525 m).

(Note, however, that you could choose any two points.)
2. Substitute the d and t values of the chosen points into the equation. Remember in calculating change (Δ) we always use

final value minus initial value.

Discussion
This is an impressively high land speed (900 km/h, or about 560 mi/h): much greater than the typical highway speed limit of 27
m/s or 96 km/h, but considerably shy of the record of 343 m/s or 1,234 km/h, set in 1997.

But what if the graph of the position is more complicated than a straight line? What if the object speeds up or turns around and
goes backward? Can we figure out anything about its velocity from a graph of that kind of motion? Let’s take another look at the
jet-powered car. The graph in Figure 2.13 shows its motion as it is getting up to speed after starting at rest. Time starts at zero
for this motion (as if measured with a stopwatch), and the displacement and velocity are initially 200 m and 15 m/s, respectively.

3. Have one person take the role of the experimenter. This person will release the ball from the top of the ramp. If the ball
does not reach the 3.0 m mark, then increase the incline of the ramp by adding another book. Repeat this Step as
necessary.

4. Have the experimenter release the ball. Have a second person, the timer, begin timing the trial once the ball reaches the
bottom of the ramp and stop the timing once the ball reaches 0.5 m. Have a third person, the recorder, record the time
in a data table.

5. Repeat Step 4, stopping the times at the distances of 1.0 m, 1.5 m, 2.0 m, 2.5 m, and 3.0 m from the bottom of the
ramp.

6. Use your measurements of time and the displacement to make a position vs. time graph of the ball’s motion.
7. Repeat Steps 4 through 6, with different people taking on the roles of experimenter, timer, and recorder. Do you get the

same measurement values regardless of who releases the ball, measures the time, or records the result? Discuss
possible causes of discrepancies, if any.

GRASP CHECK
True or False: The average speed of the ball will be less than the average velocity of the ball.
a. True
b. False

2.7

2.8
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Figure 2.13 The diagram shows a graph of the position of a jet-powered car during the time span when it is speeding up. The slope of a

distance versus time graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent at that

point.

Figure 2.14 A U.S. Air Force jet car speeds down a track. (Matt Trostle, Flickr)

The graph of position versus time in Figure 2.13 is a curve rather than a straight line. The slope of the curve becomes steeper as
time progresses, showing that the velocity is increasing over time. The slope at any point on a position-versus-time graph is the
instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of interest and taking
the slope of this straight line. Tangent lines are shown for two points in Figure 2.13. The average velocity is the net displacement
divided by the time traveled.

WORKED EXAMPLE

Using Position–Time Graph to Calculate Average Velocity: Jet Car, Take Two
Calculate the instantaneous velocity of the jet car at a time of 25 s by finding the slope of the tangent line at point Q in Figure
2.13.
Strategy
The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point.

Solution
1. Find the tangent line to the curve at .
2. Determine the endpoints of the tangent. These correspond to a position of 1,300 m at time 19 s and a position of 3120 m at

time 32 s.
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3. Plug these endpoints into the equation to solve for the slope, v.

Discussion
The entire graph of v versus t can be obtained in this fashion.

Practice Problems
15. Calculate the average velocity of the object shown in the graph below over the whole time interval.

a. 0.25 m/s
b. 0.31 m/s
c. 3.2 m/s
d. 4.00 m/s

16. True or False: By taking the slope of the curve in the graph you can verify that the velocity of the jet car is at
.

a. True
b. False

Check Your Understanding
17. Which of the following information about motion can be determined by looking at a position vs. time graph that is a

straight line?

2.9
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a. frame of reference
b. average acceleration
c. velocity
d. direction of force applied

18. True or False: The position vs time graph of an object that is speeding up is a straight line.
a. True
b. False

2.4 Velocity vs. Time Graphs
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain the meaning of slope and area in velocity vs. time graphs
• Solve problems using velocity vs. time graphs

Section Key Terms

acceleration

Graphing Velocity as a Function of Time
Earlier, we examined graphs of position versus time. Now, we are going to build on that information as we look at graphs of
velocity vs. time. Velocity is the rate of change of displacement. Acceleration is the rate of change of velocity; we will discuss
acceleration more in another chapter. These concepts are all very interrelated.

What can we learn about motion by looking at velocity vs. time graphs? Let’s return to our drive to school, and look at a graph of
position versus time as shown in Figure 2.15.

Virtual Physics

Maze Game
In this simulation you will use a vector diagram to manipulate a ball into a certain location without hitting a wall. You can
manipulate the ball directly with position or by changing its velocity. Explore how these factors change the motion. If you
would like, you can put it on the a setting, as well. This is acceleration, which measures the rate of change of velocity. We will
explore acceleration in more detail later, but it might be interesting to take a look at it here.

Click to view content (https://archive.cnx.org/specials/30e37034-2fbd-11e5-83a2-03be60006ece/maze-game/)

GRASP CHECK
Click to view content (https://archive.cnx.org/specials/30e37034-2fbd-11e5-83a2-03be60006ece/maze-game/#sim-maze-
game)
a. The ball can be easily manipulated with displacement because the arena is a position space.
b. The ball can be easily manipulated with velocity because the arena is a position space.
c. The ball can be easily manipulated with displacement because the arena is a velocity space.
d. The ball can be easily manipulated with velocity because the arena is a velocity space.
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Figure 2.15 A graph of position versus time for the drive to and from school is shown.

We assumed for our original calculation that your parent drove with a constant velocity to and from school. We now know that
the car could not have gone from rest to a constant velocity without speeding up. So the actual graph would be curved on either
end, but let’s make the same approximation as we did then, anyway.

TIPS FOR SUCCESS
It is common in physics, especially at the early learning stages, for certain things to be neglected, as we see here. This is
because it makes the concept clearer or the calculation easier. Practicing physicists use these kinds of short-cuts, as well. It
works out because usually the thing being neglected is small enough that it does not significantly affect the answer. In the
earlier example, the amount of time it takes the car to speed up and reach its cruising velocity is very small compared to the
total time traveled.

Looking at this graph, and given what we learned, we can see that there are two distinct periods to the car’s motion—the way to
school and the way back. The average velocity for the drive to school is 0.5 km/minute. We can see that the average velocity for
the drive back is –0.5 km/minute. If we plot the data showing velocity versus time, we get another graph (Figure 2.16):

Figure 2.16 Graph of velocity versus time for the drive to and from school.

We can learn a few things. First, we can derive a v versus t graph from a d versus t graph. Second, if we have a straight-line
position–time graph that is positively or negatively sloped, it will yield a horizontal velocity graph. There are a few other
interesting things to note. Just as we could use a position vs. time graph to determine velocity, we can use a velocity vs. time
graph to determine position. We know that v = d/t. If we use a little algebra to re-arrange the equation, we see that d = v t. In
Figure 2.16, we have velocity on the y-axis and time along the x-axis. Let’s take just the first half of the motion. We get 0.5 km/
minute 10 minutes. The units for minutes cancel each other, and we get 5 km, which is the displacement for the trip to school.
If we calculate the same for the return trip, we get –5 km. If we add them together, we see that the net displacement for the
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whole trip is 0 km, which it should be because we started and ended at the same place.

TIPS FOR SUCCESS
You can treat units just like you treat numbers, so a km/km=1 (or, we say, it cancels out). This is good because it can tell us
whether or not we have calculated everything with the correct units. For instance, if we end up with m × s for velocity instead
of m/s, we know that something has gone wrong, and we need to check our math. This process is called dimensional
analysis, and it is one of the best ways to check if your math makes sense in physics.

The area under a velocity curve represents the displacement. The velocity curve also tells us whether the car is speeding up. In
our earlier example, we stated that the velocity was constant. So, the car is not speeding up. Graphically, you can see that the
slope of these two lines is 0. This slope tells us that the car is not speeding up, or accelerating. We will do more with this
information in a later chapter. For now, just remember that the area under the graph and the slope are the two important parts
of the graph. Just like we could define a linear equation for the motion in a position vs. time graph, we can also define one for a
velocity vs. time graph. As we said, the slope equals the acceleration, a. And in this graph, the y-intercept is v0. Thus,

.

But what if the velocity is not constant? Let’s look back at our jet-car example. At the beginning of the motion, as the car is
speeding up, we saw that its position is a curve, as shown in Figure 2.17.

Figure 2.17 A graph is shown of the position of a jet-powered car during the time span when it is speeding up. The slope of a d vs. t graph is

velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent at that point.

You do not have to do this, but you could, theoretically, take the instantaneous velocity at each point on this graph. If you did,
you would get Figure 2.18, which is just a straight line with a positive slope.
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Figure 2.18 The graph shows the velocity of a jet-powered car during the time span when it is speeding up.

Again, if we take the slope of the velocity vs. time graph, we get the acceleration, the rate of change of the velocity. And, if we
take the area under the slope, we get back to the displacement.

Solving Problems using Velocity–Time Graphs
Most velocity vs. time graphs will be straight lines. When this is the case, our calculations are fairly simple.

WORKED EXAMPLE

Using Velocity Graph to Calculate Some Stuff: Jet Car
Use this figure to (a) find the displacement of the jet car over the time shown (b) calculate the rate of change (acceleration) of the
velocity. (c) give the instantaneous velocity at 5 s, and (d) calculate the average velocity over the interval shown.
Strategy
a. The displacement is given by finding the area under the line in the velocity vs. time graph.
b. The acceleration is given by finding the slope of the velocity graph.
c. The instantaneous velocity can just be read off of the graph.
d. To find the average velocity, recall that

Solution
a. 1. Analyze the shape of the area to be calculated. In this case, the area is made up of a rectangle between 0 and 20 m/s

stretching to 30 s. The area of a rectangle is length width. Therefore, the area of this piece is 600 m.
2. Above that is a triangle whose base is 30 s and height is 140 m/s. The area of a triangle is 0.5 length width. The area

of this piece, therefore, is 2,100 m.
3. Add them together to get a net displacement of 2,700 m.

b. 1. Take two points on the velocity line. Say, t = 5 s and t = 25 s. At t = 5 s, the value of v = 40 m/s.
At t = 25 s, v = 140 m/s.

2. Find the slope.

c. The instantaneous velocity at t = 5 s, as we found in part (b) is just 40 m/s.
d. 1. Find the net displacement, which we found in part (a) was 2,700 m.

2. Find the total time which for this case is 30 s.
3. Divide 2,700 m/30 s = 90 m/s.
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Discussion
The average velocity we calculated here makes sense if we look at the graph. 100m/s falls about halfway across the graph and
since it is a straight line, we would expect about half the velocity to be above and half below.

TIPS FOR SUCCESS
You can have negative position, velocity, and acceleration on a graph that describes the way the object is moving. You should
never see a graph with negative time on an axis. Why?

Most of the velocity vs. time graphs we will look at will be simple to interpret. Occasionally, we will look at curved graphs of
velocity vs. time. More often, these curved graphs occur when something is speeding up, often from rest. Let’s look back at a
more realistic velocity vs. time graph of the jet car’s motion that takes this speeding up stage into account.

Figure 2.19 The graph shows a more accurate graph of the velocity of a jet-powered car during the time span when it is speeding up.

WORKED EXAMPLE

Using Curvy Velocity Graph to Calculate Some Stuff: jet car, Take Two
Use Figure 2.19 to (a) find the approximate displacement of the jet car over the time shown, (b) calculate the instantaneous
acceleration at t = 30 s, (c) find the instantaneous velocity at 30 s, and (d) calculate the approximate average velocity over the
interval shown.
Strategy
a. Because this graph is an undefined curve, we have to estimate shapes over smaller intervals in order to find the areas.
b. Like when we were working with a curved displacement graph, we will need to take a tangent line at the instant we are

interested and use that to calculate the instantaneous acceleration.
c. The instantaneous velocity can still be read off of the graph.
d. We will find the average velocity the same way we did in the previous example.

Solution
a. 1. This problem is more complicated than the last example. To get a good estimate, we should probably break the curve

into four sections. 0 → 10 s, 10 → 20 s, 20 → 40 s, and 40 → 70 s.
2. Calculate the bottom rectangle (common to all pieces). 165 m/s 70 s = 11,550 m.
3. Estimate a triangle at the top, and calculate the area for each section. Section 1 = 225 m; section 2 = 100 m + 450 m =

550 m; section 3 = 150 m + 1,300 m = 1,450 m; section 4 = 2,550 m.
4. Add them together to get a net displacement of 16,325 m.

b. Using the tangent line given, we find that the slope is 1 m/s2.

2.4 • Velocity vs. Time Graphs 77



c. The instantaneous velocity at t = 30 s, is 240 m/s.
d. 1. Find the net displacement, which we found in part (a), was 16,325 m.

2. Find the total time, which for this case is 70 s.
3. Divide

Discussion
This is a much more complicated process than the first problem. If we were to use these estimates to come up with the average
velocity over just the first 30 s we would get about 191 m/s. By approximating that curve with a line, we get an average velocity of
202.5 m/s. Depending on our purposes and how precise an answer we need, sometimes calling a curve a straight line is a
worthwhile approximation.

Practice Problems
19.

Figure 2.20

Consider the velocity vs. time graph shown below of a person in an elevator. Suppose the elevator is initially at rest. It then
speeds up for 3 seconds, maintains that velocity for 15 seconds, then slows down for 5 seconds until it stops. Find the
instantaneous velocity at t = 10 s and t = 23 s.
a. Instantaneous velocity at t = 10 s and t = 23 s are 0 m/s and 0 m/s.
b. Instantaneous velocity at t = 10 s and t = 23 s are 0 m/s and 3 m/s.
c. Instantaneous velocity at t = 10 s and t = 23 s are 3 m/s and 0 m/s.
d. Instantaneous velocity at t = 10 s and t = 23 s are 3 m/s and 1.5 m/s.
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20.

Figure 2.21

Calculate the net displacement and the average velocity of the elevator over the time interval shown.
a. Net displacement is 45 m and average velocity is 2.10 m/s.
b. Net displacement is 45 m and average velocity is 2.28 m/s.
c. Net displacement is 57 m and average velocity is 2.66 m/s.
d. Net displacement is 57 m and average velocity is 2.48 m/s.

Check Your Understanding
21. What information could you obtain by looking at a velocity vs. time graph?

a. acceleration
b. direction of motion
c. reference frame of the motion

Snap Lab

Graphing Motion, Take Two
In this activity, you will graph a moving ball’s velocity vs. time.

• your graph from the earlier Graphing Motion Snap Lab!
• 1 piece of graph paper
• 1 pencil

Procedure
1. Take your graph from the earlier Graphing Motion Snap Lab! and use it to create a graph of velocity vs. time.
2. Use your graph to calculate the displacement.

GRASP CHECK
Describe the graph and explain what it means in terms of velocity and acceleration.
a. The graph shows a horizontal line indicating that the ball moved with a constant velocity, that is, it was not

accelerating.
b. The graph shows a horizontal line indicating that the ball moved with a constant velocity, that is, it was

accelerating.
c. The graph shows a horizontal line indicating that the ball moved with a variable velocity, that is, it was not

accelerating.
d. The graph shows a horizontal line indicating that the ball moved with a variable velocity, that is, it was accelerating.
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d. shortest path

22. How would you use a position vs. time graph to construct a velocity vs. time graph and vice versa?
a. Slope of position vs. time curve is used to construct velocity vs. time curve, and slope of velocity vs. time curve is used

to construct position vs. time curve.
b. Slope of position vs. time curve is used to construct velocity vs. time curve, and area of velocity vs. time curve is used

to construct position vs. time curve.
c. Area of position vs. time curve is used to construct velocity vs. time curve, and slope of velocity vs. time curve is used

to construct position vs. time curve.
d. Area of position/time curve is used to construct velocity vs. time curve, and area of velocity vs. time curve is used to

construct position vs. time curve.
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KEY TERMS
acceleration the rate at which velocity changes
average speed distance traveled divided by time during

which motion occurs
average velocity displacement divided by time over which

displacement occurs
dependent variable the variable that changes as the

independent variable changes
displacement the change in position of an object against a

fixed axis
distance the length of the path actually traveled between an

initial and a final position
independent variable the variable, usually along the

horizontal axis of a graph, that does not change based on
human or experimental action; in physics this is usually

time
instantaneous speed speed at a specific instant in time
instantaneous velocity velocity at a specific instant in time
kinematics the study of motion without considering its

causes
magnitude size or amount
position the location of an object at any particular time
reference frame a coordinate system from which the

positions of objects are described
scalar a quantity that has magnitude but no direction
speed rate at which an object changes its location
tangent a line that touches another at exactly one point
vector a quantity that has both magnitude and direction
velocity the speed and direction of an object

SECTION SUMMARY
2.1 Relative Motion, Distance, and
Displacement

• A description of motion depends on the reference frame
from which it is described.

• The distance an object moves is the length of the path
along which it moves.

• Displacement is the difference in the initial and final
positions of an object.

2.2 Speed and Velocity
• Average speed is a scalar quantity that describes

distance traveled divided by the time during which the
motion occurs.

• Velocity is a vector quantity that describes the speed
and direction of an object.

• Average velocity is displacement over the time period
during which the displacement occurs. If the velocity is
constant, then average velocity and instantaneous

velocity are the same.

2.3 Position vs. Time Graphs
• Graphs can be used to analyze motion.
• The slope of a position vs. time graph is the velocity.
• For a straight line graph of position, the slope is the

average velocity.
• To obtain the instantaneous velocity at a given moment

for a curved graph, find the tangent line at that point
and take its slope.

2.4 Velocity vs. Time Graphs
• The slope of a velocity vs. time graph is the acceleration.
• The area under a velocity vs. time curve is the

displacement.
• Average velocity can be found in a velocity vs. time

graph by taking the weighted average of all the
velocities.

KEY EQUATIONS
2.1 Relative Motion, Distance, and
Displacement

Displacement

2.2 Speed and Velocity

Average speed

Average velocity

2.3 Position vs. Time Graphs

Displacement .

2.4 Velocity vs. Time Graphs

Velocity

Acceleration
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CHAPTER REVIEW
Concept Items
2.1 Relative Motion, Distance, and
Displacement
1. Can one-dimensional motion have zero distance but a

nonzero displacement? What about zero displacement
but a nonzero distance?
a. One-dimensional motion can have zero distance

with a nonzero displacement. Displacement has
both magnitude and direction, and it can also have
zero displacement with nonzero distance because
distance has only magnitude.

b. One-dimensional motion can have zero distance
with a nonzero displacement. Displacement has
both magnitude and direction, but it cannot have
zero displacement with nonzero distance because
distance has only magnitude.

c. One-dimensional motion cannot have zero distance
with a nonzero displacement. Displacement has
both magnitude and direction, but it can have zero
displacement with nonzero distance because
distance has only magnitude and any motion will be
the distance it moves.

d. One-dimensional motion cannot have zero distance
with a nonzero displacement. Displacement has
both magnitude and direction, and it cannot have
zero displacement with nonzero distance because
distance has only magnitude.

2. In which example would you be correct in describing an
object in motion while your friend would also be correct
in describing that same object as being at rest?
a. You are driving a car toward the east and your friend

drives past you in the opposite direction with the
same speed. In your frame of reference, you will be
in motion. In your friend’s frame of reference, you
will be at rest.

b. You are driving a car toward the east and your friend
is standing at the bus stop. In your frame of
reference, you will be in motion. In your friend’s
frame of reference, you will be at rest.

c. You are driving a car toward the east and your friend
is standing at the bus stop. In your frame of
reference, your friend will be moving toward the
west. In your friend’s frame of reference, he will be
at rest.

d. You are driving a car toward the east and your friend
is standing at the bus stop. In your frame of
reference, your friend will be moving toward the
east. In your friend’s frame of reference, he will be at
rest.

3. What does your car’s odometer record?
a. displacement
b. distance
c. both distance and displacement
d. the sum of distance and displacement

2.2 Speed and Velocity
4. In the definition of velocity, what physical quantity is

changing over time?
a. speed
b. distance
c. magnitude of displacement
d. position vector

5. Which of the following best describes the relationship
between instantaneous velocity and instantaneous
speed?
a. Both instantaneous speed and instantaneous

velocity are the same, even when there is a change in
direction.

b. Instantaneous speed and instantaneous velocity
cannot be the same even if there is no change in
direction of motion.

c. Magnitude of instantaneous velocity is equal to
instantaneous speed.

d. Magnitude of instantaneous velocity is always
greater than instantaneous speed.

2.3 Position vs. Time Graphs
6. Use the graph to describe what the runner’s motion looks

like.

How are average velocity for only the first four seconds and
instantaneous velocity related? What is the runner's net
displacement over the time shown?
a. The net displacement is 12 m and the average velocity

is equal to the instantaneous velocity.
b. The net displacement is 12 m and the average velocity
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is two times the instantaneous velocity.
c. The net displacement is 10 + 12 = 22 m and the average

velocity is equal to the instantaneous velocity.
d. The net displacement is 10 + 12 = 22 m and the average

velocity is two times the instantaneous velocity.

7. A position vs. time graph of a frog swimming across a
pond has two distinct straight-line sections. The slope of
the first section is . The slope of the second section
is . If each section lasts , then what is the
frog’s total average velocity?
a.
b.
c.
d.

2.4 Velocity vs. Time Graphs
8. A graph of velocity vs. time of a ship coming into a harbor is

shown.

Describe the acceleration of the ship based on the graph.
a. The ship is moving in the forward direction at a steady

rate. Then it accelerates in the forward direction and
then decelerates.

b. The ship is moving in the forward direction at a steady
rate. Then it turns around and starts decelerating, while
traveling in the reverse direction. It then accelerates,
but slowly.

c. The ship is moving in the forward direction at a steady
rate. Then it decelerates in the forward direction, and
then continues to slow down in the forward direction,
but with more deceleration.

d. The ship is moving in the forward direction at a steady
rate. Then it decelerates in the forward direction, and
then continues to slow down in the forward direction,
but with less deceleration.

Critical Thinking Items
2.1 Relative Motion, Distance, and
Displacement
9. Boat A and Boat B are traveling at a constant speed in

opposite directions when they pass each other. If a
person in each boat describes motion based on the boat’s
own reference frame, will the description by a person in
Boat A of Boat B’s motion be the same as the description
by a person in Boat B of Boat A’s motion?
a. Yes, both persons will describe the same motion

because motion is independent of the frame of
reference.

b. Yes, both persons will describe the same motion
because they will perceive the other as moving in the
backward direction.

c. No, the motion described by each of them will be
different because motion is a relative term.

d. No, the motion described by each of them will be
different because the motion perceived by each will
be opposite to each other.

10. Passenger A sits inside a moving train and throws a ball
vertically upward. How would the motion of the ball be
described by a fellow train passenger B and an observer

C who is standing on the platform outside the train?
a. Passenger B sees that the ball has vertical, but no

horizontal, motion. Observer C sees the ball has
vertical as well as horizontal motion.

b. Passenger B sees the ball has vertical as well as
horizontal motion. Observer C sees the ball has the
vertical, but no horizontal, motion.

c. Passenger B sees the ball has horizontal but no
vertical motion. Observer C sees the ball has
vertical as well as horizontal motion.

d. Passenger B sees the ball has vertical as well as
horizontal motion. Observer C sees the ball has
horizontalbut no vertical motion.

2.2 Speed and Velocity
11. Is it possible to determine a car’s instantaneous velocity

from just the speedometer reading?
a. No, it reflects speed but not the direction.
b. No, it reflects the average speed of the car.
c. Yes, it sometimes reflects instantaneous velocity of

the car.
d. Yes, it always reflects the instantaneous velocity of

the car.

12. Terri, Aaron, and Jamal all walked along straight paths.
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Terri walked 3.95 km north in 48 min. Aaron walked 2.65
km west in 31 min. Jamal walked 6.50 km south in 81
min. Which of the following correctly ranks the three
boys in order from lowest to highest average speed?
a. Jamal, Terri, Aaron
b. Jamal, Aaron, Terri
c. Terri, Jamal, Aaron
d. Aaron, Terri, Jamal

13. Rhianna and Logan start at the same point and walk due
north. Rhianna walks with an average velocity .
Logan walks three times the distance in twice the time as
Rhianna. Which of the following expresses Logan’s
average velocity in terms of ?
a. Logan’s average velocity = .
b. Logan’s average velocity = .
c. Logan’s average velocity = .
d. Logan’s average velocity = .

2.3 Position vs. Time Graphs
14. Explain how you can use the graph of position vs. time to

describe the change in velocity over time.

Identify the time (ta, tb, tc, td, or te) at which at which the
instantaneous velocity is greatest, the time at which it is
zero, and the time at which it is negative.

2.4 Velocity vs. Time Graphs
15. Identify the time, or times, at which the instantaneous

velocity is greatest, and the time, or times, at which it is
negative. A sketch of velocity vs. time derived from the
figure will aid in arriving at the correct answers.

a. The instantaneous velocity is greatest at f, and it is
negative at d, h, I, j, and k.

b. The instantaneous velocity is greatest at e, and it is
negative at a, b, and f.

c. The instantaneous velocity is greatest at f, and it is
negative at d, h, I, j, and k

d. The instantaneous velocity is greatest at d, and it is
negative at a, b, and f.

Problems
2.1 Relative Motion, Distance, and
Displacement
16. In a coordinate system in which the direction to the

right is positive, what are the distance and displacement
of a person who walks to the left,
to the right, and then to the left?
a. Distance is and displacement is .
b. Distance is and displacement is .
c. Distance is and displacement is .
d. Distance is and displacement is .

17. Billy drops a ball from a height of 1 m. The ball bounces
back to a height of 0.8 m, then bounces again to a height
of 0.5 m, and bounces once more to a height of 0.2 m.

Up is the positive direction. What are the total
displacement of the ball and the total distance traveled
by the ball?
a. The displacement is equal to -4 m and the distance

is equal to 4 m.
b. The displacement is equal to 4 m and the distance is

equal to 1 m.
c. The displacement is equal to 4 m and the distance is

equal to 1 m.
d. The displacement is equal to -1 m and the distance

is equal to 4 m.

2.2 Speed and Velocity
18. You sit in a car that is moving at an average speed of 86.4

km/h. During the 3.3 s that you glance out the window,
how far has the car traveled?
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a. 7.27 m
b. 79 m
c. 285 km
d. 1026 m

2.3 Position vs. Time Graphs
19. Using the graph, what is the average velocity for the whole

10 seconds?

a. The total average velocity is 0 m/s.
b. The total average velocity is 1.2 m/s.
c. The total average velocity is 1.5 m/s.
d. The total average velocity is 3.0 m/s.

20. A train starts from rest and speeds up for 15 minutes
until it reaches a constant velocity of 100 miles/hour. It
stays at this speed for half an hour. Then it slows down
for another 15 minutes until it is still. Which of the
following correctly describes the position vs time graph
of the train’s journey?
a. The first 15 minutes is a curve that is concave

upward, the middle portion is a straight line with
slope 100 miles/hour, and the last portion is a
concave downward curve.

b. The first 15 minutes is a curve that is concave
downward, the middle portion is a straight line
with slope 100 miles/hour, and the last portion is a
concave upward curve.

c. The first 15 minutes is a curve that is concave
upward, the middle portion is a straight line with
slope zero, and the last portion is a concave
downward curve.

d. The first 15 minutes is a curve that is concave
downward, the middle portion is a straight line
with slope zero, and the last portion is a concave
upward curve.

2.4 Velocity vs. Time Graphs
21. You are characterizing the motion of an object by

measuring the location of the object at discrete

moments in time. What is the minimum number of data
points you would need to estimate the average
acceleration of the object?
a. 1
b. 2
c. 3
d. 4

22. Which option best describes the average acceleration from
40 to 70 s?

a. It is negative and smaller in magnitude than the
initial acceleration.

b. It is negative and larger in magnitude than the initial
acceleration.

c. It is positive and smaller in magnitude than the initial
acceleration.

d. It is positive and larger in magnitude than the initial
acceleration.

23. The graph shows velocity vs. time.

Calculate the net displacement using seven different
divisions. Calculate it again using two divisions: 0 → 40 s
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and 40 → 70 s . Compare. Using both, calculate the average
velocity.
a. Displacement and average velocity using seven

divisions are 14,312.5 m and 204.5 m/s while with two
divisions are 15,500 m and 221.4 m/s respectively.

b. Displacement and average velocity using seven
divisions are 15,500 m and 221.4 m/s while with two

divisions are 14,312.5 m and 204.5 m/s respectively.
c. Displacement and average velocity using seven

divisions are 15,500 m and 204.5 m/s while with two
divisions are 14,312.5 m and 221.4 m/s respectively.

d. Displacement and average velocity using seven
divisions are 14,312.5 m and 221.4 m/s while with two
divisions are 15,500 m and 204.5 m/s respectively.

Performance Task
2.4 Velocity vs. Time Graphs
24. The National Mall in Washington, DC, is a national park

containing most of the highly treasured memorials and
museums of the United States. However, the National Mall
also hosts many events and concerts. The map in shows the
area for a benefit concert during which the president will
speak. The concert stage is near the Lincoln Memorial. The
seats and standing room for the crowd will stretch from
the stage east to near the Washington Monument, as
shown on the map. You are planning the logistics for the
concert. Use the map scale to measure any distances
needed to make the calculations below.

The park has three new long-distance speakers. They would
like to use these speakers to broadcast the concert audio to
other parts of the National Mall. The speakers can project
sound up to 0.35 miles away but they must be connected to
one of the power supplies within the concert area. What is
the minimum amount of wire needed for each speaker, in
miles, in order to project the audio to the following areas?
Assume that wire cannot be placed over buildings or any
memorials.
Part A. The center of the Jefferson Memorial using power
supply 1 (This will involve an elevated wire that can travel
over water.)
Part B. The center of the Ellipse using power supply 3 (This
wire cannot travel over water.)
Part C. The president’s motorcade will be traveling to the
concert from the White House. To avoid concert traffic, the
motorcade travels from the White House west down E
Street and then turns south on 23rd Street to reach the
Lincoln memorial. What minimum speed, in miles per
hour to the nearest tenth, would the motorcade have to
travel to make the trip in 5 minutes?
Part D. The president could also simply fly from the White
House to the Lincoln Memorial using the presidential
helicopter, Marine 1. How long would it take Marine 1,
traveling slowly at 30 mph, to travel from directly above the
White House landing zone (LZ) to directly above the
Lincoln Memorial LZ? Disregard liftoff and landing times
and report the travel time in minutes to the nearest
minute.

TEST PREP
Multiple Choice
2.1 Relative Motion, Distance, and
Displacement
25. Why should you specify a reference frame when

describing motion?
a. a description of motion depends on the reference

frame

b. motion appears the same in all reference frames
c. reference frames affect the motion of an object
d. you can see motion better from certain reference

frames

26. Which of the following is true for the displacement of an
object?
a. It is always equal to the distance the object moved
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between its initial and final positions.
b. It is both the straight line distance the object

moved as well as the direction of its motion.
c. It is the direction the object moved between its

initial and final positions.
d. It is the straight line distance the object moved

between its initial and final positions.

27. If a biker rides west for 50 miles from his starting
position, then turns and bikes back east 80 miles. What
is his net displacement?
a. 130 miles
b. 30 miles east
c. 30 miles west
d. Cannot be determined from the information given

28. Suppose a train is moving along a track. Is there a
single, correct reference frame from which to describe
the train’s motion?
a. Yes, there is a single, correct frame of reference

because motion is a relative term.
b. Yes, there is a single, correct frame of reference

which is in terms of Earth’s position.
c. No, there is not a single, correct frame of reference

because motion is a relative term.
d. No, there is not a single, correct frame of reference

because motion is independent of frame of
reference.

29. If a space shuttle orbits Earth once, what is the shuttle’s
distance traveled and displacement?
a. Distance and displacement both are zero.
b. Distance is circumference of the circular orbit

while displacement is zero.
c. Distance is zero while the displacement is

circumference of the circular orbit.
d. Distance and displacement both are equal to

circumference of the circular orbit.

2.2 Speed and Velocity
30. Four bicyclists travel different distances and times along

a straight path. Which cyclist traveled with the greatest
average speed?
a. Cyclist 1 travels in .
b. Cyclist 2 travels in .
c. Cyclist 3 travels in .
d. Cyclist 4 travels in .

31. A car travels with an average velocity of 23 m/s for 82 s.
Which of the following could NOT have been the car's
displacement?
a. 1,700 m east
b. 1,900 m west
c. 1,600 m north

d. 1,500 m south

32. A bicyclist covers the first leg of a journey that is
long in , at a speed of ,

and the second leg of in , at a
speed of . If his average speed is equal to the
average of and , then which of the following is
true?
a.
b.
c.
d.

33. A car is moving on a straight road at a constant speed in
a single direction. Which of the following statements is
true?
a. Average velocity is zero.
b. The magnitude of average velocity is equal to the

average speed.
c. The magnitude of average velocity is greater than

the average speed.
d. The magnitude of average velocity is less than the

average speed.

2.3 Position vs. Time Graphs
34. What is the slope of a straight line graph of position vs.

time?
a. Velocity
b. Displacement
c. Distance
d. Acceleration

35. Using the graph, what is the runner’s velocity from 4 to 10
s?

a. –3 m/s
b. 0 m/s
c. 1.2 m/s
d. 3 m/s
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2.4 Velocity vs. Time Graphs
36. What does the area under a velocity vs. time graph line

represent?
a. acceleration
b. displacement
c. distance
d. instantaneous velocity

37. An object is moving along a straight path with constant

acceleration. A velocity vs. time graph starts at and
ends at , stretching over a time-span of .
What is the object’s net displacement?
a.
b.
c.
d. cannot be determined from the information given

Short Answer
2.1 Relative Motion, Distance, and
Displacement
38. While standing on a sidewalk facing the road, you see a

bicyclist passing by toward your right. In the reference
frame of the bicyclist, in which direction are you
moving?
a. in the same direction of motion as the bicyclist
b. in the direction opposite the motion of the bicyclist
c. stationary with respect to the bicyclist
d. in the direction of velocity of the bicyclist

39. Maud sends her bowling ball straight down the center of
the lane, getting a strike. The ball is brought back to the
holder mechanically. What are the ball’s net
displacement and distance traveled?
a. Displacement of the ball is twice the length of the

lane, while the distance is zero.
b. Displacement of the ball is zero, while the distance

is twice the length of the lane.
c. Both the displacement and distance for the ball are

equal to zero.
d. Both the displacement and distance for the ball are

twice the length of the lane.

40. A fly buzzes four and a half times around Kit Yan’s head.
The fly ends up on the opposite side from where it
started. If the diameter of his head is , what is
the total distance the fly travels and its total
displacement?
a. The distance is with a displacement of

zero.
b. The distance is with a displacement of zero.
c. The distance is with a displacement of

.
d. The distance is with a displacement of

.

2.2 Speed and Velocity
41. Rob drove to the nearest hospital with an average speed

of v m/s in t seconds. In terms of t, if he drives home on
the same path, but with an average speed of 3v m/s, how

long is the return trip home?
a. t/6
b. t/3
c. 3t
d. 6t

42. What can you infer from the statement, Velocity of an
object is zero?
a. Object is in linear motion with constant velocity.
b. Object is moving at a constant speed.
c. Object is either at rest or it returns to the initial

point.
d. Object is moving in a straight line without

changing its direction.

43. An object has an average speed of 7.4 km/h. Which of
the following describes two ways you could increase the
average speed of the object to 14.8 km/h?
a. Reduce the distance that the object travels by half,

keeping the time constant, or keep the distance
constant and double the time.

b. Double the distance that the object travels, keeping
the time constant, or keep the distance constant
and reduce the time by half.

c. Reduce the distance that the object travels to one-
fourth, keeping the time constant, or keep the
distance constant and increase the time by
fourfold.

d. Increase the distance by fourfold, keeping the time
constant, or keep the distance constant and reduce
the time by one-fourth.

44. Swimming one lap in a pool is defined as going across a
pool and back again. If a swimmer swims 3 laps in 9
minutes, how can his average velocity be zero?
a. His average velocity is zero because his total

distance is zero.
b. His average velocity is zero because his total

displacement is zero.
c. His average velocity is zero because the number of

laps completed is an odd number.
d. His average velocity is zero because the velocity of

each successive lap is equal and opposite.
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2.3 Position vs. Time Graphs
45. A hockey puck is shot down the arena in a straight line.

Assume it does not slow until it is stopped by an
opposing player who sends it back in the direction it
came. The players are 20 m apart and it takes 1 s for the
puck to go there and back. Which of the following
describes the graph of the displacement over time?
Consider the initial direction of the puck to be positive.
a. The graph is an upward opening V.
b. The graph is a downward opening V.
c. The graph is an upward opening U.
d. The graph is downward opening U.

46. A defensive player kicks a soccer ball 20 m back to her
own goalie. It stops just as it reaches her. She sends it
back to the player. Without knowing the time it takes,
draw a rough sketch of the displacement over time.
Does this graph look similar to the graph of the hockey
puck from the previous question?
a. Yes, the graph is similar to the graph of the hockey

puck.
b. No, the graph is not similar to the graph of the

hockey puck.
c. The graphs cannot be compared without knowing

the time the soccer ball was rolling.

47. What are the net displacement, total distance traveled,
and total average velocity in the previous two problems?
a. net displacement = 0 m, total distance = 20 m, total

average velocity = 20 m/s
b. net displacement = 0 m, total distance = 40 m, total

average velocity = 20 m/s
c. net displacement = 0 m, total distance = 20 m, total

average velocity = 0 m/s
d. net displacement = 0 m, total distance = 40 m, total

average velocity = 0 m/s

48. A bee flies straight at someone and then back to its hive
along the same path. Assuming it takes no time for the
bee to speed up or slow down, except at the moment it
changes direction, how would the graph of position vs
time look? Consider the initial direction to be positive.
a. The graph will look like a downward opening V

shape.
b. The graph will look like an upward opening V

shape.
c. The graph will look like a downward opening

parabola.
d. The graph will look like an upward opening

parabola.

2.4 Velocity vs. Time Graphs
49. What would the velocity vs. time graph of the object whose

position is shown in the graph look like?

a. It is a straight line with negative slope.
b. It is a straight line with positive slope.
c. It is a horizontal line at some negative value.
d. It is a horizontal line at some positive value.

50. Which statement correctly describes the object’s speed, as
well as what a graph of acceleration vs. time would look
like?

a. The object is not speeding up, and the acceleration vs.
time graph is a horizontal line at some negative value.

b. The object is not speeding up, and the acceleration vs.
time graph is a horizontal line at some positive value.

c. The object is speeding up, and the acceleration vs.
time graph is a horizontal line at some negative value.

d. The object is speeding up, and the acceleration vs.
time graph is a horizontal line at some positive value.

51. Calculate that object’s net displacement over the time
shown.
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a. 540 m
b. 2,520 m
c. 2,790 m
d. 5,040 m

52. What is the object’s average velocity?

a. 18 m/s
b. 84 m/s
c. 93 m/s
d. 168 m/s

Extended Response
2.1 Relative Motion, Distance, and
Displacement
53. Find the distance traveled from the starting point for

each path.

Which path has the maximum distance?
a. The distance for Path A is 6 m, Path B is 4 m, Path C

is 12 m and for Path D is 7 m. The net displacement
for Path A is 7 m, Path B is –4m, Path C is 8 m and
for Path D is –5m. Path C has maximum distance
and it is equal to 12 meters.

b. The distance for Path A is 6 m, Path B is 4 m, Path C
is 8 m and for Path D is 7 m. The net displacement
for Path A is 6 m, Path B is –4m, Path C is 12 m and
for Path D is –5 m. Path A has maximum distance
and it is equal to 6 meters.

c. The distance for Path A is 6 m, Path B is 4 m, Path C
is 12 m and for Path D is 7 m. The net displacement
for Path A is 6 m, Path B is –4 m, Path C is 8 m and
for Path D is –5 m. Path C has maximum distance

and it is equal to 12 meters.
d. The distance for Path A is 6 m, Path B is –4 m, Path

C is 12 m and for Path D is –5 m. The net
displacement for Path A is 7 m, Path B is 4 m, Path
C is 8 m and for Path D is 7 m. Path A has
maximum distance and it is equal to 6 m.

54. Alan starts from his home and walks 1.3 km east to the
library. He walks an additional 0.68 km east to a music
store. From there, he walks 1.1 km north to a friend’s
house and an additional 0.42 km north to a grocery
store before he finally returns home along the same
path. What is his final displacement and total distance
traveled?
a. Displacement is 0 km and distance is 7 km.
b. Displacement is 0 km and distance is 3.5 km.
c. Displacement is 7 km towards west and distance is

7 km.
d. Displacement is 3.5 km towards east and distance

is 3.5 km.

2.2 Speed and Velocity
55. Two runners start at the same point and jog at a

constant speed along a straight path. Runner A starts at
time t = 0 s, and Runner B starts at time t = 2.5 s. The
runners both reach a distance 64 m from the starting
point at time t = 25 s. If the runners continue at the
same speeds, how far from the starting point will each
be at time t = 45 s?
a. Runner A will be m away and Runner B
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will be m away from the starting point.
b. Runner A will be m away and runner B

will be m away from the starting point.
c. Runner A will be away and Runner B

will be away from the starting point.
d. Runner A will be away and Runner B

will be away from the starting point.

56. A father and his daughter go to the bus stop that is
located 75 m from their front door. The father walks in a
straight line while his daughter runs along a varied
path. Despite the different paths, they both end up at
the bus stop at the same time. The father’s average speed
is 2.2 m/s, and his daughter’s average speed is 3.5 m/s.
(a) How long does it take the father and daughter to
reach the bus stop? (b) What was the daughter’s total
distance traveled? (c) If the daughter maintained her
same average speed and traveled in a straight line like
her father, how far beyond the bus stop would she have
traveled?
a. (a) 21.43 s (b) 75 m (c) 0 m
b. (a) 21.43 s (b) 119 m (c) 44 m
c. (a) 34 s (b) 75 m (c) 0 m
d. (a) 34 s (b) 119 m (c) 44 m

2.3 Position vs. Time Graphs
57. What kind of motion would create a position graph like the

one shown?

a. uniform motion
b. any motion that accelerates
c. motion that stops and then starts
d. motion that has constant velocity

58. What is the average velocity for the whole time period
shown in the graph?

a.

b.
c.

d.

2.4 Velocity vs. Time Graphs
59. Consider the motion of the object whose velocity is charted

in the graph.

During which points is the object slowing down and
speeding up?
a. It is slowing down between d and e. It is speeding up

between a and d and e and h
b. It is slowing down between a and d and e and h. It is

speeding up between d and e and then after i.
c. It is slowing down between d and e and then after h.

It is speeding up between a and d and e and h.
d. It is slowing down between a and d and e and h. It is

speeding up between d and e and then after i.

60. Divide the graph into approximate sections, and use those
sections to graph the velocity vs. time of the object.
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Then calculate the acceleration during each section, and
calculate the approximate average velocity.
a. Acceleration is zero and average velocity is 1.25 m/s.
b. Acceleration is constant with some positive value and

average velocity is 1.25 m/s.
c. Acceleration is zero and average velocity is 0.25 m/s.
d. Acceleration is constant with some positive value and

average velocity is 0.25 m/s.
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INTRODUCTION

CHAPTER 3
Acceleration

3.1 Acceleration

3.2 Representing Acceleration with Equations and Graphs

You may have heard the term accelerator, referring to the gas pedal in a car. When the gas pedal is pushed
down, the flow of gasoline to the engine increases, which increases the car’s velocity. Pushing on the gas pedal results in
acceleration because the velocity of the car increases, and acceleration is defined as a change in velocity. You need two quantities
to define velocity: a speed and a direction. Changing either of these quantities, or both together, changes the velocity. You may
be surprised to learn that pushing on the brake pedal or turning the steering wheel also causes acceleration. The first reduces the
speed and so changes the velocity, and the second changes the direction and also changes the velocity.

In fact, any change in velocity—whether positive, negative, directional, or any combination of these—is called an acceleration in
physics. The plane in the picture is said to be accelerating because its velocity is decreasing as it prepares to land. To begin our
study of acceleration, we need to have a clear understanding of what acceleration means.

3.1 Acceleration
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain acceleration and determine the direction and magnitude of acceleration in one dimension
• Analyze motion in one dimension using kinematic equations and graphic representations

Figure 3.1 A plane slows down as it comes in for landing in St. Maarten. Its acceleration is in the opposite direction
of its velocity. (Steve Conry, Flickr)
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Section Key Terms

average acceleration instantaneous acceleration negative acceleration

Defining Acceleration
Throughout this chapter we will use the following terms: time, displacement, velocity, and acceleration. Recall that each of these
terms has a designated variable and SI unit of measurement as follows:

• Time: t, measured in seconds (s)
• Displacement: Δd, measured in meters (m)
• Velocity: v, measured in meters per second (m/s)
• Acceleration: a, measured in meters per second per second (m/s2, also called meters per second squared)
• Also note the following:
◦ Δ means change in
◦ The subscript 0 refers to an initial value; sometimes subscript i is instead used to refer to initial value.
◦ The subscript f refers to final value
◦ A bar over a symbol, such as , means average

Acceleration is the change in velocity divided by a period of time during which the change occurs. The SI units of velocity are m/s
and the SI units for time are s, so the SI units for acceleration are m/s2. Average acceleration is given by

Average acceleration is distinguished from instantaneous acceleration, which is acceleration at a specific instant in time. The
magnitude of acceleration is often not constant over time. For example, runners in a race accelerate at a greater rate in the first
second of a race than during the following seconds. You do not need to know all the instantaneous accelerations at all times to
calculate average acceleration. All you need to know is the change in velocity (i.e., the final velocity minus the initial velocity) and
the change in time (i.e., the final time minus the initial time), as shown in the formula. Note that the average acceleration can be
positive, negative, or zero. A negative acceleration is simply an acceleration in the negative direction.

Keep in mind that although acceleration points in the same direction as the change in velocity, it is not always in the direction of
the velocity itself. When an object slows down, its acceleration is opposite to the direction of its velocity. In everyday language,
this is called deceleration; but in physics, it is acceleration—whose direction happens to be opposite that of the velocity. For now,
let us assume that motion to the right along the x-axis is positive and motion to the left is negative.

Figure 3.2 shows a car with positive acceleration in (a) and negative acceleration in (b). The arrows represent vectors showing
both direction and magnitude of velocity and acceleration.

Figure 3.2 The car is speeding up in (a) and slowing down in (b).
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Velocity and acceleration are both vector quantities. Recall that vectors have both magnitude and direction. An object traveling
at a constant velocity—therefore having no acceleration—does accelerate if it changes direction. So, turning the steering wheel
of a moving car makes the car accelerate because the velocity changes direction.

Calculating Average Acceleration
Look back at the equation for average acceleration. You can see that the calculation of average acceleration involves three values:
change in time, (Δt); change in velocity, (Δv); and acceleration (a).

Change in time is often stated as a time interval, and change in velocity can often be calculated by subtracting the initial velocity
from the final velocity. Average acceleration is then simply change in velocity divided by change in time. Before you begin
calculating, be sure that all distances and times have been converted to meters and seconds. Look at these examples of
acceleration of a subway train.

Virtual Physics

The Moving Man
With this animation in , you can produce both variations of acceleration and velocity shown in Figure 3.2, plus a few more
variations. Vary the velocity and acceleration by sliding the red and green markers along the scales. Keeping the velocity
marker near zero will make the effect of acceleration more obvious. Try changing acceleration from positive to negative
while the man is moving. We will come back to this animation and look at the Charts view when we study graphical
representation of motion.

Click to view content (https://archive.cnx.org/specials/e2ca52af-8c6b-450e-ac2f-9300b38e8739/moving-man/)

GRASP CHECK

Figure 3.3

Which part, (a) or (b), is represented when the velocity vector is on the positive side of the scale and the acceleration
vector is set on the negative side of the scale? What does the car’s motion look like for the given scenario?
a. Part (a). The car is slowing down because the acceleration and the velocity vectors are acting in the opposite

direction.
b. Part (a). The car is speeding up because the acceleration and the velocity vectors are acting in the same direction.
c. Part (b). The car is slowing down because the acceleration and velocity vectors are acting in the opposite directions.
d. Part (b). The car is speeding up because the acceleration and the velocity vectors are acting in the same direction.
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WORKED EXAMPLE

An Accelerating Subway Train
A subway train accelerates from rest to 30.0 km/h in 20.0 s. What is the average acceleration during that time interval?
Strategy
Start by making a simple sketch.

Figure 3.4

This problem involves four steps:

1. Convert to units of meters and seconds.
2. Determine the change in velocity.
3. Determine the change in time.
4. Use these values to calculate the average acceleration.

Solution
1. Identify the knowns. Be sure to read the problem for given information, which may not look like numbers. When the

problem states that the train starts from rest, you can write down that the initial velocity is 0 m/s. Therefore, v0 = 0; vf =
30.0 km/h; and Δt = 20.0 s.

2. Convert the units.

3. Calculate change in velocity, where the plus sign means the change in
velocity is to the right.

4. We know Δt, so all we have to do is insert the known values into the formula for average acceleration.

Discussion
The plus sign in the answer means that acceleration is to the right. This is a reasonable conclusion because the train starts from
rest and ends up with a velocity directed to the right (i.e., positive). So, acceleration is in the same direction as the change in
velocity, as it should be.

WORKED EXAMPLE

An Accelerating Subway Train
Now, suppose that at the end of its trip, the train slows to a stop in 8.00 s from a speed of 30.0 km/h. What is its average
acceleration during this time?
Strategy
Again, make a simple sketch.

3.1

3.2
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Figure 3.5

In this case, the train is decelerating and its acceleration is negative because it is pointing to the left. As in the previous example,
we must find the change in velocity and change in time, then solve for acceleration.

Solution
1. Identify the knowns: v0 = 30.0 km/h; vf = 0; and Δt = 8.00 s.
2. Convert the units. From the first problem, we know that 30.0 km/h = 8.333 m/s.
3. Calculate change in velocity, where the minus sign means that the

change in velocity points to the left.
4. We know Δt = 8.00 s, so all we have to do is insert the known values into the equation for average acceleration.

Discussion
The minus sign indicates that acceleration is to the left. This is reasonable because the train initially has a positive velocity in this
problem, and a negative acceleration would reduce the velocity. Again, acceleration is in the same direction as the change in
velocity, which is negative in this case. This acceleration can be called a deceleration because it has a direction opposite to the
velocity.

TIPS FOR SUCCESS
• It is easier to get plus and minus signs correct if you always assume that motion is away from zero and toward positive

values on the x-axis. This way v always starts off being positive and points to the right. If speed is increasing, then
acceleration is positive and also points to the right. If speed is decreasing, then acceleration is negative and points to
the left.

• It is a good idea to carry two extra significant figures from step-to-step when making calculations. Do not round off
with each step. When you arrive at the final answer, apply the rules of significant figures for the operations you carried
out and round to the correct number of digits. Sometimes this will make your answer slightly more accurate.

Practice Problems
1. A cheetah can accelerate from rest to a speed of in . What is its acceleration?

a.
b.
c.
d.

2. A women backs her car out of her garage with an acceleration of . How long does it take her to reach a speed of
?

a.
b.
c.
d.

3.3
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WATCH PHYSICS

Acceleration
This video shows the basic calculation of acceleration and some useful unit conversions.

Click to view content (https://www.khanacademy.org/embed_video?v=FOkQszg1-j8)

GRASP CHECK
Why is acceleration a vector quantity?
a. It is a vector quantity because it has magnitude as well as direction.
b. It is a vector quantity because it has magnitude but no direction.
c. It is a vector quantity because it is calculated from distance and time.
d. It is a vector quantity because it is calculated from speed and time.

GRASP CHECK
What will be the change in velocity each second if acceleration is 10 m/s/s?
a. An acceleration of means that every second, the velocity increases by .
b. An acceleration of means that every second, the velocity decreases by .
c. An acceleration of means that every , the velocity increases by .
d. An acceleration of means that every , the velocity decreases by .

Snap Lab

Measure the Acceleration of a Bicycle on a Slope
In this lab you will take measurements to determine if the acceleration of a moving bicycle is constant. If the acceleration is
constant, then the following relationships hold: If , then and

You will work in pairs to measure and record data for a bicycle coasting down an incline on a smooth, gentle slope. The data
will consist of distances traveled and elapsed times.

• Find an open area to minimize the risk of injury during this lab.

• stopwatch
• measuring tape
• bicycle

1. Find a gentle, paved slope, such as an incline on a bike path. The more gentle the slope, the more accurate your data will
likely be.

2. Mark uniform distances along the slope, such as 5 m, 10 m, etc.
3. Determine the following roles: the bike rider, the timer, and the recorder. The recorder should create a data table to

collect the distance and time data.
4. Have the rider at the starting point at rest on the bike. When the timer calls Start, the timer starts the stopwatch and

the rider begins coasting down the slope on the bike without pedaling.
5. Have the timer call out the elapsed times as the bike passes each marked point. The recorder should record the times in

the data table. It may be necessary to repeat the process to practice roles and make necessary adjustments.
6. Once acceptable data has been recorded, switch roles. Repeat Steps 3–5 to collect a second set of data.
7. Switch roles again to collect a third set of data.
8. Calculate average acceleration for each set of distance-time data. If your result for is not the same for different pairs

of Δv and Δt, then acceleration is not constant.
9. Interpret your results.

98 Chapter 3 • Acceleration

Access for free at openstax.org.

https://www.khanacademy.org/embed_video?v=FOkQszg1-j8


Check Your Understanding
3. What are three ways an object can accelerate?

a. By speeding up, maintaining constant velocity, or changing direction
b. By speeding up, slowing down, or changing direction
c. By maintaining constant velocity, slowing down, or changing direction
d. By speeding up, slowing down, or maintaining constant velocity

4. What is the difference between average acceleration and instantaneous acceleration?
a. Average acceleration is the change in displacement divided by the elapsed time; instantaneous acceleration is the

acceleration at a given point in time.
b. Average acceleration is acceleration at a given point in time; instantaneous acceleration is the change in displacement

divided by the elapsed time.
c. Average acceleration is the change in velocity divided by the elapsed time; instantaneous acceleration is acceleration at a

given point in time.
d. Average acceleration is acceleration at a given point in time; instantaneous acceleration is the change in velocity divided

by the elapsed time.

5. What is the rate of change of velocity called?
a. Time
b. Displacement
c. Velocity
d. Acceleration

3.2 Representing Acceleration with Equations and Graphs
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain the kinematic equations related to acceleration and illustrate them with graphs
• Apply the kinematic equations and related graphs to problems involving acceleration

Section Key Terms

acceleration due to gravity kinematic equations uniform acceleration

How the Kinematic Equations are Related to Acceleration
We are studying concepts related to motion: time, displacement, velocity, and especially acceleration. We are only concerned
with motion in one dimension. The kinematic equations apply to conditions of constant acceleration and show how these
concepts are related. Constant acceleration is acceleration that does not change over time. The first kinematic equation relates
displacement d, average velocity , and time t.

The initial displacement is often 0, in which case the equation can be written as

GRASP CHECK
If you graph the average velocity (y-axis) vs. the elapsed time (x-axis), what would the graph look like if acceleration is
uniform?
a. a horizontal line on the graph
b. a diagonal line on the graph
c. an upward-facing parabola on the graph
d. a downward-facing parabola on the graph

3.4
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This equation says that average velocity is displacement per unit time. We will express velocity in meters per second. If we graph
displacement versus time, as in Figure 3.6, the slope will be the velocity. Whenever a rate, such as velocity, is represented
graphically, time is usually taken to be the independent variable and is plotted along the x axis.

Figure 3.6 The slope of displacement versus time is velocity.

The second kinematic equation, another expression for average velocity is simply the initial velocity plus the final velocity
divided by two.

Now we come to our main focus of this chapter; namely, the kinematic equations that describe motion with constant
acceleration. In the third kinematic equation, acceleration is the rate at which velocity increases, so velocity at any point equals
initial velocity plus acceleration multiplied by time

Note that this third kinematic equation does not have displacement in it. Therefore, if you do not know the displacement and are
not trying to solve for a displacement, this equation might be a good one to use.

The third kinematic equation is also represented by the graph in Figure 3.7.

Figure 3.7 The slope of velocity versus time is acceleration.

The fourth kinematic equation shows how displacement is related to acceleration

When starting at the origin, and, when starting from rest, , in which case the equation can be written as

3.5

3.6

3.7
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This equation tells us that, for constant acceleration, the slope of a plot of 2d versus t2 is acceleration, as shown in Figure 3.8.

Figure 3.8 When acceleration is constant, the slope of 2d versus t2 gives the acceleration.

The fifth kinematic equation relates velocity, acceleration, and displacement

This equation is useful for when we do not know, or do not need to know, the time.

When starting from rest, the fifth equation simplifies to

According to this equation, a graph of velocity squared versus twice the displacement will have a slope equal to acceleration.

Figure 3.9

Note that, in reality, knowns and unknowns will vary. Sometimes you will want to rearrange a kinematic equation so that the
knowns are the values on the axes and the unknown is the slope. Sometimes the intercept will not be at the origin (0,0). This will
happen when v0 or d0 is not zero. This will be the case when the object of interest is already in motion, or the motion begins at
some point other than at the origin of the coordinate system.

3.8

Virtual Physics

The Moving Man (Part 2)
Look at the Moving Man simulation again and this time use the Charts view. Again, vary the velocity and acceleration by
sliding the red and green markers along the scales. Keeping the velocity marker near zero will make the effect of
acceleration more obvious. Observe how the graphs of position, velocity, and acceleration vary with time. Note which are
linear plots and which are not.

Click to view content (https://archive.cnx.org/specials/e2ca52af-8c6b-450e-ac2f-9300b38e8739/moving-man/)

GRASP CHECK
On a velocity versus time plot, what does the slope represent?
a. Acceleration
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The kinematic equations are applicable when you have constant acceleration.

1. , or when d0 = 0
2.
3. , or when v0 = 0
4. , or when d0 = 0 and v0 = 0

5. , or when d0 = 0 and v0 = 0

Applying Kinematic Equations to Situations of Constant Acceleration
Problem-solving skills are essential to success in a science and life in general. The ability to apply broad physical principles,
which are often represented by equations, to specific situations is a very powerful form of knowledge. It is much more powerful
than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations, whereas a list of
facts cannot be made long enough to contain every possible circumstance. Essential analytical skills will be developed by solving
problems in this text and will be useful for understanding physics and science in general throughout your life.

Problem-Solving Steps
While no single step-by-step method works for every problem, the following general procedures facilitate problem solving and
make the answers more meaningful. A certain amount of creativity and insight are required as well.

1. Examine the situation to determine which physical principles are involved. It is vital to draw a simple sketch at the outset.
Decide which direction is positive and note that on your sketch.

2. Identify the knowns: Make a list of what information is given or can be inferred from the problem statement. Remember,
not all given information will be in the form of a number with units in the problem. If something starts from rest, we know
the initial velocity is zero. If something stops, we know the final velocity is zero.

3. Identify the unknowns: Decide exactly what needs to be determined in the problem.
4. Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here.

For example, if time is not needed or not given, then the fifth kinematic equation, which does not include time, could be
useful.

5. Insert the knowns along with their units into the appropriate equation and obtain numerical solutions complete with
units. This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units
of the answer are incorrect, then an error has been made.

6. Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important because the goal of
physics is to accurately describe nature. To see if the answer is reasonable, check its magnitude, its sign, and its units. Are
the significant figures correct?

Summary of Problem Solving
• Determine the knowns and unknowns.
• Find an equation that expresses the unknown in terms of the knowns. More than one unknown means more than one

equation is needed.
• Solve the equation or equations.

b. Displacement
c. Distance covered
d. Instantaneous velocity

GRASP CHECK
On a position versus time plot, what does the slope represent?
a. Acceleration
b. Displacement
c. Distance covered
d. Instantaneous velocity
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• Be sure units and significant figures are correct.
• Check whether the answer is reasonable.

FUN IN PHYSICS

Drag Racing

Figure 3.10 Smoke rises from the tires of a dragster at the beginning of a drag race. (Lt. Col. William Thurmond. Photo courtesy of U.S.

Army.)

The object of the sport of drag racing is acceleration. Period! The races take place from a standing start on a straight one-
quarter-mile (402 m) track. Usually two cars race side by side, and the winner is the driver who gets the car past the quarter-mile
point first. At the finish line, the cars may be going more than 300 miles per hour (134 m/s). The driver then deploys a parachute
to bring the car to a stop because it is unsafe to brake at such high speeds. The cars, called dragsters, are capable of accelerating
at 26 m/s2. By comparison, a typical sports car that is available to the general public can accelerate at about 5 m/s2.

Several measurements are taken during each drag race:

• Reaction time is the time between the starting signal and when the front of the car crosses the starting line.
• Elapsed time is the time from when the vehicle crosses the starting line to when it crosses the finish line. The record is a

little over 3 s.
• Speed is the average speed during the last 20 m before the finish line. The record is a little under 400 mph.

The video shows a race between two dragsters powered by jet engines. The actual race lasts about four seconds and is near the
end of the video (https://openstax.org/l/28dragsters) .

GRASP CHECK
A dragster crosses the finish line with a velocity of . Assuming the vehicle maintained a constant acceleration from
start to finish, what was its average velocity for the race?
a.
b.
c.
d.

WORKED EXAMPLE

Acceleration of a Dragster
The time it takes for a dragster to cross the finish line is unknown. The dragster accelerates from rest at 26 m/s2 for a quarter
mile (0.250 mi). What is the final velocity of the dragster?
Strategy
The equation is ideally suited to this task because it gives the velocity from acceleration and
displacement, without involving the time.
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Solution
1. Convert miles to meters.

2. Identify the known values. We know that v0 = 0 since the dragster starts from rest, and we know that the distance traveled,
d − d0 is 402 m. Finally, the acceleration is constant at a = 26.0 m/s2.

3. Insert the knowns into the equation and solve for v.

Taking the square root gives us

Discussion
145 m/s is about 522 km/hour or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also,
note that a square root has two values. We took the positive value because we know that the velocity must be in the same
direction as the acceleration for the answer to make physical sense.

An examination of the equation can produce further insights into the general relationships among
physical quantities:

• The final velocity depends on the magnitude of the acceleration and the distance over which it applies.
• For a given acceleration, a car that is going twice as fast does not stop in twice the distance—it goes much further before it

stops. This is why, for example, we have reduced speed zones near schools.

Practice Problems
6. Dragsters can reach a top speed of 145 m/s in only 4.45 s. Calculate the average acceleration for such a dragster.

a. −32.6 m/s2

b. 0 m/s2

c. 32.6 m/s2

d. 145 m/s2

7. An Olympic-class sprinter starts a race with an acceleration of 4.50 m/s2. Assuming she can maintain that acceleration, what
is her speed 2.40 s later?
a. 4.50 m/s
b. 10.8 m/s
c. 19.6 m/s
d. 44.1 m/s

Constant Acceleration
In many cases, acceleration is not uniform because the force acting on the accelerating object is not constant over time. A
situation that gives constant acceleration is the acceleration of falling objects. When air resistance is not a factor, all objects near
Earth’s surface fall with an acceleration of about 9.80 m/s2. Although this value decreases slightly with increasing altitude, it
may be assumed to be essentially constant. The value of 9.80 m/s2 is labeled g and is referred to as acceleration due to gravity.
Gravity is the force that causes nonsupported objects to accelerate downward—or, more precisely, toward the center of Earth.
The magnitude of this force is called the weight of the object and is given by mg where m is the mass of the object (in kg). In
places other than on Earth, such as the Moon or on other planets, g is not 9.80 m/s2, but takes on other values. When using g for
the acceleration a in a kinematic equation, it is usually given a negative sign because the acceleration due to gravity is
downward.

3.9

3.10
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WORK IN PHYSICS

Effects of Rapid Acceleration

Figure 3.11 Astronauts train using G Force Simulators. (NASA)

When in a vehicle that accelerates rapidly, you experience a force on your entire body that accelerates your body. You feel this
force in automobiles and slightly more on amusement park rides. For example, when you ride in a car that turns, the car applies
a force on your body to make you accelerate in the direction in which the car is turning. If enough force is applied, you will
accelerate at 9.80 m/s2. This is the same as the acceleration due to gravity, so this force is called one G.

One G is the force required to accelerate an object at the acceleration due to gravity at Earth’s surface. Thus, one G for a paper
cup is much less than one G for an elephant, because the elephant is much more massive and requires a greater force to make it
accelerate at 9.80 m/s2. For a person, a G of about 4 is so strong that his or her face will distort as the bones accelerate forward
through the loose flesh. Other symptoms at extremely high Gs include changes in vision, loss of consciousness, and even death.
The space shuttle produces about 3 Gs during takeoff and reentry. Some roller coasters and dragsters produce forces of around 4
Gs for their occupants. A fighter jet can produce up to 12 Gs during a sharp turn.

Astronauts and fighter pilots must undergo G-force training in simulators. The video (https://www.youtube.com/
watch?v=n-8QHOUWECU) shows the experience of several people undergoing this training.

People, such as astronauts, who work with G forces must also be trained to experience zero G—also called free fall or
weightlessness—which can cause queasiness. NASA has an aircraft that allows it occupants to experience about 25 s of free fall.
The aircraft is nicknamed the Vomit Comet.

GRASP CHECK
A common way to describe acceleration is to express it in multiples of g, Earth's gravitational acceleration. If a dragster
accelerates at a rate of 39.2 m/s2, how many g's does the driver experience?
a. 1.5 g
b. 4.0 g
c. 10.5 g
d. 24.5 g

WORKED EXAMPLE

Falling Objects
A person standing on the edge of a high cliff throws a rock straight up with an initial velocity v0 of 13 m/s.
(a) Calculate the position and velocity of the rock at 1.00, 2.00, and 3.00 seconds after it is thrown. Ignore the effect of air
resistance.
Strategy
Sketch the initial velocity and acceleration vectors and the axes.
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Figure 3.12 Initial conditions for rock thrown straight up.

List the knowns: time t = 1.00 s, 2.00 s, and 3.00 s; initial velocity v0 = 13 m/s; acceleration a = g = –9.80 m/s2; and position y0 = 0
m

List the unknowns: y1, y2, and y3; v1, v2, and v3—where 1, 2, 3 refer to times 1.00 s, 2.00 s, and 3.00 s

Choose the equations.

These equations describe the unknowns in terms of knowns only.

Solution

Discussion
The first two positive values for y show that the rock is still above the edge of the cliff, and the third negative y value shows that it
has passed the starting point and is below the cliff. Remember that we set up to be positive. Any position with a positive value is
above the cliff, and any velocity with a positive value is an upward velocity. The first value for v is positive, so the rock is still on
the way up. The second and third values for v are negative, so the rock is on its way down.

(b) Make graphs of position versus time, velocity versus time, and acceleration versus time. Use increments of 0.5 s in your
graphs.
Strategy
Time is customarily plotted on the x-axis because it is the independent variable. Position versus time will not be linear, so
calculate points for 0.50 s, 1.50 s, and 2.50 s. This will give a curve closer to the true, smooth shape.

Solution
The three graphs are shown in Figure 3.13.

3.11

3.12
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Figure 3.13

Discussion
• y vs. t does not represent the two-dimensional parabolic path of a trajectory. The path of the rock is straight up and straight

down. The slope of a line tangent to the curve at any point on the curve equals the velocity at that point—i.e., the
instantaneous velocity.
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• Note that the v vs. t line crosses the vertical axis at the initial velocity and crosses the horizontal axis at the time when the
rock changes direction and begins to fall back to Earth. This plot is linear because acceleration is constant.

• The a vs. t plot also shows that acceleration is constant; that is, it does not change with time.

Practice Problems
8. A cliff diver pushes off horizontally from a cliff and lands in the ocean later. How fast was he going when he entered

the water?
a.
b.
c.
d.

9. A girl drops a pebble from a high cliff into a lake far below. She sees the splash of the pebble hitting the water later.
How fast was the pebble going when it hit the water?
a.
b.
c.
d.

Check Your Understanding
10. Identify the four variables found in the kinematic equations.

a. Displacement, Force, Mass, and Time
b. Acceleration, Displacement, Time, and Velocity
c. Final Velocity, Force, Initial Velocity, and Mass
d. Acceleration, Final Velocity, Force, and Initial Velocity

11. Which of the following steps is always required to solve a kinematics problem?
a. Find the force acting on the body.
b. Find the acceleration of a body.
c. Find the initial velocity of a body.
d. Find a suitable kinematic equation and then solve for the unknown quantity.

12. Which of the following provides a correct answer for a problem that can be solved using the kinematic equations?
a. A body starts from rest and accelerates at for . The body’s final velocity is .
b. A body starts from rest and accelerates at for . The body’s final velocity is .
c. A body with a mass of is acted upon by a force of . The acceleration of the body is .
d. A body with a mass of is acted upon by a force of . The acceleration of the body is .
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KEY TERMS
acceleration due to gravity acceleration of an object that is

subject only to the force of gravity; near Earth’s surface
this acceleration is 9.80 m/s2

average acceleration change in velocity divided by the time
interval over which it changed

constant acceleration acceleration that does not change
with respect to time

instantaneous acceleration rate of change of velocity at a
specific instant in time

kinematic equations the five equations that describe
motion in terms of time, displacement, velocity, and
acceleration

negative acceleration acceleration in the negative direction

SECTION SUMMARY
3.1 Acceleration

• Acceleration is the rate of change of velocity and may be
negative or positive.

• Average acceleration is expressed in m/s2 and, in one
dimension, can be calculated using

3.2 Representing Acceleration with
Equations and Graphs

• The kinematic equations show how time, displacement,

velocity, and acceleration are related for objects in
motion.

• In general, kinematic problems can be solved by
identifying the kinematic equation that expresses the
unknown in terms of the knowns.

• Displacement, velocity, and acceleration may be
displayed graphically versus time.

KEY EQUATIONS
3.1 Acceleration

Average acceleration

3.2 Representing Acceleration with
Equations and Graphs

Average
velocity

, or when d0 = 0

Average
velocity

Velocity , or when v0 = 0

Displacement
, or

when d0 = 0 and v0 = 0

Acceleration
, or

when d0 = 0 and v0 = 0

CHAPTER REVIEW
Concept Items
3.1 Acceleration
1. How can you use the definition of acceleration to explain

the units in which acceleration is measured?
a. Acceleration is the rate of change of velocity.

Therefore, its unit is m/s2.
b. Acceleration is the rate of change of displacement.

Therefore, its unit is m/s.
c. Acceleration is the rate of change of velocity.

Therefore, its unit is m2/s.
d. Acceleration is the rate of change of displacement.

Therefore, its unit is m2/s.

2. What are the SI units of acceleration?

a.
b.
c.
d.

3. Which of the following statements explains why a racecar
going around a curve is accelerating, even if the speed is
constant?
a. The car is accelerating because the magnitude as

well as the direction of velocity is changing.
b. The car is accelerating because the magnitude of

velocity is changing.
c. The car is accelerating because the direction of

velocity is changing.
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d. The car is accelerating because neither the
magnitude nor the direction of velocity is changing.

3.2 Representing Acceleration with
Equations and Graphs
4. A student calculated the final velocity of a train that

decelerated from 30.5 m/s and got an answer of −43.34 m/
s. Which of the following might indicate that he made a
mistake in his calculation?
a. The sign of the final velocity is wrong.
b. The magnitude of the answer is too small.
c. There are too few significant digits in the answer.
d. The units in the initial velocity are incorrect.

5. Create your own kinematics problem. Then, create a flow

chart showing the steps someone would need to take to
solve the problem.
a. Acceleration
b. Distance
c. Displacement
d. Force

6. Which kinematic equation would you use to find the
velocity of a skydiver after she jumps from a plane
and before she opens her parachute? Assume the positive
direction is downward.
a.
b.
c.
d.

Critical Thinking Items
3.1 Acceleration
7. Imagine that a car is traveling from your left to your right

at a constant velocity. Which two actions could the driver
take that may be represented as (a) a velocity vector and
an acceleration vector both pointing to the right and then
(b) changing so the velocity vector points to the right and
the acceleration vector points to the left?
a. (a) Push down on the accelerator and then (b) push

down again on the accelerator a second time.
b. (a) Push down on the accelerator and then (b) push

down on the brakes.
c. (a) Push down on the brakes and then (b) push down

on the brakes a second time.
d. (a) Push down on the brakes and then (b) push down

on the accelerator.

8. A motorcycle moving at a constant velocity suddenly
accelerates at a rate of to a speed of in

. What was the initial speed of the motorcycle?
a.
b.
c.
d.

3.2 Representing Acceleration with
Equations and Graphs
9. A student is asked to solve a problem:

An object falls from a height for 2.0 s, at which point it is
still 60 m above the ground. What will be the velocity of
the object when it hits the ground?
Which of the following provides the correct order of
kinematic equations that can be used to solve the
problem?
a. First use then use

b. First use then use

c. First use then use

d. First use then use

10. Skydivers are affected by acceleration due to gravity and
by air resistance. Eventually, they reach a speed where
the force of gravity is almost equal to the force of air
resistance. As they approach that point, their
acceleration decreases in magnitude to near zero.
Part A. Describe the shape of the graph of the
magnitude of the acceleration versus time for a falling
skydiver.
Part B. Describe the shape of the graph of the
magnitude of the velocity versus time for a falling
skydiver.
Part C. Describe the shape of the graph of the
magnitude of the displacement versus time for a falling
skydiver.
a. Part A. Begins with a nonzero y-intercept with a

downward slope that levels off at zero; Part B.
Begins at zero with an upward slope that decreases
in magnitude until the curve levels off; Part C.
Begins at zero with an upward slope that increases
in magnitude until it becomes a positive constant

b. Part A. Begins with a nonzero y-intercept with an
upward slope that levels off at zero; Part B. Begins
at zero with an upward slope that decreases in
magnitude until the curve levels off; Part C. Begins
at zero with an upward slope that increases in
magnitude until it becomes a positive constant

c. Part A. Begins with a nonzero y-intercept with a
downward slope that levels off at zero; Part B.
Begins at zero with a downward slope that

110 Chapter 3 • Chapter Review

Access for free at openstax.org.



decreases in magnitude until the curve levels off;
Part C. Begins at zero with an upward slope that
increases in magnitude until it becomes a positive
constant

d. Part A. Begins with a nonzero y-intercept with an
upward slope that levels off at zero; Part B. Begins
at zero with a downward slope that decreases in
magnitude until the curve levels off; Part C. Begins
at zero with an upward slope that increases in

magnitude until it becomes a positive constant

11. Which graph in the previous problem has a positive
slope?
a. Displacement versus time only
b. Acceleration versus time and velocity versus time
c. Velocity versus time and displacement versus time
d. Acceleration versus time and displacement versus

time

Problems
3.1 Acceleration
12. The driver of a sports car traveling at 10.0 m/s steps

down hard on the accelerator for 5.0 s and the velocity
increases to 30.0 m/s. What was the average
acceleration of the car during the 5.0 s time interval?
a. –1.0 × 102 m/s2

b. –4.0 m/s2

c. 4.0 m/s2

d. 1.0 × 102 m/s2

13. A girl rolls a basketball across a basketball court. The ball
slowly decelerates at a rate of −0.20 m/s2. If the initial
velocity was 2.0 m/s and the ball rolled to a stop at 5.0
sec after 12:00 p.m., at what time did she start the ball
rolling?
a. 0.1 seconds before noon
b. 0.1 seconds after noon
c. 5 seconds before noon
d. 5 seconds after noon

3.2 Representing Acceleration with
Equations and Graphs
14. A swan on a lake gets airborne by flapping its wings and

running on top of the water. If the swan must reach a
velocity of 6.00 m/s to take off and it accelerates from
rest at an average rate of 0.350 m/s2, how far will it travel
before becoming airborne?
a. −8.60 m
b. 8.60 m
c. −51.4 m
d. 51.4 m

15. A swimmer bounces straight up from a diving board and
falls feet first into a pool. She starts with a velocity of

and her takeoff point is above the pool.
How long are her feet in the air?
a.
b.
c.
d.
e. 1.28 s

Performance Task
3.2 Representing Acceleration with
Equations and Graphs
16. Design an experiment to measure displacement and

elapsed time. Use the data to calculate final velocity,
average velocity, acceleration, and acceleration.

Materials
• a small marble or ball bearing
• a garden hose
• a measuring tape
• a stopwatch or stopwatch software download
• a sloping driveway or lawn as long as the garden

hose with a level area beyond

(a) How would you use the garden hose, stopwatch,
marble, measuring tape, and slope to measure
displacement and elapsed time? Hint—The marble is the
accelerating object, and the length of the hose is total
displacement.
(b) How would you use the displacement and time data
to calculate velocity, average velocity, and acceleration?
Which kinematic equations would you use?
(c) How would you use the materials, the measured and
calculated data, and the flat area below the slope to
determine the negative acceleration? What would you
measure, and which kinematic equation would you use?
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TEST PREP
Multiple Choice
3.1 Acceleration
17. Which variable represents displacement?

a. a
b. d
c. t
d. v

18. If a velocity increases from 0 to 20 m/s in 10 s, what is
the average acceleration?
a. 0.5 m/s2

b. 2 m/s2

c. 10 m/s2

d. 30 m/s2

3.2 Representing Acceleration with
Equations and Graphs
19. For the motion of a falling object, which graphs are

straight lines?
a. Acceleration versus time only
b. Displacement versus time only
c. Displacement versus time and acceleration versus

time
d. Velocity versus time and acceleration versus time

20. A bullet in a gun is accelerated from the firing chamber
to the end of the barrel at an average rate of 6.30×105 m/
s2 for 8.10×10−4 s. What is the bullet’s final velocity when
it leaves the barrel, commonly known as the muzzle
velocity?
a. 7.79 m/s
b. 51.0 m/s
c. 510 m/s
d. 1020 m/s

Short Answer
3.1 Acceleration
21. True or False—The vector for a negative acceleration

points in the opposite direction when compared to the
vector for a positive acceleration.
a. True
b. False

22. If a car decelerates from to in , what
is ?
a. -5 m/s
b. -1 m/s
c. 1 m/s
d. 5 m/s

23. How is the vector arrow representing an acceleration of
magnitude 3 m/s2 different from the vector arrow
representing a negative acceleration of magnitude 3 m/
s2?
a. They point in the same direction.
b. They are perpendicular, forming a 90° angle

between each other.
c. They point in opposite directions.
d. They are perpendicular, forming a 270° angle

between each other.

24. How long does it take to accelerate from 8.0 m/s to 20.0
m/s at a rate of acceleration of 3.0 m/s2?
a. 0.25 s
b. 4.0 s
c. 9.33 s

d. 36 s

3.2 Representing Acceleration with
Equations and Graphs
25. If a plot of displacement versus time is linear, what can

be said about the acceleration?
a. Acceleration is 0.
b. Acceleration is a non-zero constant.
c. Acceleration is positive.
d. Acceleration is negative.

26.

True or False: —The image shows a velocity vs. time graph
for a jet car. If you take the slope at any point on the graph,
the jet car’s acceleration will be 5.0 m/s2.
a. True
b. False

27. When plotted on the blank plots, which answer choice would
show the motion of an object that has uniformly accelerated
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from 2 m/s to 8 m/s in 3 s?

a. The plot on the left shows a line from (0,2) to (3,8) while
the plot on the right shows a line from (0,2) to (3,2).

b. The plot on the left shows a line from (0,2) to (3,8) while
the plot on the right shows a line from (0,3) to (3,3).

c. The plot on the left shows a line from (0,8) to (3,2) while

the plot on the right shows a line from (0,2) to (3,2).
d. The plot on the left shows a line from (0,8) to (3,2) while

the plot on the right shows a line from (0,3) to (3,3).

28. When is a plot of velocity versus time a straight line and
when is it a curved line?
a. It is a straight line when acceleration is changing

and is a curved line when acceleration is constant.
b. It is a straight line when acceleration is constant

and is a curved line when acceleration is changing.
c. It is a straight line when velocity is constant and is

a curved line when velocity is changing.
d. It is a straight line when velocity is changing and is

a curved line when velocity is constant.

Extended Response
3.1 Acceleration
29. A test car carrying a crash test dummy accelerates from

to and then crashes into a brick wall. Describe
the direction of the initial acceleration vector and
compare the initial acceleration vector’s magnitude with
respect to the acceleration magnitude at the moment of
the crash.
a. The direction of the initial acceleration vector will

point towards the wall, and its magnitude will be
less than the acceleration vector of the crash.

b. The direction of the initial acceleration vector will
point away from the wall, and its magnitude will be
less than the vector of the crash.

c. The direction of the initial acceleration vector will
point towards the wall, and its magnitude will be
more than the acceleration vector of the crash.

d. The direction of the initial acceleration vector will
point away from the wall, and its magnitude will be
more than the acceleration vector of the crash.

30. A car accelerates from rest at a stop sign at a rate of 3.0
m/s2 to a speed of 21.0 m/s, and then immediately
begins to decelerate to a stop at the next stop sign at a
rate of 4.0 m/s2. How long did it take the car to travel

from the first stop sign to the second stop sign? Show
your work.
a. 1.7 seconds
b. 5.3 seconds
c. 7.0 seconds
d. 12 seconds

3.2 Representing Acceleration with
Equations and Graphs
31. True or False: Consider an object moving with constant

acceleration. The plot of displacement versus time for
such motion is a curved line while the plot of
displacement versus time squared is a straight line.
a. True
b. False

32. You throw a ball straight up with an initial velocity of
15.0 m/s. It passes a tree branch on the way up at a
height of 7.00 m. How much additional time will pass
before the ball passes the tree branch on the way back
down?
a. 0.574 s
b. 0.956 s
c. 1.53 s
d. 1.91 s
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INTRODUCTION

CHAPTER 4
Forces and Newton’s Laws of
Motion

4.1 Force

4.2 Newton's First Law of Motion: Inertia

4.3 Newton's Second Law of Motion

4.4 Newton's Third Law of Motion

Isaac Newton (1642–1727) was a natural philosopher; a great thinker who combined science and philosophy to
try to explain the workings of nature on Earth and in the universe. His laws of motion were just one part of the monumental
work that has made him legendary. The development of Newton’s laws marks the transition from the Renaissance period of
history to the modern era. This transition was characterized by a revolutionary change in the way people thought about the
physical universe. Drawing upon earlier work by scientists Galileo Galilei and Johannes Kepler, Newton’s laws of motion allowed
motion on Earth and in space to be predicted mathematically. In this chapter you will learn about force as well as Newton’s first,
second, and third laws of motion.

Figure 4.1 Newton’s laws of motion describe the motion of the dolphin’s path. (Credit: Jin Jang)
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4.1 Force
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Differentiate between force, net force, and dynamics
• Draw a free-body diagram

Section Key Terms

dynamics external force force

free-body diagram net external force net force

Defining Force and Dynamics
Force is the cause of motion, and motion draws our attention. Motion itself can be beautiful, such as a dolphin jumping out of
the water, the flight of a bird, or the orbit of a satellite. The study of motion is called kinematics, but kinematics describes only
the way objects move—their velocity and their acceleration. Dynamics considers the forces that affect the motion of moving
objects and systems. Newton’s laws of motion are the foundation of dynamics. These laws describe the way objects speed up,
slow down, stay in motion, and interact with other objects. They are also universal laws: they apply everywhere on Earth as well
as in space.

A force pushes or pulls an object. The object being moved by a force could be an inanimate object, a table, or an animate object, a
person. The pushing or pulling may be done by a person, or even the gravitational pull of Earth. Forces have different
magnitudes and directions; this means that some forces are stronger than others and can act in different directions. For
example, a cannon exerts a strong force on the cannonball that is launched into the air. In contrast, a mosquito landing on your
arm exerts only a small force on your arm.

When multiple forces act on an object, the forces combine. Adding together all of the forces acting on an object gives the total
force, or net force. An external force is a force that acts on an object within the system from outside the system. This type of
force is different than an internal force, which acts between two objects that are both within the system. The net external force
combines these two definitions; it is the total combined external force. We discuss further details about net force, external force,
and net external force in the coming sections.

In mathematical terms, two forces acting in opposite directions have opposite signs (positive or negative). By convention, the
negative sign is assigned to any movement to the left or downward. If two forces pushing in opposite directions are added
together, the larger force will be somewhat canceled out by the smaller force pushing in the opposite direction. It is important to
be consistent with your chosen coordinate system within a problem; for example, if negative values are assigned to the
downward direction for velocity, then distance, force, and acceleration should also be designated as being negative in the
downward direction.

Free-Body Diagrams and Examples of Forces
For our first example of force, consider an object hanging from a rope. This example gives us the opportunity to introduce a
useful tool known as a free-body diagram. A free-body diagram represents the object being acted upon—that is, the free
body—as a single point. Only the forces acting on the body (that is, external forces) are shown and are represented by vectors
(which are drawn as arrows). These forces are the only ones shown because only external forces acting on the body affect its
motion. We can ignore any internal forces within the body because they cancel each other out, as explained in the section on
Newton’s third law of motion. Free-body diagrams are very useful for analyzing forces acting on an object.
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Figure 4.2 An object of mass, m, is held up by the force of tension.

Figure 4.2 shows the force of tension in the rope acting in the upward direction, opposite the force of gravity. The forces are
indicated in the free-body diagram by an arrow pointing up, representing tension, and another arrow pointing down,
representing gravity. In a free-body diagram, the lengths of the arrows show the relative magnitude (or strength) of the forces.
Because forces are vectors, they add just like other vectors. Notice that the two arrows have equal lengths in Figure 4.2, which
means that the forces of tension and weight are of equal magnitude. Because these forces of equal magnitude act in opposite
directions, they are perfectly balanced, so they add together to give a net force of zero.

Not all forces are as noticeable as when you push or pull on an object. Some forces act without physical contact, such as the pull
of a magnet (in the case of magnetic force) or the gravitational pull of Earth (in the case of gravitational force).

In the next three sections discussing Newton’s laws of motion, we will learn about three specific types of forces: friction, the
normal force, and the gravitational force. To analyze situations involving forces, we will create free-body diagrams to organize
the framework of the mathematics for each individual situation.

TIPS FOR SUCCESS
Correctly drawing and labeling a free-body diagram is an important first step for solving a problem. It will help you visualize
the problem and correctly apply the mathematics to solve the problem.

Check Your Understanding
1. What is kinematics?

a. Kinematics is the study of motion.
b. Kinematics is the study of the cause of motion.
c. Kinematics is the study of dimensions.
d. Kinematics is the study of atomic structures.

2. Do two bodies have to be in physical contact to exert a force upon one another?
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a. No, the gravitational force is a field force and does not require physical contact to exert a force.
b. No, the gravitational force is a contact force and does not require physical contact to exert a force.
c. Yes, the gravitational force is a field force and requires physical contact to exert a force.
d. Yes, the gravitational force is a contact force and requires physical contact to exert a force.

3. What kind of physical quantity is force?
a. Force is a scalar quantity.
b. Force is a vector quantity.
c. Force is both a vector quantity and a scalar quantity.
d. Force is neither a vector nor a scalar quantity.

4. Which forces can be represented in a free-body diagram?
a. Internal forces
b. External forces
c. Both internal and external forces
d. A body that is not influenced by any force

4.2 Newton's First Law of Motion: Inertia
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe Newton’s first law and friction, and
• Discuss the relationship between mass and inertia.

Section Key Terms

friction inertia law of inertia

mass Newton’s first law of motion system

Newton’s First Law and Friction
Newton’s first law of motion states the following:

1. A body at rest tends to remain at rest.
2. A body in motion tends to remain in motion at a constant velocity unless acted on by a net external force. (Recall that

constant velocity means that the body moves in a straight line and at a constant speed.)

At first glance, this law may seem to contradict your everyday experience. You have probably noticed that a moving object will
usually slow down and stop unless some effort is made to keep it moving. The key to understanding why, for example, a sliding
box slows down (seemingly on its own) is to first understand that a net external force acts on the box to make the box slow down.
Without this net external force, the box would continue to slide at a constant velocity (as stated in Newton’s first law of motion).
What force acts on the box to slow it down? This force is called friction. Friction is an external force that acts opposite to the
direction of motion (see Figure 4.3). Think of friction as a resistance to motion that slows things down.

Consider an air hockey table. When the air is turned off, the puck slides only a short distance before friction slows it to a stop.
However, when the air is turned on, it lifts the puck slightly, so the puck experiences very little friction as it moves over the
surface. With friction almost eliminated, the puck glides along with very little change in speed. On a frictionless surface, the
puck would experience no net external force (ignoring air resistance, which is also a form of friction). Additionally, if we know
enough about friction, we can accurately predict how quickly objects will slow down.

Now let’s think about another example. A man pushes a box across a floor at constant velocity by applying a force of
+50 N. (The positive sign indicates that, by convention, the direction of motion is to the right.) What is the force of friction that
opposes the motion? The force of friction must be −50 N. Why? According to Newton’s first law of motion, any object moving at
constant velocity has no net external force acting upon it, which means that the sum of the forces acting on the object must be
zero. The mathematical way to say that no net external force acts on an object is or So if the man applies +50
N of force, then the force of friction must be −50 N for the two forces to add up to zero (that is, for the two forces to cancel each
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other). Whenever you encounter the phrase at constant velocity, Newton’s first law tells you that the net external force is zero.

Figure 4.3 For a box sliding across a floor, friction acts in the direction opposite to the velocity.

The force of friction depends on two factors: the coefficient of friction and the normal force. For any two surfaces that are in
contact with one another, the coefficient of friction is a constant that depends on the nature of the surfaces. The normal force is
the force exerted by a surface that pushes on an object in response to gravity pulling the object down. In equation form, the force
of friction is

where μ is the coefficient of friction and N is the normal force. (The coefficient of friction is discussed in more detail in another
chapter, and the normal force is discussed in more detail in the section Newton's Third Law of Motion.)

Recall from the section on Force that a net external force acts from outside on the object of interest. A more precise definition is
that it acts on the system of interest. A system is one or more objects that you choose to study. It is important to define the
system at the beginning of a problem to figure out which forces are external and need to be considered, and which are internal
and can be ignored.

For example, in Figure 4.4 (a), two children push a third child in a wagon at a constant velocity. The system of interest is the
wagon plus the small child, as shown in part (b) of the figure. The two children behind the wagon exert external forces on this
system (F1, F2). Friction f acting at the axles of the wheels and at the surface where the wheels touch the ground two other
external forces acting on the system. Two more external forces act on the system: the weight W of the system pulling down and
the normal force N of the ground pushing up. Notice that the wagon is not accelerating vertically, so Newton’s first law tells us
that the normal force balances the weight. Because the wagon is moving forward at a constant velocity, the force of friction must
have the same strength as the sum of the forces applied by the two children.

4.1
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Figure 4.4 (a) The wagon and rider form a system that is acted on by external forces. (b) The two children pushing the wagon and child

provide two external forces. Friction acting at the wheel axles and on the surface of the tires where they touch the ground provide an

external force that act against the direction of motion. The weight W and the normal force N from the ground are two more external forces

acting on the system. All external forces are represented in the figure by arrows. All of the external forces acting on the system add

together, but because the wagon moves at a constant velocity, all of the forces must add up to zero.

Mass and Inertia
Inertia is the tendency for an object at rest to remain at rest, or for a moving object to remain in motion in a straight line with
constant speed. This key property of objects was first described by Galileo. Later, Newton incorporated the concept of inertia
into his first law, which is often referred to as the law of inertia.

As we know from experience, some objects have more inertia than others. For example, changing the motion of a large truck is
more difficult than changing the motion of a toy truck. In fact, the inertia of an object is proportional to the mass of the object.
Mass is a measure of the amount of matter (or stuff) in an object. The quantity or amount of matter in an object is determined by
the number and types of atoms the object contains. Unlike weight (which changes if the gravitational force changes), mass does
not depend on gravity. The mass of an object is the same on Earth, in orbit, or on the surface of the moon. In practice, it is very
difficult to count and identify all of the atoms and molecules in an object, so mass is usually not determined this way. Instead,
the mass of an object is determined by comparing it with the standard kilogram. Mass is therefore expressed in kilograms.

TIPS FOR SUCCESS
In everyday language, people often use the terms weight and mass interchangeably—but this is not correct. Weight is
actually a force. (We cover this topic in more detail in the section Newton's Second Law of Motion.)

WATCH PHYSICS

Newton’s First Law of Motion
This video contrasts the way we thought about motion and force in the time before Galileo’s concept of inertia and Newton’s first
law of motion with the way we understand force and motion now.

Click to view content (https://www.khanacademy.org/embed_video?v=5-ZFOhHQS68)
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GRASP CHECK
Before we understood that objects have a tendency to maintain their velocity in a straight line unless acted upon by a net
force, people thought that objects had a tendency to stop on their own. This happened because a specific force was not yet
understood. What was that force?
a. Gravitational force
b. Electrostatic force
c. Nuclear force
d. Frictional force

Check Your Understanding
5. What does Newton’s first law state?

a. A body at rest tends to remain at rest and a body in motion tends to remain in motion at a constant acceleration unless
acted on by a net external force.

b. A body at rest tends to remain at rest and a body in motion tends to remain in motion at a constant velocity unless acted
on by a net external force.

c. The rate of change of momentum of a body is directly proportional to the external force applied to the body.
d. The rate of change of momentum of a body is inversely proportional to the external force applied to the body.

6. According to Newton’s first law, a body in motion tends to remain in motion at a constant velocity. However, when you slide
an object across a surface, the object eventually slows down and stops. Why?
a. The object experiences a frictional force exerted by the surface, which opposes its motion.
b. The object experiences the gravitational force exerted by Earth, which opposes its motion
c. The object experiences an internal force exerted by the body itself, which opposes its motion.
d. The object experiences a pseudo-force from the body in motion, which opposes its motion.

Virtual Physics

Forces and Motion—Basics
In this simulation, you will first explore net force by placing blue people on the left side of a tug-of-war rope and red people
on the right side of the rope (by clicking people and dragging them with your mouse). Experiment with changing the
number and size of people on each side to see how it affects the outcome of the match and the net force. Hit the "Go!" button
to start the match, and the “reset all” button to start over.

Next, click on the Friction tab. Try selecting different objects for the person to push. Slide the applied force button to the
right to apply force to the right, and to the left to apply force to the left. The force will continue to be applied as long as you
hold down the button. See the arrow representing friction change in magnitude and direction, depending on how much
force you apply. Try increasing or decreasing the friction force to see how this change affects the motion.

Click to view content (https://phet.colorado.edu/sims/html/forces-and-motion-basics/latest/forces-and-motion-
basics_en.html)

GRASP CHECK
Click on the tab for the Acceleration Lab and check the Sum of Forces option. Push the box to the right and then release.
Notice which direction the sum of forces arrow points after the person stops pushing the box and lets it continue moving
to the right on its own. At this point, in which direction is the net force, the sum of forces, pointing? Why?
a. The net force acts to the right because the applied external force acted to the right.
b. The net force acts to the left because the applied external force acted to the left.
c. The net force acts to the right because the frictional force acts to the right.
d. The net force acts to the left because the frictional force acts to the left.
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7. What is inertia?
a. Inertia is an object’s tendency to maintain its mass.
b. Inertia is an object’s tendency to remain at rest.
c. Inertia is an object’s tendency to remain in motion
d. Inertia is an object’s tendency to remain at rest or, if moving, to remain in motion.

8. What is mass? What does it depend on?
a. Mass is the weight of an object, and it depends on the gravitational force acting on the object.
b. Mass is the weight of an object, and it depends on the number and types of atoms in the object.
c. Mass is the quantity of matter contained in an object, and it depends on the gravitational force acting on the object.
d. Mass is the quantity of matter contained in an object, and it depends on the number and types of atoms in the object.

4.3 Newton's Second Law of Motion
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe Newton’s second law, both verbally and mathematically
• Use Newton’s second law to solve problems

Section Key Terms

freefall Newton’s second law of motion weight

Describing Newton’s Second Law of Motion
Newton’s first law considered bodies at rest or bodies in motion at a constant velocity. The other state of motion to consider is
when an object is moving with a changing velocity, which means a change in the speed and/or the direction of motion. This type
of motion is addressed by Newton’s second law of motion, which states how force causes changes in motion. Newton’s second
law of motion is used to calculate what happens in situations involving forces and motion, and it shows the mathematical
relationship between force, mass, and acceleration. Mathematically, the second law is most often written as

where Fnet (or ∑F) is the net external force, m is the mass of the system, and a is the acceleration. Note that Fnet and ∑F are the
same because the net external force is the sum of all the external forces acting on the system.

First, what do we mean by a change in motion? A change in motion is simply a change in velocity: the speed of an object can
become slower or faster, the direction in which the object is moving can change, or both of these variables may change. A change
in velocity means, by definition, that an acceleration has occurred. Newton’s first law says that only a nonzero net external force
can cause a change in motion, so a net external force must cause an acceleration. Note that acceleration can refer to slowing
down or to speeding up. Acceleration can also refer to a change in the direction of motion with no change in speed, because
acceleration is the change in velocity divided by the time it takes for that change to occur, and velocity is defined by speed and
direction.

From the equation we see that force is directly proportional to both mass and acceleration, which makes sense. To
accelerate two objects from rest to the same velocity, you would expect more force to be required to accelerate the more massive
object. Likewise, for two objects of the same mass, applying a greater force to one would accelerate it to a greater velocity.

Now, let’s rearrange Newton’s second law to solve for acceleration. We get

In this form, we can see that acceleration is directly proportional to force, which we write as

where the symbol means proportional to.

This proportionality mathematically states what we just said in words: acceleration is directly proportional to the net external
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force. When two variables are directly proportional to each other, then if one variable doubles, the other variable must double.
Likewise, if one variable is reduced by half, the other variable must also be reduced by half. In general, when one variable is
multiplied by a number, the other variable is also multiplied by the same number. It seems reasonable that the acceleration of a
system should be directly proportional to and in the same direction as the net external force acting on the system. An object
experiences greater acceleration when acted on by a greater force.

It is also clear from the equation that acceleration is inversely proportional to mass, which we write as

Inversely proportional means that if one variable is multiplied by a number, the other variable must be divided by the same
number. Now, it also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other
words, the larger the mass (the inertia), the smaller the acceleration produced by a given force. This relationship is illustrated in
Figure 4.5, which shows that a given net external force applied to a basketball produces a much greater acceleration than when
applied to a car.

Figure 4.5 The same force exerted on systems of different masses produces different accelerations. (a) A boy pushes a basketball to make

a pass. The effect of gravity on the ball is ignored. (b) The same boy pushing with identical force on a stalled car produces a far smaller

acceleration (friction is negligible). Note that the free-body diagrams for the ball and for the car are identical, which allows us to compare

the two situations.

Applying Newton’s Second Law
Before putting Newton’s second law into action, it is important to consider units. The equation is used to define the
units of force in terms of the three basic units of mass, length, and time (recall that acceleration has units of length divided by
time squared). The SI unit of force is called the newton (abbreviated N) and is the force needed to accelerate a 1-kg system at the
rate of 1 m/s2. That is, because we have

One of the most important applications of Newton’s second law is to calculate weight (also known as the gravitational force),
which is usually represented mathematically as W. When people talk about gravity, they don’t always realize that it is an
acceleration. When an object is dropped, it accelerates toward the center of Earth. Newton’s second law states that the net
external force acting on an object is responsible for the acceleration of the object. If air resistance is negligible, the net external
force on a falling object is only the gravitational force (i.e., the weight of the object).

Weight can be represented by a vector because it has a direction. Down is defined as the direction in which gravity pulls, so
weight is normally considered a downward force. By using Newton’s second law, we can figure out the equation for weight.

Consider an object with mass m falling toward Earth. It experiences only the force of gravity (i.e., the gravitational force or
weight), which is represented by W. Newton’s second law states that Because the only force acting on the object is
the gravitational force, we have We know that the acceleration of an object due to gravity is g, so we have
Substituting these two expressions into Newton’s second law gives
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This is the equation for weight—the gravitational force on a mass m. On Earth, so the weight (disregarding for
now the direction of the weight) of a 1.0-kg object on Earth is

Although most of the world uses newtons as the unit of force, in the United States the most familiar unit of force is the pound
(lb), where 1 N = 0.225 lb.

Recall that although gravity acts downward, it can be assigned a positive or negative value, depending on what the positive
direction is in your chosen coordinate system. Be sure to take this into consideration when solving problems with weight. When
the downward direction is taken to be negative, as is often the case, acceleration due to gravity becomes
g = −9.8 m/s2.

When the net external force on an object is its weight, we say that it is in freefall. In this case, the only force acting on the object
is the force of gravity. On the surface of Earth, when objects fall downward toward Earth, they are never truly in freefall because
there is always some upward force due to air resistance that acts on the object (and there is also the buoyancy force of air, which
is similar to the buoyancy force in water that keeps boats afloat).

Gravity varies slightly over the surface of Earth, so the weight of an object depends very slightly on its location on Earth. Weight
varies dramatically away from Earth’s surface. On the moon, for example, the acceleration due to gravity is only 1.67 m/s2.
Because weight depends on the force of gravity, a 1.0-kg mass weighs 9.8 N on Earth and only about 1.7 N on the moon.

It is important to remember that weight and mass are very different, although they are closely related. Mass is the quantity of
matter (how much stuff) in an object and does not vary, but weight is the gravitational force on an object and is proportional to
the force of gravity. It is easy to confuse the two, because our experience is confined to Earth, and the weight of an object is
essentially the same no matter where you are on Earth. Adding to the confusion, the terms mass and weight are often used
interchangeably in everyday language; for example, our medical records often show our weight in kilograms, but never in the
correct unit of newtons.

4.7

4.8

Snap Lab

Mass and Weight
In this activity, you will use a scale to investigate mass and weight.

• 1 bathroom scale
• 1 table

1. What do bathroom scales measure?
2. When you stand on a bathroom scale, what happens to the scale? It depresses slightly. The scale contains springs that

compress in proportion to your weight—similar to rubber bands expanding when pulled.
3. The springs provide a measure of your weight (provided you are not accelerating). This is a force in newtons (or

pounds). In most countries, the measurement is now divided by 9.80 to give a reading in kilograms, which is a of mass.
The scale detects weight but is calibrated to display mass.

4. If you went to the moon and stood on your scale, would it detect the same mass as it did on Earth?

GRASP CHECK
While standing on a bathroom scale, push down on a table next to you. What happens to the reading? Why?
a. The reading increases because part of your weight is applied to the table and the table exerts a matching force on

you that acts in the direction of your weight.
b. The reading increases because part of your weight is applied to the table and the table exerts a matching force on

you that acts in the direction opposite to your weight.
c. The reading decreases because part of your weight is applied to the table and the table exerts a matching force on

you that acts in the direction of your weight.
d. The reading decreases because part of your weight is applied to the table and the table exerts a matching force on
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TIPS FOR SUCCESS
Only net external force impacts the acceleration of an object. If more than one force acts on an object and you calculate the
acceleration by using only one of these forces, you will not get the correct acceleration for that object.

WATCH PHYSICS

Newton’s Second Law of Motion
This video reviews Newton’s second law of motion and how net external force and acceleration relate to one another and to mass.
It also covers units of force, mass, and acceleration, and reviews a worked-out example.

Click to view content (https://www.khanacademy.org/embed_video?v=ou9YMWlJgkE)

GRASP CHECK
True or False—If you want to reduce the acceleration of an object to half its original value, then you would need to reduce the
net external force by half.
a. True
b. False

WORKED EXAMPLE

What Acceleration Can a Person Produce when Pushing a Lawn Mower?
Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N parallel to the ground. The mass of the
mower is 240 kg. What is its acceleration?

Figure 4.6

Strategy
Because Fnet and m are given, the acceleration can be calculated directly from Newton’s second law: Fnet = ma.

Solution
Solving Newton’s second law for the acceleration, we find that the magnitude of the acceleration, a, is Entering the
given values for net external force and mass gives

you that acts in the direction opposite to your weight.
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Inserting the units for N yields

Discussion
The acceleration is in the same direction as the net external force, which is parallel to the ground and to the right. There is no
information given in this example about the individual external forces acting on the system, but we can say something about
their relative magnitudes. For example, the force exerted by the person pushing the mower must be greater than the friction
opposing the motion, because we are given that the net external force is in the direction in which the person pushes. Also, the
vertical forces must cancel if there is no acceleration in the vertical direction (the mower is moving only horizontally). The
acceleration found is reasonable for a person pushing a mower; the mower’s speed must increase by 0.21 m/s every second,
which is possible. The time during which the mower accelerates would not be very long because the person’s top speed would
soon be reached. At this point, the person could push a little less hard, because he only has to overcome friction.

WORKED EXAMPLE

What Rocket Thrust Accelerates This Sled?
Prior to manned space flights, rocket sleds were used to test aircraft, missile equipment, and physiological effects on humans at
high accelerations. Rocket sleds consisted of a platform mounted on one or two rails and propelled by several rockets. Calculate
the magnitude of force exerted by each rocket, called its thrust, T, for the four-rocket propulsion system shown below. The sled’s
initial acceleration is the mass of the system is 2,100 kg, and the force of friction opposing the motion is 650 N.

Figure 4.7

Strategy
The system of interest is the rocket sled. Although forces act vertically on the system, they must cancel because the system does
not accelerate vertically. This leaves us with only horizontal forces to consider. We’ll assign the direction to the right as the
positive direction. See the free-body diagram in Figure 4.8.

Solution
We start with Newton’s second law and look for ways to find the thrust T of the engines. Because all forces and acceleration are
along a line, we need only consider the magnitudes of these quantities in the calculations. We begin with

where is the net external force in the horizontal direction. We can see from Figure 4.8 that the engine thrusts are in the
same direction (which we call the positive direction), whereas friction opposes the thrust. In equation form, the net external
force is

4.10
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Newton’s second law tells us that Fnet= ma, so we get

After a little algebra, we solve for the total thrust 4T:

which means that the individual thrust is

Inserting the known values yields

Discussion
The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s to test
the limits of human endurance and to test the apparatus designed to protect fighter pilots in emergency ejections. Speeds of
1000 km/h were obtained, with accelerations of 45 g. (Recall that g, the acceleration due to gravity, is An acceleration
of 45 g is which is approximately ) Living subjects are no longer used, and land speeds of 10,000
km/h have now been obtained with rocket sleds. In this example, as in the preceding example, the system of interest is clear. We
will see in later examples that choosing the system of interest is crucial—and that the choice is not always obvious.

Practice Problems
9. If 1 N is equal to 0.225 lb, how many pounds is 5 N of force?

a. 0.045 lb
b. 1.125 lb
c. 2.025 lb
d. 5.000 lb

10. How much force needs to be applied to a 5-kg object for it to accelerate at 20 m/s2?
a. 1 N
b. 10 N
c. 100 N
d. 1,000 N

Check Your Understanding
11. What is the mathematical statement for Newton’s second law of motion?

a. F = ma
b. F = 2ma
c.
d. F = ma2

12. Newton’s second law describes the relationship between which quantities?
a. Force, mass, and time
b. Force, mass, and displacement
c. Force, mass, and velocity
d. Force, mass, and acceleration

13. What is acceleration?
a. Acceleration is the rate at which displacement changes.
b. Acceleration is the rate at which force changes.
c. Acceleration is the rate at which velocity changes.
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d. Acceleration is the rate at which mass changes.

4.4 Newton's Third Law of Motion
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe Newton’s third law, both verbally and mathematically
• Use Newton’s third law to solve problems

Section Key Terms

Newton’s third law of motion normal force tension thrust

Describing Newton’s Third Law of Motion
If you have ever stubbed your toe, you have noticed that although your toe initiates the impact, the surface that you stub it on
exerts a force back on your toe. Although the first thought that crosses your mind is probably “ouch, that hurt” rather than “this
is a great example of Newton’s third law,” both statements are true.

This is exactly what happens whenever one object exerts a force on another—each object experiences a force that is the same
strength as the force acting on the other object but that acts in the opposite direction. Everyday experiences, such as stubbing a
toe or throwing a ball, are all perfect examples of Newton’s third law in action.

Newton’s third law of motion states that whenever a first object exerts a force on a second object, the first object experiences a
force equal in magnitude but opposite in direction to the force that it exerts.

Newton’s third law of motion tells us that forces always occur in pairs, and one object cannot exert a force on another without
experiencing the same strength force in return. We sometimes refer to these force pairs as action-reaction pairs, where the force
exerted is the action, and the force experienced in return is the reaction (although which is which depends on your point of
view).

Newton’s third law is useful for figuring out which forces are external to a system. Recall that identifying external forces is
important when setting up a problem, because the external forces must be added together to find the net force.

We can see Newton’s third law at work by looking at how people move about. Consider a swimmer pushing off from the side of a
pool, as illustrated in Figure 4.8. She pushes against the pool wall with her feet and accelerates in the direction opposite to her
push. The wall has thus exerted on the swimmer a force of equal magnitude but in the direction opposite that of her push. You
might think that two forces of equal magnitude but that act in opposite directions would cancel, but they do not because they act
on different systems.

In this case, there are two different systems that we could choose to investigate: the swimmer or the wall. If we choose the
swimmer to be the system of interest, as in the figure, then is an external force on the swimmer and affects her
motion. Because acceleration is in the same direction as the net external force, the swimmer moves in the direction of

Because the swimmer is our system (or object of interest) and not the wall, we do not need to consider the force
because it originates from the swimmer rather than acting on the swimmer. Therefore, does not

directly affect the motion of the system and does not cancel Note that the swimmer pushes in the direction
opposite to the direction in which she wants to move.
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Figure 4.8 When the swimmer exerts a force on the wall, she accelerates in the direction opposite to that of her push. This

means that the net external force on her is in the direction opposite to This opposition is the result of Newton’s third law of

motion, which dictates that the wall exerts a force on the swimmer that is equal in magnitude but that acts in the direction

opposite to the force that the swimmer exerts on the wall.

Other examples of Newton’s third law are easy to find. As a teacher paces in front of a whiteboard, he exerts a force backward on
the floor. The floor exerts a reaction force in the forward direction on the teacher that causes him to accelerate forward.
Similarly, a car accelerates because the ground pushes forward on the car's wheels in reaction to the car's wheels pushing
backward on the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw rocks
backward.

Another example is the force of a baseball as it makes contact with the bat. Helicopters create lift by pushing air down, creating
an upward reaction force. Birds fly by exerting force on air in the direction opposite that in which they wish to fly. For example,
the wings of a bird force air downward and backward in order to get lift and move forward. An octopus propels itself forward in
the water by ejecting water backward through a funnel in its body, which is similar to how a jet ski is propelled. In these
examples, the octopus or jet ski push the water backward, and the water, in turn, pushes the octopus or jet ski forward.

Applying Newton’s Third Law
Forces are classified and given names based on their source, how they are transmitted, or their effects. In previous sections, we
discussed the forces called push, weight, and friction. In this section, applying Newton’s third law of motion will allow us to
explore three more forces: the normal force, tension, and thrust. However, because we haven’t yet covered vectors in depth, we’ll
only consider one-dimensional situations in this chapter. Another chapter will consider forces acting in two dimensions.

The gravitational force (or weight) acts on objects at all times and everywhere on Earth. We know from Newton’s second law that
a net force produces an acceleration; so, why is everything not in a constant state of freefall toward the center of Earth? The
answer is the normal force. The normal force is the force that a surface applies to an object to support the weight of that object; it
acts perpendicular to the surface upon which the object rests. If an object on a flat surface is not accelerating, the net external
force is zero, and the normal force has the same magnitude as the weight of the system but acts in the opposite direction. In
equation form, we write that

Note that this equation is only true for a horizontal surface.

The word tension comes from the Latin word meaning to stretch. Tension is the force along the length of a flexible connector,
such as a string, rope, chain, or cable. Regardless of the type of connector attached to the object of interest, one must remember
that the connector can only pull (or exert tension) in the direction parallel to its length. Tension is a pull that acts parallel to the
connector, and that acts in opposite directions at the two ends of the connector. This is possible because a flexible connector is
simply a long series of action-reaction forces, except at the two ends where outside objects provide one member of the action-
reaction forces.

Consider a person holding a mass on a rope, as shown in Figure 4.9.
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Figure 4.9 When a perfectly flexible connector (one requiring no force to bend it) such as a rope transmits a force T, this force must be

parallel to the length of the rope, as shown. The pull that such a flexible connector exerts is a tension. Note that the rope pulls with equal

magnitude force but in opposite directions to the hand and to the mass (neglecting the weight of the rope). This is an example of Newton’s

third law. The rope is the medium that transmits forces of equal magnitude between the two objects but that act in opposite directions.

Tension in the rope must equal the weight of the supported mass, as we can prove by using Newton’s second law. If the 5.00 kg
mass in the figure is stationary, then its acceleration is zero, so The only external forces acting on the mass are its
weight W and the tension T supplied by the rope. Summing the external forces to find the net force, we obtain

where T and W are the magnitudes of the tension and weight, respectively, and their signs indicate direction, with up being
positive. By substituting mg for Fnet and rearranging the equation, the tension equals the weight of the supported mass, just as
you would expect

For a 5.00-kg mass (neglecting the mass of the rope), we see that

Another example of Newton’s third law in action is thrust. Rockets move forward by expelling gas backward at a high velocity.
This means that the rocket exerts a large force backward on the gas in the rocket combustion chamber, and the gas, in turn,
exerts a large force forward on the rocket in response. This reaction force is called thrust.

TIPS FOR SUCCESS
A common misconception is that rockets propel themselves by pushing on the ground or on the air behind them. They
actually work better in a vacuum, where they can expel exhaust gases more easily.

LINKS TO PHYSICS

Math: Problem-Solving Strategy for Newton’s Laws of Motion
The basics of problem solving, presented earlier in this text, are followed here with specific strategies for applying Newton’s laws
of motion. These techniques also reinforce concepts that are useful in many other areas of physics.

First, identify the physical principles involved. If the problem involves forces, then Newton’s laws of motion are involved, and it

4.18

4.19

4.20

130 Chapter 4 • Forces and Newton’s Laws of Motion

Access for free at openstax.org.



is important to draw a careful sketch of the situation. An example of a sketch is shown in Figure 4.10. Next, as in Figure 4.10, use
vectors to represent all forces. Label the forces carefully, and make sure that their lengths are proportional to the magnitude of
the forces and that the arrows point in the direction in which the forces act.

Figure 4.10 (a) A sketch of Tarzan hanging motionless from a vine. (b) Arrows are used to represent all forces. T is the tension exerted on

Tarzan by the vine, is the force exerted on the vine by Tarzan, and W is Tarzan’s weight (i.e., the force exerted on Tarzan by Earth’s

gravity). All other forces, such as a nudge of a breeze, are assumed to be negligible. (c) Suppose we are given Tarzan’s mass and asked to

find the tension in the vine. We define the system of interest as shown and draw a free-body diagram, as shown in (d). is no longer

shown because it does not act on the system of interest; rather, acts on the outside world. (d) The free-body diagram shows only the

external forces acting on Tarzan. For these to sum to zero, we must have

Next, make a list of knowns and unknowns and assign variable names to the quantities given in the problem. Figure out which
variables need to be calculated; these are the unknowns. Now carefully define the system: which objects are of interest for the
problem. This decision is important, because Newton’s second law involves only external forces. Once the system is identified,
it’s possible to see which forces are external and which are internal (see Figure 4.10).

If the system acts on an object outside the system, then you know that the outside object exerts a force of equal magnitude but in
the opposite direction on the system.

A diagram showing the system of interest and all the external forces acting on it is called a free-body diagram. Only external
forces are shown on free-body diagrams, not acceleration or velocity. Figure 4.10 shows a free-body diagram for the system of
interest.

After drawing a free-body diagram, apply Newton’s second law to solve the problem. This is done in Figure 4.10 for the case of
Tarzan hanging from a vine. When external forces are clearly identified in the free-body diagram, translate the forces into
equation form and solve for the unknowns. Note that forces acting in opposite directions have opposite signs. By convention,
forces acting downward or to the left are usually negative.

GRASP CHECK
If a problem has more than one system of interest, more than one free-body diagram is required to describe the external
forces acting on the different systems.
a. True
b. False
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WATCH PHYSICS

Newton’s Third Law of Motion
This video explains Newton’s third law of motion through examples involving push, normal force, and thrust (the force that
propels a rocket or a jet).

Click to view content (https://www.openstax.org/l/astronaut)

GRASP CHECK
If the astronaut in the video wanted to move upward, in which direction should he throw the object? Why?
a. He should throw the object upward because according to Newton’s third law, the object will then exert a force on him in

the same direction (i.e., upward).
b. He should throw the object upward because according to Newton’s third law, the object will then exert a force on him in

the opposite direction (i.e., downward).
c. He should throw the object downward because according to Newton’s third law, the object will then exert a force on him

in the opposite direction (i.e., upward).
d. He should throw the object downward because according to Newton’s third law, the object will then exert a force on him

in the same direction (i.e., downward).

WORKED EXAMPLE

An Accelerating Subway Train
A physics teacher pushes a cart of demonstration equipment to a classroom, as in Figure 4.11. Her mass is 65.0 kg, the cart’s
mass is 12.0 kg, and the equipment’s mass is 7.0 kg. To push the cart forward, the teacher’s foot applies a force of 150 N in the
opposite direction (backward) on the floor. Calculate the acceleration produced by the teacher. The force of friction, which
opposes the motion, is 24.0 N.

Figure 4.11

Strategy
Because they accelerate together, we define the system to be the teacher, the cart, and the equipment. The teacher pushes
backward with a force of 150 N. According to Newton’s third law, the floor exerts a forward force of 150 N on the
system. Because all motion is horizontal, we can assume that no net force acts in the vertical direction, and the problem
becomes one dimensional. As noted in the figure, the friction f opposes the motion and therefore acts opposite the direction of
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We should not include the forces , , or because these are exerted by the system, not on the system. We find the
net external force by adding together the external forces acting on the system (see the free-body diagram in the figure) and then
use Newton’s second law to find the acceleration.

Solution
Newton’s second law is

The net external force on the system is the sum of the external forces: the force of the floor acting on the teacher, cart, and
equipment (in the horizontal direction) and the force of friction. Because friction acts in the opposite direction, we assign it a
negative value. Thus, for the net force, we obtain

The mass of the system is the sum of the mass of the teacher, cart, and equipment.

Insert these values of net F and m into Newton’s second law to obtain the acceleration of the system.

Discussion
None of the forces between components of the system, such as between the teacher’s hands and the cart, contribute to the net
external force because they are internal to the system. Another way to look at this is to note that the forces between components
of a system cancel because they are equal in magnitude and opposite in direction. For example, the force exerted by the teacher
on the cart is of equal magnitude but in the opposite direction of the force exerted by the cart on the teacher. In this case, both
forces act on the same system, so they cancel. Defining the system was crucial to solving this problem.

Practice Problems
14. What is the equation for the normal force for a body with mass m that is at rest on a horizontal surface?

a. N = m
b. N = mg
c. N = mv
d. N = g

15. An object with mass m is at rest on the floor. What is the magnitude and direction of the normal force acting on it?
a. N = mv in upward direction
b. N = mg in upward direction
c. N = mv in downward direction
d. N = mg in downward direction

Check Your Understanding
16. What is Newton’s third law of motion?

a. Whenever a first body exerts a force on a second body, the first body experiences a force that is twice the magnitude
and acts in the direction of the applied force.

b. Whenever a first body exerts a force on a second body, the first body experiences a force that is equal in magnitude and
acts in the direction of the applied force.

c. Whenever a first body exerts a force on a second body, the first body experiences a force that is twice the magnitude but
acts in the direction opposite the direction of the applied force.

d. Whenever a first body exerts a force on a second body, the first body experiences a force that is equal in magnitude but
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acts in the direction opposite the direction of the applied force.

17. Considering Newton’s third law, why don’t two equal and opposite forces cancel out each other?
a. Because the two forces act in the same direction
b. Because the two forces have different magnitudes
c. Because the two forces act on different systems
d. Because the two forces act in perpendicular directions
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KEY TERMS
dynamics the study of how forces affect the motion of

objects and systems
external force a force acting on an object or system that

originates outside of the object or system
force a push or pull on an object with a specific magnitude

and direction; can be represented by vectors; can be
expressed as a multiple of a standard force

free-body diagram a diagram showing all external forces
acting on a body

freefall a situation in which the only force acting on an
object is the force of gravity

friction an external force that acts in the direction opposite
to the direction of motion

inertia the tendency of an object at rest to remain at rest,
or for a moving object to remain in motion in a straight
line and at a constant speed

law of inertia Newton’s first law of motion: a body at rest
remains at rest or, if in motion, remains in motion at a
constant speed in a straight line, unless acted on by a net
external force; also known as the law of inertia

mass the quantity of matter in a substance; measured in
kilograms

net external force the sum of all external forces acting on
an object or system

net force the sum of all forces acting on an object or system
Newton’s first law of motion a body at rest remains at rest

or, if in motion, remains in motion at a constant speed in
a straight line, unless acted on by a net external force; also
known as the law of inertia

Newton’s second law of motion the net external force,
on an object is proportional to and in the same

direction as the acceleration of the object, a, and also
proportional to the object’s mass, m; defined
mathematically as or

Newton’s third law of motion when one body exerts a force
on a second body, the first body experiences a force that is
equal in magnitude and opposite in direction to the force
that it exerts

normal force the force that a surface applies to an object;
acts perpendicular and away from the surface with which
the object is in contact

system one or more objects of interest for which only the
forces acting on them from the outside are considered,
but not the forces acting between them or inside them

tension a pulling force that acts along a connecting
medium, especially a stretched flexible connector, such as
a rope or cable; when a rope supports the weight of an
object, the force exerted on the object by the rope is called
tension

thrust a force that pushes an object forward in response to
the backward ejection of mass by the object; rockets and
airplanes are pushed forward by a thrust reaction force in
response to ejecting gases backward

weight the force of gravity, W, acting on an object of mass
m; defined mathematically as W = mg, where g is the
magnitude and direction of the acceleration due to
gravity

SECTION SUMMARY
4.1 Force

• Dynamics is the study of how forces affect the motion of
objects and systems.

• Force is a push or pull that can be defined in terms of
various standards. It is a vector and so has both
magnitude and direction.

• External forces are any forces outside of a body that act
on the body. A free-body diagram is a drawing of all
external forces acting on a body.

4.2 Newton's First Law of Motion:
Inertia

• Newton’s first law states that a body at rest remains at
rest or, if moving, remains in motion in a straight line
at a constant speed, unless acted on by a net external
force. This law is also known as the law of inertia.

• Inertia is the tendency of an object at rest to remain at
rest or, if moving, to remain in motion at constant
velocity. Inertia is related to an object’s mass.

• Friction is a force that opposes motion and causes an
object or system to slow down.

• Mass is the quantity of matter in a substance.

4.3 Newton's Second Law of Motion
• Acceleration is a change in velocity, meaning a change

in speed, direction, or both.
• An external force acts on a system from outside the

system, as opposed to internal forces, which act
between components within the system.

• Newton’s second law of motion states that the
acceleration of a system is directly proportional to and
in the same direction as the net external force acting on
the system, and inversely proportional to the system’s
mass.

• In equation form, Newton’s second law of motion is
or This is sometimes written as

or .
• The weight of an object of mass m is the force of gravity

that acts on it. From Newton’s second law, weight is
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given by
• If the only force acting on an object is its weight, then

the object is in freefall.

4.4 Newton's Third Law of Motion
• Newton’s third law of motion states that when one body

exerts a force on a second body, the first body
experiences a force that is equal in magnitude and
opposite in direction to the force that it exerts.

• When an object rests on a surface, the surface applies a
force on the object that opposes the weight of the object.

This force acts perpendicular to the surface and is called
the normal force.

• The pulling force that acts along a stretched flexible
connector, such as a rope or cable, is called tension.
When a rope supports the weight of an object at rest,
the tension in the rope is equal to the weight of the
object.

• Thrust is a force that pushes an object forward in
response to the backward ejection of mass by the object.
Rockets and airplanes are pushed forward by thrust.

KEY EQUATIONS
4.2 Newton's First Law of Motion:
Inertia

Newton's first law of motion or

4.3 Newton's Second Law of Motion

Newton’s second law of
motion

or

Newton’s second law of
motion to solve acceleration

Newton’s second law of
motion to solve weight

4.4 Newton's Third Law of Motion

normal force for a nonaccelerating
horizontal surface

tension for an object at rest

CHAPTER REVIEW
Concept Items
4.1 Force
1. What is dynamics?

a. Dynamics is the study of internal forces.
b. Dynamics is the study of forces and their effect on

motion.
c. Dynamics describes the motion of points, bodies,

and systems without consideration of the cause of
motion.

d. Dynamics describes the effect of forces on each
other.

2. Two forces acting on an object are perpendicular to one
another. How would you draw these in a free-body
diagram?
a. The two force arrows will be drawn at a right angle

to one another.
b. The two force arrows will be pointing in opposite

directions.
c. The two force arrows will be at a 45° angle to one

another.

d. The two force arrows will be at a 180° angle to one
another.

3. A free-body diagram shows the forces acting on an
object. How is that object represented in the diagram?
a. A single point
b. A square box
c. A unit circle
d. The object as it is

4.2 Newton's First Law of Motion: Inertia
4. A ball rolls along the ground, moving from north to

south. What direction is the frictional force that acts on
the ball?
a. North to south
b. South to north
c. West to east
d. East to west

5. The tires you choose to drive over icy roads will create
more friction with the road than your summer tires. Give
another example where more friction is desirable.
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a. Children’s slide
b. Air hockey table
c. Ice-skating rink
d. Jogging track

6. How do you express, mathematically, that no external
force is acting on a body?
a. Fnet = −1
b. Fnet = 0
c. Fnet = 1
d. Fnet = ∞

4.3 Newton's Second Law of Motion
7. What does it mean for two quantities to be inversely

proportional to each other?
a. When one variable increases, the other variable

decreases by a greater amount.
b. When one variable increases, the other variable also

increases.
c. When one variable increases, the other variable

decreases by the same factor.
d. When one variable increases, the other variable also

increases by the same factor.

8. True or False: Newton's second law can be interpreted
based on Newton's first law.
a. True
b. False

4.4 Newton's Third Law of Motion
9. Which forces cause changes in the motion of a system?

a. internal forces
b. external forces
c. both internal and external forces
d. neither internal nor external forces

10. True or False—Newton’s third law applies to the external
forces acting on a system of interest.
a. True
b. False

11. A ball is dropped and hits the floor. What is the direction
of the force exerted by the floor on the ball?
a. Upward
b. Downward
c. Right
d. Left

Critical Thinking Items
4.1 Force
12. Only two forces are acting on an object: force A to the left

and force B to the right. If force B is greater than force
A, in which direction will the object move?
a. To the right
b. To the left
c. Upward
d. The object does not move

13. In a free-body diagram, the arrows representing tension
and weight have the same length but point away from
one another. What does this indicate?
a. They are equal in magnitude and act in the same

direction.
b. They are equal in magnitude and act in opposite

directions.
c. They are unequal in magnitude and act in the same

direction.
d. They are unequal in magnitude and act in opposite

directions.

14. An object is at rest. Two forces, X and Y, are acting on it.
Force X has a magnitude of x and acts in the downward
direction. What is the magnitude and direction of Y?
a. The magnitude is x and points in the upward

direction.
b. The magnitude is 2x and points in the upward

direction.
c. The magnitude is x and points in the downward

direction.
d. The magnitude is 2x and points in the downward

direction.

15. Three forces, A, B, and C, are acting on the same object
with magnitudes a, b, and c, respectively. Force A acts to
the right, force B acts to the left, and force C acts
downward. What is a necessary condition for the object
to move straight down?
a. The magnitude of force A must be greater than the

magnitude of force B, so a > b.
b. The magnitude of force A must be equal to the

magnitude of force B, so a = b.
c. The magnitude of force A must be greater than the

magnitude of force C, so A > C.
d. The magnitude of force C must be greater than the

magnitude of forces A or B, so A < C > B.

4.2 Newton's First Law of Motion: Inertia
16. Two people push a cart on a horizontal surface by

applying forces F1 and F2 in the same direction. Is the
magnitude of the net force acting on the cart, Fnet, equal
to, greater than, or less than F1 + F2? Why?
a. Fnet < F1 + F2 because the net force will not include

the frictional force.
b. Fnet = F1 + F2 because the net force will not include
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the frictional force
c. Fnet < F1 + F2 because the net force will include the

component of frictional force
d. Fnet = F1 + F2 because the net force will include the

frictional force

17. True or False: A book placed on a balance scale is
balanced by a standard 1-kg iron weight placed on the
opposite side of the balance. If these objects are taken to
the moon and a similar exercise is performed, the
balance is still level because gravity is uniform on the
moon’s surface as it is on Earth’s surface.
a. True
b. False

4.3 Newton's Second Law of Motion
18. From the equation for Newton’s second law, we see that

Fnet is directly proportional to a and that the constant of
proportionality is m. What does this mean in a practical
sense?
a. An increase in applied force will cause an increase

in acceleration if the mass is constant.
b. An increase in applied force will cause a decrease in

acceleration if the mass is constant.
c. An increase in applied force will cause an increase

in acceleration, even if the mass varies.
d. An increase in applied force will cause an increase

in acceleration and mass.

4.4 Newton's Third Law of Motion
19. True or False: A person accelerates while walking on the

ground by exerting force. The ground in turn exerts force
F2 on the person. F1 and F2 are equal in magnitude but
act in opposite directions. The person is able to walk
because the two forces act on the different systems and
the net force acting on the person is nonzero.
a. True
b. False

20. A helicopter pushes air down, which, in turn, pushes
the helicopter up. Which force affects the helicopter’s
motion? Why?
a. Air pushing upward affects the helicopter’s motion

because it is an internal force that acts on the
helicopter.

b. Air pushing upward affects the helicopter’s motion
because it is an external force that acts on the
helicopter.

c. The downward force applied by the blades of the
helicopter affects its motion because it is an
internal force that acts on the helicopter.

d. The downward force applied by the blades of the
helicopter affects its motion because it is an
external force that acts on the helicopter.

Problems
4.3 Newton's Second Law of Motion
21. An object has a mass of on Earth. What is its

weight on the moon?
a.
b.
c.
d.

22. A bathroom scale shows your mass as 55 kg. What will it
read on the moon?
a. 9.4 kg
b. 10.5 kg

c. 55.0 kg
d. 91.9 kg

4.4 Newton's Third Law of Motion
23. A person pushes an object of mass 5.0 kg along the floor

by applying a force. If the object experiences a friction
force of 10 N and accelerates at 18 m/s2, what is the
magnitude of the force exerted by the person?
a. −90 N
b. −80 N
c. 90 N
d. 100 N

Performance Task
4.4 Newton's Third Law of Motion
24. A car weighs 2,000 kg. It moves along a road by

applying a force on the road with a parallel component
of 560 N. There are two passengers in the car, each
weighing 55 kg. If the magnitude of the force of friction

experienced by the car is 45 N, what is the acceleration
of the car?
a. 0.244 m/s2

b. 0.265 m/s2

c. 4.00 m/s2

d. 4.10 m/s2
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TEST PREP
Multiple Choice
4.1 Force
25. Which of the following is a physical quantity that can be

described by dynamics but not by kinematics?
a. Velocity
b. Acceleration
c. Force

26. Which of the following is used to represent an object in
a free-body diagram?
a. A point
b. A line
c. A vector

4.2 Newton's First Law of Motion: Inertia
27. What kind of force is friction?

a. External force
b. Internal force
c. Net force

28. What is another name for Newton’s first law?
a. Law of infinite motion
b. Law of inertia
c. Law of friction

29. True or False—A rocket is launched into space and
escapes Earth’s gravitational pull. It will continue to
travel in a straight line until it is acted on by another
force.
a. True
b. False

30. A 2,000-kg car is sitting at rest in a parking lot. A bike
and rider with a total mass of 60 kg are traveling along a
road at 10 km/h. Which system has more inertia? Why?
a. The car has more inertia, as its mass is greater than

the mass of the bike.
b. The bike has more inertia, as its mass is greater

than the mass of the car.
c. The car has more inertia, as its mass is less than the

mass of the bike.
d. The bike has more inertia, as its mass is less than

the mass of the car.

4.3 Newton's Second Law of Motion
31. In the equation for Newton’s second law, what does Fnet

stand for?
a. Internal force
b. Net external force
c. Frictional force

32. What is the SI unit of force?

a. Kg
b. dyn
c. N

33. What is the net external force on an object in freefall on
Earth if you were to neglect the effect of air?
a. The net force is zero.
b. The net force is upward with magnitude mg.
c. The net force is downward with magnitude mg.
d. The net force is downward with magnitude 9.8 N.

34. Two people push a 2,000-kg car to get it started. An
acceleration of at least 5.0 m/s2 is required to start the
car. Assuming both people apply the same magnitude
force, how much force will each need to apply if friction
between the car and the road is 300 N?
a. 4850 N
b. 5150 N
c. 97000 N
d. 10300 N

4.4 Newton's Third Law of Motion
35. One object exerts a force of magnitude F1 on another

object and experiences a force of magnitude F2 in
return. What is true for F1 and F2?
a. F1 > F2

b. F1 < F2

c. F1 = F2

36. A weight is suspended with a rope and hangs freely. In
what direction is the tension on the rope?
a. parallel to the rope
b. perpendicular to the rope

37. A person weighing 55 kg walks by applying 160 N of force
on the ground, while pushing a 10-kg object. If the
person accelerates at 2 m/s2, what is the force of friction
experienced by the system consisting of the person and
the object?
a. 30 N
b. 50 N
c. 270 N
d. 290 N

38. A 65-kg swimmer pushes on the pool wall and
accelerates at 6 m/s2. The friction experienced by the
swimmer is 100 N. What is the magnitude of the force
that the swimmer applies on the wall?
a. −490 N
b. −290 N
c. 290 N
d. 490 N
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Short Answer
4.1 Force
39. True or False—An external force is defined as a force

generated outside the system of interest that acts on an
object inside the system.
a. True
b. False

40. By convention, which sign is assigned to an object
moving downward?
a. A positive sign ( )
b. A negative sign ( )
c. Either a positive or negative sign ( )
d. No sign is assigned

41. A body is pushed downward by a force of 5 units and
upward by a force of 2 units. How would you draw a
free-body diagram to represent this?
a. Two force vectors acting at a point, both pointing

up with lengths of 5 units and 2 units
b. Two force vectors acting at a point, both pointing

down with lengths of 5 units and 2 units
c. Two force vectors acting at a point, one pointing up

with a length of 5 units and the other pointing
down with a length of 2 units

d. Two force vectors acting at a point, one pointing
down with a length of 5 units and the other
pointing up with a length of 2 units

42. A body is pushed eastward by a force of four units and
southward by a force of three units. How would you
draw a free-body diagram to represent this?
a. Two force vectors acting at a point, one pointing

left with a length of 4 units and the other pointing
down with a length of 3 units

b. Two force vectors acting at a point, one pointing
left with a length of 4 units and the other pointing
up with a length of 3 units

c. Two force vectors acting at a point, one pointing
right with a length of 4 units and the other
pointing down with a length of 3 units

d. Two force vectors acting at a point, one pointing
right with a length of 4 units and the other
pointing up with a length of 3 units

4.2 Newton's First Law of Motion: Inertia
43. A body with mass m is pushed along a horizontal

surface by a force F and is opposed by a frictional force f.
How would you draw a free-body diagram to represent
this situation?
a. A dot with an arrow pointing right, labeled F, and

an arrow pointing left, labeled f, that is of equal
length or shorter than F

b. A dot with an arrow pointing right, labeled F, and
an arrow pointing right, labeled f, that is of equal
length or shorter than F

c. A dot with an arrow pointing right, labeled F, and a
smaller arrow pointing up, labeled f, that is of
equal length or longer than F

d. A dot with an arrow pointing right, labeled F, and a
smaller arrow pointing down, labeled f, that is of
equal length or longer than F

44. Two objects rest on a uniform surface. A person pushes
both with equal force. If the first object starts to move
faster than the second, what can be said about their
masses?
a. The mass of the first object is less than that of the

second object.
b. The mass of the first object is equal to the mass of

the second object.
c. The mass of the first object is greater than that of

the second object.
d. No inference can be made because mass and force

are not related to each other.

45. Two similar boxes rest on a table. One is empty and the
other is filled with pebbles. Without opening or lifting
either, how can you tell which box is full? Why?
a. By applying an internal force; whichever box

accelerates faster is lighter and so must be empty
b. By applying an internal force; whichever box

accelerates faster is heavier and so the other box
must be empty

c. By applying an external force; whichever box
accelerates faster is lighter and so must be empty

d. By applying an external force; whichever box
accelerates faster is heavier and so the other box
must be empty

46. True or False—An external force is required to set a
stationary object in motion in outer space away from all
gravitational influences and atmospheric friction.
a. True
b. False

4.3 Newton's Second Law of Motion
47. A steadily rolling ball is pushed in the direction from

east to west, which causes the ball to move faster in the
same direction. What is the direction of the
acceleration?
a. North to south
b. South to north
c. East to west
d. West to east

48. A ball travels from north to south at 60 km/h. After
being hit by a bat, it travels from west to east at 60 km/
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h. Is there a change in velocity?
a. Yes, because velocity is a scalar.
b. Yes, because velocity is a vector.
c. No, because velocity is a scalar.
d. No, because velocity is a vector

49. What is the weight of a 5-kg object on Earth and on the
moon?
a. On Earth the weight is 1.67 N, and on the moon the

weight is 1.67 N.
b. On Earth the weight is 5 N, and on the moon the

weight is 5 N.
c. On Earth the weight is 49 N, and on the moon the

weight is 8.35 N.
d. On Earth the weight is 8.35 N, and on the moon the

weight is 49 N.

50. An object weighs 294 N on Earth. What is its weight on
the moon?
a. 50.1 N
b. 30.0 N
c. 249 N
d. 1461 N

4.4 Newton's Third Law of Motion
51. A large truck with mass 30 m crashes into a small sedan

with mass m. If the truck exerts a force F on the sedan,
what force will the sedan exert on the truck?
a.

b. F
c. 2F
d. 30F

52. A fish pushes water backward with its fins. How does
this propel the fish forward?
a. The water exerts an internal force on the fish in the

opposite direction, pushing the fish forward.
b. The water exerts an external force on the fish in the

opposite direction, pushing the fish forward.
c. The water exerts an internal force on the fish in the

same direction, pushing the fish forward.
d. The water exerts an external force on the fish in the

same direction, pushing the fish forward.

53. True or False—Tension is the result of opposite forces in
a connector, such as a string, rope, chain or cable, that
pulls each point of the connector apart in the direction
parallel to the length of the connector. At the ends of the
connector, the tension pulls toward the center of the
connector.
a. True
b. False

54. True or False—Normal reaction is the force that opposes
the force of gravity and acts in the direction of the force
of gravity.
a. True
b. False

Extended Response
4.1 Force
55. True or False—When two unequal forces act on a body,

the body will not move in the direction of the weaker
force.
a. True
b. False

56. In the figure given, what is Frestore? What is its magnitude?

a. Frestore is the force exerted by the hand on the spring,
and it pulls to the right.

b. Frestore is the force exerted by the spring on the hand,
and it pulls to the left.

c. Frestore is the force exerted by the hand on the spring,
and it pulls to the left.

d. Frestore is the force exerted by the spring on the hand,
and it pulls to the right.

4.2 Newton's First Law of Motion: Inertia
57. Two people apply the same force to throw two identical

balls in the air. Will the balls necessarily travel the same
distance? Why or why not?
a. No, the balls will not necessarily travel the same

distance because the gravitational force acting on
them is different.

b. No, the balls will not necessarily travel the same
distance because the angle at which they are
thrown may differ.

c. Yes, the balls will travel the same distance because
the gravitational force acting on them is the same.

d. Yes, the balls will travel the same distance because
the angle at which they are thrown may differ.

58. A person pushes a box from left to right and then lets
the box slide freely across the floor. The box slows down
as it slides across the floor. When the box is sliding
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freely, what is the direction of the net external force?
a. The net external force acts from left to right.
b. The net external force acts from right to left.
c. The net external force acts upward.
d. The net external force acts downward.

4.3 Newton's Second Law of Motion
59. A 55-kg lady stands on a bathroom scale inside an

elevator. The scale reads 70 kg. What do you know about
the motion of the elevator?
a. The elevator must be accelerating upward.
b. The elevator must be accelerating downward.
c. The elevator must be moving upward with a

constant velocity.
d. The elevator must be moving downward with a

constant velocity.

60. True or False—A skydiver initially accelerates in his
jump. Later, he achieves a state of constant velocity
called terminal velocity. Does this mean the skydiver
becomes weightless?
a. Yes
b. No

4.4 Newton's Third Law of Motion
61. How do rockets propel themselves in space?

a. Rockets expel gas in the forward direction at high
velocity, and the gas, which provides an internal

force, pushes the rockets forward.
b. Rockets expel gas in the forward direction at high

velocity, and the gas, which provides an external
force, pushes the rockets forward.

c. Rockets expel gas in the backward direction at high
velocity, and the gas, which is an internal force,
pushes the rockets forward.

d. Rockets expel gas in the backward direction at high
velocity, and the gas, which provides an external
force, pushes the rockets forward.

62. Are rockets more efficient in Earth’s atmosphere or in
outer space? Why?
a. Rockets are more efficient in Earth’s atmosphere

than in outer space because the air in Earth’s
atmosphere helps to provide thrust for the rocket,
and Earth has more air friction than outer space.

b. Rockets are more efficient in Earth’s atmosphere
than in outer space because the air in Earth’s
atmosphere helps to provide thrust to the rocket,
and Earth has less air friction than the outer space.

c. Rockets are more efficient in outer space than in
Earth’s atmosphere because the air in Earth’s
atmosphere does not provide thrust but does create
more air friction than in outer space.

d. Rockets are more efficient in outer space than in
Earth’s atmosphere because the air in Earth’s
atmosphere does not provide thrust but does create
less air friction than in outer space.
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INTRODUCTION

CHAPTER 5
Motion in Two Dimensions

5.1 Vector Addition and Subtraction: Graphical Methods

5.2 Vector Addition and Subtraction: Analytical Methods

5.3 Projectile Motion

5.4 Inclined Planes

5.5 Simple Harmonic Motion

In Chapter 2, we learned to distinguish between vectors and scalars; the difference being that a vector has
magnitude and direction, whereas a scalar has only magnitude. We learned how to deal with vectors in physics by working
straightforward one-dimensional vector problems, which may be treated mathematically in the same as scalars. In this chapter,
we’ll use vectors to expand our understanding of forces and motion into two dimensions. Most real-world physics problems
(such as with the game of pool pictured here) are, after all, either two- or three-dimensional problems and physics is most useful
when applied to real physical scenarios. We start by learning the practical skills of graphically adding and subtracting vectors (by
using drawings) and analytically (with math). Once we’re able to work with two-dimensional vectors, we apply these skills to
problems of projectile motion, inclined planes, and harmonic motion.

Figure 5.1 Billiard balls on a pool table are in motion after being hit with a cue stick. (Popperipopp, Wikimedia
Commons)

Chapter Outline



5.1 Vector Addition and Subtraction: Graphical Methods
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the graphical method of vector addition and subtraction
• Use the graphical method of vector addition and subtraction to solve physics problems

Section Key Terms

graphical method head (of a vector) head-to-tail method resultant

resultant vector tail vector addition vector subtraction

The Graphical Method of Vector Addition and Subtraction
Recall that a vector is a quantity that has magnitude and direction. For example, displacement, velocity, acceleration, and force
are all vectors. In one-dimensional or straight-line motion, the direction of a vector can be given simply by a plus or minus sign.
Motion that is forward, to the right, or upward is usually considered to be positive (+); and motion that is backward, to the left,
or downward is usually considered to be negative (−).

In two dimensions, a vector describes motion in two perpendicular directions, such as vertical and horizontal. For vertical and
horizontal motion, each vector is made up of vertical and horizontal components. In a one-dimensional problem, one of the
components simply has a value of zero. For two-dimensional vectors, we work with vectors by using a frame of reference such as
a coordinate system. Just as with one-dimensional vectors, we graphically represent vectors with an arrow having a length
proportional to the vector’s magnitude and pointing in the direction that the vector points.

Figure 5.2 shows a graphical representation of a vector; the total displacement for a person walking in a city. The person first
walks nine blocks east and then five blocks north. Her total displacement does not match her path to her final destination. The
displacement simply connects her starting point with her ending point using a straight line, which is the shortest distance. We
use the notation that a boldface symbol, such as D, stands for a vector. Its magnitude is represented by the symbol in italics, D,
and its direction is given by an angle represented by the symbol Note that her displacement would be the same if she had
begun by first walking five blocks north and then walking nine blocks east.

TIPS FOR SUCCESS
In this text, we represent a vector with a boldface variable. For example, we represent a force with the vector F, which has
both magnitude and direction. The magnitude of the vector is represented by the variable in italics, F, and the direction of
the variable is given by the angle

Figure 5.2 A person walks nine blocks east and five blocks north. The displacement is 10.3 blocks at an angle north of east.

The head-to-tail method is a graphical way to add vectors. The tail of the vector is the starting point of the vector, and the head
(or tip) of a vector is the pointed end of the arrow. The following steps describe how to use the head-to-tail method for graphical
vector addition.
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1. Let the x-axis represent the east-west direction. Using a ruler and protractor, draw an arrow to represent the first vector
(nine blocks to the east), as shown in Figure 5.3(a).

Figure 5.3 The diagram shows a vector with a magnitude of nine units and a direction of 0°.

2. Let the y-axis represent the north-south direction. Draw an arrow to represent the second vector (five blocks to the north).
Place the tail of the second vector at the head of the first vector, as shown in Figure 5.4(b).

Figure 5.4 A vertical vector is added.

3. If there are more than two vectors, continue to add the vectors head-to-tail as described in step 2. In this example, we have
only two vectors, so we have finished placing arrows tip to tail.

4. Draw an arrow from the tail of the first vector to the head of the last vector, as shown in Figure 5.5(c). This is the resultant,
or the sum, of the vectors.
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Figure 5.5 The diagram shows the resultant vector, a ruler, and protractor.

5. To find the magnitude of the resultant, measure its length with a ruler. When we deal with vectors analytically in the next
section, the magnitude will be calculated by using the Pythagorean theorem.

6. To find the direction of the resultant, use a protractor to measure the angle it makes with the reference direction (in this
case, the x-axis). When we deal with vectors analytically in the next section, the direction will be calculated by using
trigonometry to find the angle.

WATCH PHYSICS

Visualizing Vector Addition Examples
This video shows four graphical representations of vector addition and matches them to the correct vector addition formula.

Click to view content (https://openstax.org/l/02addvector)

GRASP CHECK

There are two vectors and . The head of vector touches the tail of vector . The addition of vectors and gives a

resultant vector . Can the addition of these two vectors can be represented by the following two equations?

;
a. Yes, if we add the same two vectors in a different order it will still give the same resultant vector.
b. No, the resultant vector will change if we add the same vectors in a different order.

Vector subtraction is done in the same way as vector addition with one small change. We add the first vector to the negative of
the vector that needs to be subtracted. A negative vector has the same magnitude as the original vector, but points in the
opposite direction (as shown in Figure 5.6). Subtracting the vector B from the vector A, which is written as A − B, is the same as
A + (−B). Since it does not matter in what order vectors are added, A − B is also equal to (−B) + A. This is true for scalars as well as
vectors. For example, 5 – 2 = 5 + (−2) = (−2) + 5.
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Figure 5.6 The diagram shows a vector, B, and the negative of this vector, –B.

Global angles are calculated in the counterclockwise direction. The clockwise direction is considered negative. For example, an
angle of south of west is the same as the global angle which can also be expressed as from the positive x-axis.

Using the Graphical Method of Vector Addition and Subtraction to Solve
Physics Problems
Now that we have the skills to work with vectors in two dimensions, we can apply vector addition to graphically determine the
resultant vector, which represents the total force. Consider an example of force involving two ice skaters pushing a third as seen
in Figure 5.7.

Figure 5.7 Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like vectors, so the total force

on the third skater is in the direction shown. In part (b), we see a free-body diagram representing the forces acting on the third skater.

In problems where variables such as force are already known, the forces can be represented by making the length of the vectors
proportional to the magnitudes of the forces. For this, you need to create a scale. For example, each centimeter of vector length
could represent 50 N worth of force. Once you have the initial vectors drawn to scale, you can then use the head-to-tail method
to draw the resultant vector. The length of the resultant can then be measured and converted back to the original units using the
scale you created.

You can tell by looking at the vectors in the free-body diagram in Figure 5.7 that the two skaters are pushing on the third skater
with equal-magnitude forces, since the length of their force vectors are the same. Note, however, that the forces are not equal
because they act in different directions. If, for example, each force had a magnitude of 400 N, then we would find the magnitude
of the total external force acting on the third skater by finding the magnitude of the resultant vector. Since the forces act at a
right angle to one another, we can use the Pythagorean theorem. For a triangle with sides a, b, and c, the Pythagorean theorem
tells us that

Applying this theorem to the triangle made by F1, F2, and Ftot in Figure 5.7, we get
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or

Note that, if the vectors were not at a right angle to each other to one another), we would not be able to use the
Pythagorean theorem to find the magnitude of the resultant vector. Another scenario where adding two-dimensional vectors is
necessary is for velocity, where the direction may not be purely east-west or north-south, but some combination of these two
directions. In the next section, we cover how to solve this type of problem analytically. For now let’s consider the problem
graphically.

WORKED EXAMPLE

Adding Vectors Graphically by Using the Head-to-Tail Method: A Woman Takes a Walk
Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths
(displacements) on a flat field. First, he walks 25 m in a direction north of east. Then, he walks 23 m heading north of
east. Finally, he turns and walks 32 m in a direction south of east.
Strategy
Graphically represent each displacement vector with an arrow, labeling the first A, the second B, and the third C. Make the
lengths proportional to the distance of the given displacement and orient the arrows as specified relative to an east-west line.
Use the head-to-tail method outlined above to determine the magnitude and direction of the resultant displacement, which
we’ll call R.

Solution
(1) Draw the three displacement vectors, creating a convenient scale (such as 1 cm of vector length on paper equals 1 m in the
problem), as shown in Figure 5.8.

Figure 5.8 The three displacement vectors are drawn first.

(2) Place the vectors head to tail, making sure not to change their magnitude or direction, as shown in Figure 5.9.

Figure 5.9 Next, the vectors are placed head to tail.

(3) Draw the resultant vector R from the tail of the first vector to the head of the last vector, as shown in Figure 5.10.
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Figure 5.10 The resultant vector is drawn .

(4) Use a ruler to measure the magnitude of R, remembering to convert back to the units of meters using the scale. Use a
protractor to measure the direction of R. While the direction of the vector can be specified in many ways, the easiest way is to
measure the angle between the vector and the nearest horizontal or vertical axis. Since R is south of the eastward pointing axis
(the x-axis), we flip the protractor upside down and measure the angle between the eastward axis and the vector, as illustrated in
Figure 5.11.

Figure 5.11 A ruler is used to measure the magnitude of R, and a protractor is used to measure the direction of R.

In this case, the total displacement R has a magnitude of 50 m and points south of east. Using its magnitude and direction,
this vector can be expressed as

and

Discussion
The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note that it does
not matter in what order the vectors are added. Changing the order does not change the resultant. For example, we could add
the vectors as shown in Figure 5.12, and we would still get the same solution.

5.1

5.2
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Figure 5.12 Vectors can be added in any order to get the same result.

WORKED EXAMPLE

Subtracting Vectors Graphically: A Woman Sailing a Boat
A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction
north of east from her current location, and then travel 30.0 m in a direction north of east (or west of north). If the
woman makes a mistake and travels in the opposite direction for the second leg of the trip, where will she end up? The two legs
of the woman’s trip are illustrated in Figure 5.13.

Figure 5.13 In the diagram, the first leg of the trip is represented by vector A and the second leg is represented by vector B.

Strategy
We can represent the first leg of the trip with a vector A, and the second leg of the trip that she was supposed to take with a
vector B. Since the woman mistakenly travels in the opposite direction for the second leg of the journey, the vector for second leg
of the trip she actually takes is −B. Therefore, she will end up at a location A + (−B), or A − B. Note that −B has the same
magnitude as B (30.0 m), but is in the opposite direction, south of east, as illustrated in Figure 5.14.

Figure 5.14 Vector –B represents traveling in the opposite direction of vector B.

We use graphical vector addition to find where the woman arrives A + (−B).
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Solution
(1) To determine the location at which the woman arrives by accident, draw vectors A and −B.

(2) Place the vectors head to tail.

(3) Draw the resultant vector R.

(4) Use a ruler and protractor to measure the magnitude and direction of R.

These steps are demonstrated in Figure 5.15.

Figure 5.15 The vectors are placed head to tail.

In this case

and

Discussion
Because subtraction of a vector is the same as addition of the same vector with the opposite direction, the graphical method for
subtracting vectors works the same as for adding vectors.

WORKED EXAMPLE

Adding Velocities: A Boat on a River
A boat attempts to travel straight across a river at a speed of 3.8 m/s. The river current flows at a speed vriver of 6.1 m/s to the
right. What is the total velocity and direction of the boat? You can represent each meter per second of velocity as one centimeter
of vector length in your drawing.
Strategy
We start by choosing a coordinate system with its x-axis parallel to the velocity of the river. Because the boat is directed straight
toward the other shore, its velocity is perpendicular to the velocity of the river. We draw the two vectors, vboat and vriver, as
shown in Figure 5.16.

Using the head-to-tail method, we draw the resulting total velocity vector from the tail of vboat to the head of vriver.

5.3

5.4
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Figure 5.16 A boat attempts to travel across a river. What is the total velocity and direction of the boat?

Solution
By using a ruler, we find that the length of the resultant vector is 7.2 cm, which means that the magnitude of the total velocity is

By using a protractor to measure the angle, we find

Discussion
If the velocity of the boat and river were equal, then the direction of the total velocity would have been 45°. However, since the
velocity of the river is greater than that of the boat, the direction is less than 45° with respect to the shore, or x axis.

Practice Problems
1. Vector , having magnitude , pointing south of east and vector having magnitude , pointing north

of east are added. What is the magnitude of the resultant vector?
a.
b.
c.
d.

2. A person walks north of west for and east of south for . What is the magnitude of his displacement?
a.
b.
c.
d.

5.5

Virtual Physics

Vector Addition
In this simulation (https://archive.cnx.org/specials/d218bf9b-e50e-4d50-9a6c-b3db4dad0816/vector-addition/) , you will
experiment with adding vectors graphically. Click and drag the red vectors from the Grab One basket onto the graph in the
middle of the screen. These red vectors can be rotated, stretched, or repositioned by clicking and dragging with your mouse.
Check the Show Sum box to display the resultant vector (in green), which is the sum of all of the red vectors placed on the
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Check Your Understanding
3. While there is no single correct choice for the sign of axes, which of the following are conventionally considered positive?

a. backward and to the left
b. backward and to the right
c. forward and to the right
d. forward and to the left

4. True or False—A person walks 2 blocks east and 5 blocks north. Another person walks 5 blocks north and then two blocks
east. The displacement of the first person will be more than the displacement of the second person.
a. True
b. False

5.2 Vector Addition and Subtraction: Analytical Methods
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Define components of vectors
• Describe the analytical method of vector addition and subtraction
• Use the analytical method of vector addition and subtraction to solve problems

Section Key Terms

analytical method component (of a two-dimensional vector)

Components of Vectors
For the analytical method of vector addition and subtraction, we use some simple geometry and trigonometry, instead of using
a ruler and protractor as we did for graphical methods. However, the graphical method will still come in handy to visualize the
problem by drawing vectors using the head-to-tail method. The analytical method is more accurate than the graphical method,
which is limited by the precision of the drawing. For a refresher on the definitions of the sine, cosine, and tangent of an angle,
see Figure 5.17.

graph. To remove a red vector, drag it to the trash or click the Clear All button if you wish to start over. Notice that, if you
click on any of the vectors, the is its magnitude, is its direction with respect to the positive x-axis, Rx is its horizontal
component, and Ry is its vertical component. You can check the resultant by lining up the vectors so that the head of the first
vector touches the tail of the second. Continue until all of the vectors are aligned together head-to-tail. You will see that the
resultant magnitude and angle is the same as the arrow drawn from the tail of the first vector to the head of the last vector.
Rearrange the vectors in any order head-to-tail and compare. The resultant will always be the same.

Click to view content (https://archive.cnx.org/specials/d218bf9b-e50e-4d50-9a6c-b3db4dad0816/vector-addition/)

GRASP CHECK
True or False—The more long, red vectors you put on the graph, rotated in any direction, the greater the magnitude of
the resultant green vector.
a. True
b. False
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Figure 5.17 For a right triangle, the sine, cosine, and tangent of θ are defined in terms of the adjacent side, the opposite side, or the

hypotenuse. In this figure, x is the adjacent side, y is the opposite side, and h is the hypotenuse.

Since, by definition, , we can find the length x if we know h and by using . Similarly, we can find the
length of y by using . These trigonometric relationships are useful for adding vectors.

When a vector acts in more than one dimension, it is useful to break it down into its x and y components. For a two-dimensional
vector, a component is a piece of a vector that points in either the x- or y-direction. Every 2-d vector can be expressed as a sum
of its x and y components.

For example, given a vector like in Figure 5.18, we may want to find what two perpendicular vectors, and , add to
produce it. In this example, and form a right triangle, meaning that the angle between them is 90 degrees. This is a
common situation in physics and happens to be the least complicated situation trigonometrically.

Figure 5.18 The vector , with its tail at the origin of an x- y-coordinate system, is shown together with its x- and y-components, and

These vectors form a right triangle.

and are defined to be the components of along the x- and y-axes. The three vectors, , , and , form a right
triangle.

If the vector is known, then its magnitude (its length) and its angle (its direction) are known. To find and , its x-
and y-components, we use the following relationships for a right triangle:

and

where is the magnitude of A in the x-direction, is the magnitude of A in the y-direction, and is the angle of the
resultant with respect to the x-axis, as shown in Figure 5.19.
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Figure 5.19 The magnitudes of the vector components and can be related to the resultant vector and the angle with

trigonometric identities. Here we see that and

Suppose, for example, that is the vector representing the total displacement of the person walking in a city, as illustrated in
Figure 5.20.

Figure 5.20 We can use the relationships and to determine the magnitude of the horizontal and vertical

component vectors in this example.

Then A = 10.3 blocks and , so that

This magnitude indicates that the walker has traveled 9 blocks to the east—in other words, a 9-block eastward displacement.
Similarly,

indicating that the walker has traveled 5 blocks to the north—a 5-block northward displacement.

5.6

5.7
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Analytical Method of Vector Addition and Subtraction
Calculating a resultant vector (or vector addition) is the reverse of breaking the resultant down into its components. If the
perpendicular components and of a vector are known, then we can find analytically. How do we do this? Since, by
definition,

we solve for to find the direction of the resultant.

Since this is a right triangle, the Pythagorean theorem (x2 + y2 = h2) for finding the hypotenuse applies. In this case, it becomes

Solving for A gives

In summary, to find the magnitude and direction of a vector from its perpendicular components and , as illustrated
in Figure 5.21, we use the following relationships:

Figure 5.21 The magnitude and direction of the resultant vector can be determined once the horizontal components and have

been determined.

Sometimes, the vectors added are not perfectly perpendicular to one another. An example of this is the case below, where the
vectors and are added to produce the resultant as illustrated in Figure 5.22.
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Figure 5.22 Vectors and are two legs of a walk, and is the resultant or total displacement. You can use analytical methods to

determine the magnitude and direction of .

If and represent two legs of a walk (two displacements), then is the total displacement. The person taking the walk ends
up at the tip of . There are many ways to arrive at the same point. The person could have walked straight ahead first in the
x-direction and then in the y-direction. Those paths are the x- and y-components of the resultant, and If we know
and , we can find and using the equations and .

1. Draw in the x and y components of each vector (including the resultant) with a dashed line. Use the equations
and to find the components. In Figure 5.23, these components are , , , and Vector makes an
angle of with the x-axis, and vector makes and angle of with its own x-axis (which is slightly above the x-axis used
by vector A).

Figure 5.23 To add vectors and first determine the horizontal and vertical components of each vector. These are the dotted

vectors shown in the image.

2. Find the x component of the resultant by adding the x component of the vectors

and find the y component of the resultant (as illustrated in Figure 5.24) by adding the y component of the vectors.
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Figure 5.24 The vectors and add to give the magnitude of the resultant vector in the horizontal direction, Similarly, the

vectors and add to give the magnitude of the resultant vector in the vertical direction,

Now that we know the components of we can find its magnitude and direction.

3. To get the magnitude of the resultant R, use the Pythagorean theorem.

4. To get the direction of the resultant

WATCH PHYSICS

Classifying Vectors and Quantities Example
This video contrasts and compares three vectors in terms of their magnitudes, positions, and directions.

Click to view content (https://www.youtube.com/embed/Yp0EhcVBxNU)

GRASP CHECK
Three vectors, , , and , have the same magnitude of . Vector points to the northeast. Vector points to the
southwest exactly opposite to vector . Vector points in the northwest. If the vectors , , and were added
together, what would be the magnitude of the resultant vector? Why?
a. . All of them will cancel each other out.
b. . Two of them will cancel each other out.
c. . Two of them will add together to give the resultant.
d. units. All of them will add together to give the resultant.

TIPS FOR SUCCESS
In the video, the vectors were represented with an arrow above them rather than in bold. This is a common notation in math
classes.
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Using the Analytical Method of Vector Addition and Subtraction to Solve
Problems
Figure 5.25 uses the analytical method to add vectors.

WORKED EXAMPLE

An Accelerating Subway Train
Add the vector to the vector shown in Figure 5.25, using the steps above. The x-axis is along the east–west direction, and
the y-axis is along the north–south directions. A person first walks in a direction north of east, represented by
vector The person then walks in a direction north of east, represented by vector

Figure 5.25 You can use analytical models to add vectors.

Strategy
The components of and along the x- and y-axes represent walking due east and due north to get to the same ending point.
We will solve for these components and then add them in the x-direction and y-direction to find the resultant.

Solution
First, we find the components of and along the x- and y-axes. From the problem, we know that

= , and . We find the x-components by using , which gives

and

Similarly, the y-components are found using

and

The x- and y-components of the resultant are

and
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Now we can find the magnitude of the resultant by using the Pythagorean theorem

so that

Finally, we find the direction of the resultant

This is

Discussion
This example shows vector addition using the analytical method. Vector subtraction using the analytical method is very similar.
It is just the addition of a negative vector. That is, . The components of – are the negatives of the
components of . Therefore, the x- and y-components of the resultant are

and

and the rest of the method outlined above is identical to that for addition.

Practice Problems
5. What is the magnitude of a vector whose x-component is 4 cm and whose y-component is 3 cm?

a. 1 cm
b. 5 cm
c. 7 cm
d. 25 cm

6. What is the magnitude of a vector that makes an angle of 30° to the horizontal and whose x-component is 3 units?
a. 2.61 units
b. 3.00 units
c. 3.46 units
d. 6.00 units

5.8
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LINKS TO PHYSICS

Atmospheric Science

Figure 5.26 This picture shows Bert Foord during a television Weather Forecast from the Meteorological Office in 1963. (BBC TV)

Atmospheric science is a physical science, meaning that it is a science based heavily on physics. Atmospheric science includes
meteorology (the study of weather) and climatology (the study of climate). Climate is basically the average weather over a longer
time scale. Weather changes quickly over time, whereas the climate changes more gradually.

The movement of air, water and heat is vitally important to climatology and meteorology. Since motion is such a major factor in
weather and climate, this field uses vectors for much of its math.

Vectors are used to represent currents in the ocean, wind velocity and forces acting on a parcel of air. You have probably seen a
weather map using vectors to show the strength (magnitude) and direction of the wind.

Vectors used in atmospheric science are often three-dimensional. We won’t cover three-dimensional motion in this text, but to
go from two-dimensions to three-dimensions, you simply add a third vector component. Three-dimensional motion is
represented as a combination of x-, y- and z components, where z is the altitude.

Vector calculus combines vector math with calculus, and is often used to find the rates of change in temperature, pressure or
wind speed over time or distance. This is useful information, since atmospheric motion is driven by changes in pressure or
temperature. The greater the variation in pressure over a given distance, the stronger the wind to try to correct that imbalance.
Cold air tends to be more dense and therefore has higher pressure than warm air. Higher pressure air rushes into a region of
lower pressure and gets deflected by the spinning of the Earth, and friction slows the wind at Earth’s surface.

Finding how wind changes over distance and multiplying vectors lets meteorologists, like the one shown in Figure 5.26, figure
out how much rotation (spin) there is in the atmosphere at any given time and location. This is an important tool for tornado
prediction. Conditions with greater rotation are more likely to produce tornadoes.

GRASP CHECK
Why are vectors used so frequently in atmospheric science?
a. Vectors have magnitude as well as direction and can be quickly solved through scalar algebraic operations.
b. Vectors have magnitude but no direction, so it becomes easy to express physical quantities involved in the atmospheric

science.
c. Vectors can be solved very accurately through geometry, which helps to make better predictions in atmospheric science.
d. Vectors have magnitude as well as direction and are used in equations that describe the three dimensional motion of the

atmosphere.

Check Your Understanding
7. Between the analytical and graphical methods of vector additions, which is more accurate? Why?

a. The analytical method is less accurate than the graphical method, because the former involves geometry and
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trigonometry.
b. The analytical method is more accurate than the graphical method, because the latter involves some extensive

calculations.
c. The analytical method is less accurate than the graphical method, because the former includes drawing all figures to the

right scale.
d. The analytical method is more accurate than the graphical method, because the latter is limited by the precision of the

drawing.

8. What is a component of a two dimensional vector?
a. A component is a piece of a vector that points in either the x or y direction.
b. A component is a piece of a vector that has half of the magnitude of the original vector.
c. A component is a piece of a vector that points in the direction opposite to the original vector.
d. A component is a piece of a vector that points in the same direction as original vector but with double of its magnitude.

9. How can we determine the global angle (measured counter-clockwise from positive ) if we know and ?

a.

b.

c.

d.

10. How can we determine the magnitude of a vector if we know the magnitudes of its components?

a.

b.

c.

d.

5.3 Projectile Motion
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the properties of projectile motion
• Apply kinematic equations and vectors to solve problems involving projectile motion

Section Key Terms

air resistance maximum height (of a projectile) projectile

projectile motion range trajectory

Properties of Projectile Motion
Projectile motion is the motion of an object thrown (projected) into the air. After the initial force that launches the object, it only
experiences the force of gravity. The object is called a projectile, and its path is called its trajectory. As an object travels through
the air, it encounters a frictional force that slows its motion called air resistance. Air resistance does significantly alter trajectory
motion, but due to the difficulty in calculation, it is ignored in introductory physics.

The most important concept in projectile motion is that horizontal and vertical motions are independent, meaning that they
don’t influence one another. Figure 5.27 compares a cannonball in free fall (in blue) to a cannonball launched horizontally in
projectile motion (in red). You can see that the cannonball in free fall falls at the same rate as the cannonball in projectile motion.
Keep in mind that if the cannon launched the ball with any vertical component to the velocity, the vertical displacements would
not line up perfectly.
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Since vertical and horizontal motions are independent, we can analyze them separately, along perpendicular axes. To do this, we
separate projectile motion into the two components of its motion, one along the horizontal axis and the other along the vertical.

Figure 5.27 The diagram shows the projectile motion of a cannonball shot at a horizontal angle versus one dropped with no horizontal

velocity. Note that both cannonballs have the same vertical position over time.

We’ll call the horizontal axis the x-axis and the vertical axis the y-axis. For notation, d is the total displacement, and x and y are
its components along the horizontal and vertical axes. The magnitudes of these vectors are x and y, as illustrated in Figure 5.28.

Figure 5.28 A boy kicks a ball at angle θ, and it is displaced a distance of s along its trajectory.

As usual, we use velocity, acceleration, and displacement to describe motion. We must also find the components of these
variables along the x- and y-axes. The components of acceleration are then very simple ay = –g = –9.80 m/s2. Note that this
definition defines the upwards direction as positive. Because gravity is vertical, ax = 0. Both accelerations are constant, so we
can use the kinematic equations. For review, the kinematic equations from a previous chapter are summarized in Table 5.1.

(when )
(when )

Table 5.1 Summary of
Kinematic Equations
(constant a)

Where x is position, x0 is initial position, v is velocity, vavg is average velocity, t is time and a is acceleration.
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Solve Problems Involving Projectile Motion
The following steps are used to analyze projectile motion:

1. Separate the motion into horizontal and vertical components along the x- and y-axes. These axes are perpendicular, so
and are used. The magnitudes of the displacement along x- and y-axes are called and The

magnitudes of the components of the velocity are and , where is the magnitude

of the velocity and is its direction. Initial values are denoted with a subscript 0.
2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic

equations for horizontal and vertical motion take the following forms

Vertical motion (assuming positive is up )

3. Solve for the unknowns in the two separate motions (one horizontal and one vertical). Note that the only common variable
between the motions is time . The problem solving procedures here are the same as for one-dimensional kinematics.

4. Recombine the two motions to find the total displacement and velocity . We can use the analytical method of vector
addition, which uses and to find the magnitude and direction of the total
displacement and velocity.

is the direction of the displacement , and is the direction of the velocity . (See Figure 5.29
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Figure 5.29 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the

vertical and horizontal axes. (b) The horizontal motion is simple, because and is thus constant. (c) The velocity in the

vertical direction begins to decrease as the object rises; at its highest point, the vertical velocity is zero. As the object falls towards the

Earth again, the vertical velocity increases again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The

x- and y-motions are recombined to give the total velocity at any given point on the trajectory.

TIPS FOR SUCCESS
For problems of projectile motion, it is important to set up a coordinate system. The first step is to choose an initial position
for and . Usually, it is simplest to set the initial position of the object so that and .
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WATCH PHYSICS

Projectile at an Angle
This video presents an example of finding the displacement (or range) of a projectile launched at an angle. It also reviews basic
trigonometry for finding the sine, cosine and tangent of an angle.

Click to view content (https://www.khanacademy.org/embed_video?v=ZZ39o1rAZWY)

GRASP CHECK
Assume the ground is uniformly level. If the horizontal component a projectile's velocity is doubled, but the vertical
component is unchanged, what is the effect on the time of flight?
a. The time to reach the ground would remain the same since the vertical component is unchanged.
b. The time to reach the ground would remain the same since the vertical component of the velocity also gets doubled.
c. The time to reach the ground would be halved since the horizontal component of the velocity is doubled.
d. The time to reach the ground would be doubled since the horizontal component of the velocity is doubled.

WORKED EXAMPLE

A Fireworks Projectile Explodes High and Away
During a fireworks display like the one illustrated in Figure 5.30, a shell is shot into the air with an initial speed of 70.0 m/s at an
angle of 75° above the horizontal. The fuse is timed to ignite the shell just as it reaches its highest point above the ground. (a)
Calculate the height at which the shell explodes. (b) How much time passed between the launch of the shell and the explosion? (c)
What is the horizontal displacement of the shell when it explodes?

Figure 5.30 The diagram shows the trajectory of a fireworks shell.

Strategy
The motion can be broken into horizontal and vertical motions in which and . We can then define and to
be zero and solve for the maximum height.

Solution for (a)
By height we mean the altitude or vertical position above the starting point. The highest point in any trajectory, the maximum
height, is reached when ; this is the moment when the vertical velocity switches from positive (upwards) to negative
(downwards). Since we know the initial velocity, initial position, and the value of vy when the firework reaches its maximum
height, we use the following equation to find
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Because and are both zero, the equation simplifies to

Solving for gives

Now we must find , the component of the initial velocity in the y-direction. It is given by , where is the
initial velocity of 70.0 m/s, and is the initial angle. Thus,

and is

so that

Discussion for (a)
Since up is positive, the initial velocity and maximum height are positive, but the acceleration due to gravity is negative. The
maximum height depends only on the vertical component of the initial velocity. The numbers in this example are reasonable for
large fireworks displays, the shells of which do reach such heights before exploding.

Solution for (b)
There is more than one way to solve for the time to the highest point. In this case, the easiest method is to use

. Because is zero, this equation reduces to

Note that the final vertical velocity, , at the highest point is zero. Therefore,

Discussion for (b)
This time is also reasonable for large fireworks. When you are able to see the launch of fireworks, you will notice several seconds
pass before the shell explodes. Another way of finding the time is by using , and solving the quadratic
equation for .

Solution for (c)
Because air resistance is negligible, and the horizontal velocity is constant. The horizontal displacement is horizontal
velocity multiplied by time as given by , where is equal to zero

where is the x-component of the velocity, which is given by Now,

The time for both motions is the same, and so is

Discussion for (c)
The horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could be
useful in keeping the fireworks fragments from falling on spectators. Once the shell explodes, air resistance has a major effect,
and many fragments will land directly below, while some of the fragments may now have a velocity in the –x direction due to the
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forces of the explosion.

The expression we found for while solving part (a) of the previous problem works for any projectile motion problem where air
resistance is negligible. Call the maximum height ; then,

This equation defines the maximum height of a projectile. The maximum height depends only on the vertical component of the
initial velocity.

WORKED EXAMPLE

Calculating Projectile Motion: Hot Rock Projectile
Suppose a large rock is ejected from a volcano, as illustrated in Figure 5.31, with a speed of and at an angle above
the horizontal. The rock strikes the side of the volcano at an altitude 20.0 m lower than its starting point. (a) Calculate the time it
takes the rock to follow this path.

Figure 5.31 The diagram shows the projectile motion of a large rock from a volcano.

Strategy
Breaking this two-dimensional motion into two independent one-dimensional motions will allow us to solve for the time. The
time a projectile is in the air depends only on its vertical motion.

Solution
While the rock is in the air, it rises and then falls to a final position 20.0 m lower than its starting altitude. We can find the time
for this by using

If we take the initial position to be zero, then the final position is Now the initial vertical velocity is the
vertical component of the initial velocity, found from

Substituting known values yields

Rearranging terms gives a quadratic equation in

This expression is a quadratic equation of the form , where the constants are a = 4.90, b = –14.3, and c =
–20.0. Its solutions are given by the quadratic formula

5.9
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This equation yields two solutions t = 3.96 and t = –1.03. You may verify these solutions as an exercise. The time is t = 3.96 s or
–1.03 s. The negative value of time implies an event before the start of motion, so we discard it. Therefore,

Discussion
The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical
velocity of and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Practice Problems
11. If an object is thrown horizontally, travels with an average x-component of its velocity equal to , and does not hit the

ground, what will be the x-component of the displacement after ?
a.
b.
c.
d.

12. If a ball is thrown straight up with an initial velocity of upward, what is the maximum height it will reach?
a.
b.
c.
d.

The fact that vertical and horizontal motions are independent of each other lets us predict the range of a projectile. The range is
the horizontal distance R traveled by a projectile on level ground, as illustrated in Figure 5.32. Throughout history, people have
been interested in finding the range of projectiles for practical purposes, such as aiming cannons.
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Figure 5.32 Trajectories of projectiles on level ground. (a) The greater the initial speed , the greater the range for a given initial angle. (b)

The effect of initial angle on the range of a projectile with a given initial speed. Note that any combination of trajectories that add to 90

degrees will have the same range in the absence of air resistance, although the maximum heights of those paths are different.

How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed , the greater the range, as
shown in the figure above. The initial angle also has a dramatic effect on the range. When air resistance is negligible, the
range of a projectile on level ground is

where is the initial speed and is the initial angle relative to the horizontal. It is important to note that the range doesn’t
apply to problems where the initial and final y position are different, or to cases where the object is launched perfectly
horizontally.

Virtual Physics

Projectile Motion
In this simulation you will learn about projectile motion by blasting objects out of a cannon. You can choose between objects
such as a tank shell, a golf ball or even a Buick. Experiment with changing the angle, initial speed, and mass, and adding in
air resistance. Make a game out of this simulation by trying to hit the target.

Click to view content (https://archive.cnx.org/specials/317dbd00-8e61-4065-b3eb-f2b80db9b7ed/projectile-motion/)
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Check Your Understanding
13. What is projectile motion?

a. Projectile motion is the motion of an object projected into the air, which moves under the influence of gravity.
b. Projectile motion is the motion of an object projected into the air which moves independently of gravity.
c. Projectile motion is the motion of an object projected vertically upward into the air which moves under the influence of

gravity.
d. Projectile motion is the motion of an object projected horizontally into the air which moves independently of gravity.

14. What is the force experienced by a projectile after the initial force that launched it into the air in the absence of air
resistance?
a. The nuclear force
b. The gravitational force
c. The electromagnetic force
d. The contact force

5.4 Inclined Planes
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Distinguish between static friction and kinetic friction
• Solve problems involving inclined planes

Section Key Terms

kinetic friction static friction

Static Friction and Kinetic Friction
Recall from the previous chapter that friction is a force that opposes motion, and is around us all the time. Friction allows us to
move, which you have discovered if you have ever tried to walk on ice.

There are different types of friction—kinetic and static. Kinetic friction acts on an object in motion, while static friction acts on
an object or system at rest. The maximum static friction is usually greater than the kinetic friction between the objects.

Imagine, for example, trying to slide a heavy crate across a concrete floor. You may push harder and harder on the crate and not
move it at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite
direction of your push. But if you finally push hard enough, the crate seems to slip suddenly and starts to move. Once in motion,
it is easier to keep it in motion than it was to get it started because the kinetic friction force is less than the static friction force.
If you were to add mass to the crate, (for example, by placing a box on top of it) you would need to push even harder to get it
started and also to keep it moving. If, on the other hand, you oiled the concrete you would find it easier to get the crate started
and keep it going.

Figure 5.33 shows how friction occurs at the interface between two objects. Magnifying these surfaces shows that they are rough
on the microscopic level. So when you push to get an object moving (in this case, a crate), you must raise the object until it can
skip along with just the tips of the surface hitting, break off the points, or do both. The harder the surfaces are pushed together
(such as if another box is placed on the crate), the more force is needed to move them.

GRASP CHECK
If a projectile is launched on level ground, what launch angle maximizes the range of the projectile?
a.
b.
c.
d.
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Figure 5.33 Frictional forces, such as f, always oppose motion or attempted motion between objects in contact. Friction arises in part

because of the roughness of the surfaces in contact, as seen in the expanded view.

The magnitude of the frictional force has two forms: one for static friction, the other for kinetic friction. When there is no
motion between the objects, the magnitude of static friction fs is

where is the coefficient of static friction and N is the magnitude of the normal force. Recall that the normal force opposes the
force of gravity and acts perpendicular to the surface in this example, but not always.

Since the symbol means less than or equal to, this equation says that static friction can have a maximum value of That is,

Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit.
Once the applied force exceeds fs(max), the object will move. Once an object is moving, the magnitude of kinetic friction fk is
given by

where is the coefficient of kinetic friction.

Friction varies from surface to surface because different substances are rougher than others. Table 5.2 compares values of static
and kinetic friction for different surfaces. The coefficient of the friction depends on the two surfaces that are in contact.

System Static Friction Kinetic Friction

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.7 0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Table 5.2 Coefficients of Static and Kinetic Friction
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System Static Friction Kinetic Friction

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.4 0.02

Table 5.2 Coefficients of Static and Kinetic Friction

Since the direction of friction is always opposite to the direction of motion, friction runs parallel to the surface between objects
and perpendicular to the normal force. For example, if the crate you try to push (with a force parallel to the floor) has a mass of
100 kg, then the normal force would be equal to its weight

perpendicular to the floor. If the coefficient of static friction is 0.45, you would have to exert a force parallel to the floor greater
than

to move the crate. Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of
only 290 N

would keep it moving at a constant speed. If the floor were lubricated, both coefficients would be much smaller than they would
be without lubrication. The coefficient of friction is unitless and is a number usually between 0 and 1.0.

Working with Inclined Planes
We discussed previously that when an object rests on a horizontal surface, there is a normal force supporting it equal in
magnitude to its weight. Up until now, we dealt only with normal force in one dimension, with gravity and normal force acting
perpendicular to the surface in opposing directions (gravity downward, and normal force upward). Now that you have the skills
to work with forces in two dimensions, we can explore what happens to weight and the normal force on a tilted surface such as
an inclined plane. For inclined plane problems, it is easier breaking down the forces into their components if we rotate the
coordinate system, as illustrated in Figure 5.34. The first step when setting up the problem is to break down the force of weight
into components.

Figure 5.34 The diagram shows perpendicular and horizontal components of weight on an inclined plane.

When an object rests on an incline that makes an angle with the horizontal, the force of gravity acting on the object is divided
into two components: A force acting perpendicular to the plane, , and a force acting parallel to the plane, . The
perpendicular force of weight, , is typically equal in magnitude and opposite in direction to the normal force, The force
acting parallel to the plane, , causes the object to accelerate down the incline. The force of friction, , opposes the motion of
the object, so it acts upward along the plane.
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It is important to be careful when resolving the weight of the object into components. If the angle of the incline is at an angle
to the horizontal, then the magnitudes of the weight components are

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw the right
triangle formed by the three weight vectors. Notice that the angle of the incline is the same as the angle formed between and

. Knowing this property, you can use trigonometry to determine the magnitude of the weight components

WATCH PHYSICS

Inclined Plane Force Components
This video (https://www.khanacademy.org/embed_video?v=TC23wD34C7k) shows how the weight of an object on an inclined
plane is broken down into components perpendicular and parallel to the surface of the plane. It explains the geometry for
finding the angle in more detail.

GRASP CHECK
Click to view content (https://www.youtube.com/embed/TC23wD34C7k)
This video shows how the weight of an object on an inclined plane is broken down into components perpendicular and
parallel to the surface of the plane. It explains the geometry for finding the angle in more detail.
When the surface is flat, you could say that one of the components of the gravitational force is zero; Which one? As the angle
of the incline gets larger, what happens to the magnitudes of the perpendicular and parallel components of gravitational
force?

a. When the angle is zero, the parallel component is zero and the perpendicular component is at a maximum. As the angle
increases, the parallel component decreases and the perpendicular component increases. This is because the cosine of
the angle shrinks while the sine of the angle increases.

b. When the angle is zero, the parallel component is zero and the perpendicular component is at a maximum. As the angle
increases, the parallel component decreases and the perpendicular component increases. This is because the cosine of
the angle increases while the sine of the angle shrinks.

c. When the angle is zero, the parallel component is zero and the perpendicular component is at a maximum. As the angle
increases, the parallel component increases and the perpendicular component decreases. This is because the cosine of
the angle shrinks while the sine of the angle increases.

d. When the angle is zero, the parallel component is zero and the perpendicular component is at a maximum. As the angle
increases, the parallel component increases and the perpendicular component decreases. This is because the cosine of
the angle increases while the sine of the angle shrinks.

TIPS FOR SUCCESS
Normal force is represented by the variable This should not be confused with the symbol for the newton, which is also
represented by the letter N. It is important to tell apart these symbols, especially since the units for normal force ( ) happen
to be newtons (N). For example, the normal force, , that the floor exerts on a chair might be One important
difference is that normal force is a vector, while the newton is simply a unit. Be careful not to confuse these letters in your
calculations!

To review, the process for solving inclined plane problems is as follows:
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1. Draw a sketch of the problem.
2. Identify known and unknown quantities, and identify the system of interest.
3. Draw a free-body diagram (which is a sketch showing all of the forces acting on an object) with the coordinate system

rotated at the same angle as the inclined plane. Resolve the vectors into horizontal and vertical components and draw them
on the free-body diagram.

4. Write Newton’s second law in the horizontal and vertical directions and add the forces acting on the object. If the object
does not accelerate in a particular direction (for example, the x -direction) then Fnet x = 0. If the object does accelerate in
that direction, Fnet x = ma.

5. Check your answer. Is the answer reasonable? Are the units correct?

WORKED EXAMPLE

Finding the Coefficient of Kinetic Friction on an Inclined Plane
A skier, illustrated in Figure 5.35(a), with a mass of 62 kg is sliding down a snowy slope at an angle of 25 degrees. Find the
coefficient of kinetic friction for the skier if friction is known to be 45.0 N.

Figure 5.35 Use the diagram to help find the coefficient of kinetic friction for the skier.

Strategy
The magnitude of kinetic friction was given as 45.0 N. Kinetic friction is related to the normal force N as . Therefore,
we can find the coefficient of kinetic friction by first finding the normal force of the skier on a slope. The normal force is always
perpendicular to the surface, and since there is no motion perpendicular to the surface, the normal force should equal the
component of the skier’s weight perpendicular to the slope.

That is,

Substituting this into our expression for kinetic friction, we get

which can now be solved for the coefficient of kinetic friction μk.

Solution
Solving for gives

Substituting known values on the right-hand side of the equation,

Discussion
This result is a little smaller than the coefficient listed in Table 5.2 for waxed wood on snow, but it is still reasonable since values
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of the coefficients of friction can vary greatly. In situations like this, where an object of mass m slides down a slope that makes
an angle θwith the horizontal, friction is given by

WORKED EXAMPLE

Weight on an Incline, a Two-Dimensional Problem
The skier’s mass, including equipment, is 60.0 kg. (See Figure 5.36(b).) (a) What is her acceleration if friction is negligible? (b)
What is her acceleration if the frictional force is 45.0 N?

Figure 5.36 Now use the diagram to help find the skier's acceleration if friction is negligible and if the frictional force is 45.0 N.

Strategy
The most convenient coordinate system for motion on an incline is one that has one coordinate parallel to the slope and one
perpendicular to the slope. Remember that motions along perpendicular axes are independent. We use the symbol to mean
perpendicular, and to mean parallel.

The only external forces acting on the system are the skier’s weight, friction, and the normal force exerted by the ski slope,
labeled , , and in the free-body diagram. is always perpendicular to the slope and is parallel to it. But is not in the
direction of either axis, so we must break it down into components along the chosen axes. We define to be the component of
weight parallel to the slope and the component of weight perpendicular to the slope. Once this is done, we can consider the
two separate problems of forces parallel to the slope and forces perpendicular to the slope.

Solution
The magnitude of the component of the weight parallel to the slope is , and the magnitude of
the component of the weight perpendicular to the slope is

(a) Neglecting friction: Since the acceleration is parallel to the slope, we only need to consider forces parallel to the slope. Forces
perpendicular to the slope add to zero, since there is no acceleration in that direction. The forces parallel to the slope are the
amount of the skier’s weight parallel to the slope and friction . Assuming no friction, by Newton’s second law the
acceleration parallel to the slope is

Where the net force parallel to the slope , so that

is the acceleration.

(b) Including friction: Here we now have a given value for friction, and we know its direction is parallel to the slope and it
opposes motion between surfaces in contact. So the net external force is now
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and substituting this into Newton’s second law, gives

We substitute known values to get

or

which is the acceleration parallel to the incline when there is 45 N opposing friction.

Discussion
Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is not.

Practice Problems
15. When an object sits on an inclined plane that makes an angle θwith the horizontal, what is the expression for the

component of the objects weight force that is parallel to the incline?
a.
b.
c.
d.

16. An object with a mass of rests on a plane inclined from horizontal. What is the component of the weight force that
is parallel to the incline?
a.
b.
c.
d.

Snap Lab

Friction at an Angle: Sliding a Coin
An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to
measure the coefficient of kinetic friction between two objects. As shown in the first Worked Example, the kinetic friction
on a slope , and the component of the weight down the slope is equal to . These forces act in
opposite directions, so when they have equal magnitude, the acceleration is zero. Writing these out

Solving for , since we find that

• 1 coin
• 1 book
• 1 protractor

1. Put a coin flat on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap
the book lightly to get the coin to move.

5.10
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Check Your Understanding
17. What is friction?

a. Friction is an internal force that opposes the relative motion of an object.
b. Friction is an internal force that accelerates an object’s relative motion.
c. Friction is an external force that opposes the relative motion of an object.
d. Friction is an external force that increases the velocity of the relative motion of an object.

18. What are the two varieties of friction? What does each one act upon?
a. Kinetic and static friction both act on an object in motion.
b. Kinetic friction acts on an object in motion, while static friction acts on an object at rest.
c. Kinetic friction acts on an object at rest, while static friction acts on an object in motion.
d. Kinetic and static friction both act on an object at rest.

19. Between static and kinetic friction between two surfaces, which has a greater value? Why?
a. The kinetic friction has a greater value because the friction between the two surfaces is more when the two surfaces are

in relative motion.
b. The static friction has a greater value because the friction between the two surfaces is more when the two surfaces are

in relative motion.
c. The kinetic friction has a greater value because the friction between the two surfaces is less when the two surfaces are

in relative motion.
d. The static friction has a greater value because the friction between the two surfaces is less when the two surfaces are in

relative motion.

5.5 Simple Harmonic Motion
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe Hooke’s law and Simple Harmonic Motion
• Describe periodic motion, oscillations, amplitude, frequency, and period
• Solve problems in simple harmonic motion involving springs and pendulums

Section Key Terms

amplitude deformation equilibrium position frequency

Hooke’s law oscillate period periodic motion

restoring force simple harmonic motion simple pendulum

Hooke’s Law and Simple Harmonic Motion
Imagine a car parked against a wall. If a bulldozer pushes the car into the wall, the car will not move but it will noticeably change
shape. A change in shape due to the application of a force is a deformation. Even very small forces are known to cause some
deformation. For small deformations, two important things can happen. First, unlike the car and bulldozer example, the object
returns to its original shape when the force is removed. Second, the size of the deformation is proportional to the force. This

2. Measure the angle of tilt relative to the horizontal and find .

GRASP CHECK
True or False—If only the angles of two vectors are known, we can find the angle of their resultant addition vector.
a. True
b. False
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second property is known as Hooke’s law. In equation form, Hooke’s law is

where x is the amount of deformation (the change in length, for example) produced by the restoring force F, and k is a constant
that depends on the shape and composition of the object. The restoring force is the force that brings the object back to its
equilibrium position; the minus sign is there because the restoring force acts in the direction opposite to the displacement. Note
that the restoring force is proportional to the deformation x. The deformation can also be thought of as a displacement from
equilibrium. It is a change in position due to a force. In the absence of force, the object would rest at its equilibrium position.
The force constant k is related to the stiffness of a system. The larger the force constant, the stiffer the system. A stiffer system is
more difficult to deform and requires a greater restoring force. The units of k are newtons per meter (N/m). One of the most
common uses of Hooke’s law is solving problems involving springs and pendulums, which we will cover at the end of this
section.

Oscillations and Periodic Motion
What do an ocean buoy, a child in a swing, a guitar, and the beating of hearts all have in common? They all oscillate. That is, they
move back and forth between two points, like the ruler illustrated in Figure 5.37. All oscillations involve force. For example, you
push a child in a swing to get the motion started.

Figure 5.37 A ruler is displaced from its equilibrium position.

Newton’s first law implies that an object oscillating back and forth is experiencing forces. Without force, the object would move
in a straight line at a constant speed rather than oscillate. Consider, for example, plucking a plastic ruler to the left as shown in
Figure 5.38. The deformation of the ruler creates a force in the opposite direction, known as a restoring force. Once released, the
restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. However,
by the time the ruler gets there, it gains momentum and continues to move to the right, producing the opposite deformation. It
is then forced to the left, back through equilibrium, and the process is repeated until it gradually loses all of its energy. The
simplest oscillations occur when the restoring force is directly proportional to displacement. Recall that Hooke’s law describes
this situation with the equation F = −kx. Therefore, Hooke’s law describes and applies to the simplest case of oscillation, known
as simple harmonic motion.

Figure 5.38 (a) The plastic ruler has been released, and the restoring force is returning the ruler to its equilibrium position. (b) The net force

is zero at the equilibrium position, but the ruler has momentum and continues to move to the right. (c) The restoring force is in the opposite

direction. It stops the ruler and moves it back toward equilibrium again. (d) Now the ruler has momentum to the left. (e) In the absence of

damping (caused by frictional forces), the ruler reaches its original position. From there, the motion will repeat itself.
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When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each vibration of the string takes
the same time as the previous one. Periodic motion is a motion that repeats itself at regular time intervals, such as with an
object bobbing up and down on a spring or a pendulum swinging back and forth. The time to complete one oscillation (a
complete cycle of motion) remains constant and is called the period T. Its units are usually seconds.

Frequency f is the number of oscillations per unit time. The SI unit for frequency is the hertz (Hz), defined as the number of
oscillations per second. The relationship between frequency and period is

As you can see from the equation, frequency and period are different ways of expressing the same concept. For example, if you
get a paycheck twice a month, you could say that the frequency of payment is two per month, or that the period between checks
is half a month.

If there is no friction to slow it down, then an object in simple motion will oscillate forever with equal displacement on either
side of the equilibrium position. The equilibrium position is where the object would naturally rest in the absence of force. The
maximum displacement from equilibrium is called the amplitude X. The units for amplitude and displacement are the same,
but depend on the type of oscillation. For the object on the spring, shown in Figure 5.39, the units of amplitude and
displacement are meters.

Figure 5.39 An object attached to a spring sliding on a frictionless surface is a simple harmonic oscillator. When displaced from equilibrium,

the object performs simple harmonic motion that has an amplitude X and a period T. The object’s maximum speed occurs as it passes

through equilibrium. The stiffer the spring is, the smaller the period T. The greater the mass of the object is, the greater the period T.

The mass m and the force constant k are the only factors that affect the period and frequency of simple harmonic motion. The
period of a simple harmonic oscillator is given by

and, because f = 1/T, the frequency of a simple harmonic oscillator is
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WATCH PHYSICS

Introduction to Harmonic Motion
This video shows how to graph the displacement of a spring in the x-direction over time, based on the period. Watch the first 10
minutes of the video (you can stop when the narrator begins to cover calculus).

Click to view content (https://www.khanacademy.org/embed_video?v=Nk2q-_jkJVs)

GRASP CHECK
If the amplitude of the displacement of a spring were larger, how would this affect the graph of displacement over time?
What would happen to the graph if the period was longer?
a. Larger amplitude would result in taller peaks and troughs and a longer period would result in greater separation in time

between peaks.
b. Larger amplitude would result in smaller peaks and troughs and a longer period would result in greater distance

between peaks.
c. Larger amplitude would result in taller peaks and troughs and a longer period would result in shorter distance between

peaks.
d. Larger amplitude would result in smaller peaks and troughs and a longer period would result in shorter distance

between peaks.

Solving Spring and Pendulum Problems with Simple Harmonic Motion
Before solving problems with springs and pendulums, it is important to first get an understanding of how a pendulum works.
Figure 5.40 provides a useful illustration of a simple pendulum.

Figure 5.40 A simple pendulum has a small-diameter bob and a string that has a very small mass but is strong enough not to stretch. The

linear displacement from equilibrium is s, the length of the arc. Also shown are the forces on the bob, which result in a net force of −mg sinθ
toward the equilibrium position—that is, a restoring force.

Everyday examples of pendulums include old-fashioned clocks, a child’s swing, or the sinker on a fishing line. For small
displacements of less than 15 degrees, a pendulum experiences simple harmonic oscillation, meaning that its restoring force is
directly proportional to its displacement. A pendulum in simple harmonic motion is called a simple pendulum. A pendulum has
an object with a small mass, also known as the pendulum bob, which hangs from a light wire or string. The equilibrium position
for a pendulum is where the angle is zero (that is, when the pendulum is hanging straight down). It makes sense that without
any force applied, this is where the pendulum bob would rest.

The displacement of the pendulum bob is the arc length s. The weight mg has components mg cos along the string and mg sin
tangent to the arc. Tension in the string exactly cancels the component mg cos parallel to the string. This leaves a net

restoring force back toward the equilibrium position that runs tangent to the arc and equals −mg sin .
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For a simple pendulum, The period is

The only things that affect the period of a simple pendulum are its length and the acceleration due to gravity. The period is
completely independent of other factors, such as mass or amplitude. However, note that T does depend on g. This means that if
we know the length of a pendulum, we can actually use it to measure gravity! This will come in useful in Figure 5.40.

TIPS FOR SUCCESS
Tension is represented by the variable T, and period is represented by the variable T. It is important not to confuse the two,
since tension is a force and period is a length of time.

WORKED EXAMPLE

Measuring Acceleration due to Gravity: The Period of a Pendulum
What is the acceleration due to gravity in a region where a simple pendulum having a length 75.000 cm has a period of 1.7357 s?
Strategy

We are asked to find g given the period T and the length L of a pendulum. We can solve for g, assuming that the

angle of deflection is less than 15 degrees. Recall that when the angle of deflection is less than 15 degrees, the pendulum is
considered to be in simple harmonic motion, allowing us to use this equation.

Solution

1. Square and solve for g.

2. Substitute known values into the new equation.

3. Calculate to find g.

Discussion
This method for determining g can be very accurate. This is why length and period are given to five digits in this example.

WORKED EXAMPLE

Hooke’s Law: How Stiff Are Car Springs?
What is the force constant for the suspension system of a car, like that shown in Figure 5.41, that settles 1.20 cm when an
80.0-kg person gets in?
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Figure 5.41 A car in a parking lot. (exfordy, Flickr)

Strategy
Consider the car to be in its equilibrium position x = 0 before the person gets in. The car then settles down 1.20 cm, which means
it is displaced to a position x = −1.20×10−2 m.

At that point, the springs supply a restoring force F equal to the person’s weight

w = mg = (80.0 kg)(9.80 m/s2) = 784 N. We take this force to be F in Hooke’s law.

Knowing F and x, we can then solve for the force constant k.

Solution
Solve Hooke’s law, F = −kx, for k.

Substitute known values and solve for k.

Discussion
Note that F and x have opposite signs because they are in opposite directions—the restoring force is up, and the displacement is
down. Also, note that the car would oscillate up and down when the person got in, if it were not for the shock absorbers.
Bouncing cars are a sure sign of bad shock absorbers.

Practice Problems
20. A force of applied to a spring causes it to be displaced by . What is the force constant of the spring?

a.
b.
c.
d.

21. What is the force constant for the suspension system of a car that settles when a person gets in?
a.
b.

5.5 • Simple Harmonic Motion 183



c.
d.

Check Your Understanding
22. What is deformation?

a. Deformation is the magnitude of the restoring force.
b. Deformation is the change in shape due to the application of force.
c. Deformation is the maximum force that can be applied on a spring.
d. Deformation is regaining the original shape upon the removal of an external force.

23. According to Hooke’s law, what is deformation proportional to?
a. Force
b. Velocity
c. Displacement
d. Force constant

24. What are oscillations?
a. Motion resulting in small displacements
b. Motion which repeats itself periodically
c. Periodic, repetitive motion between two points
d. motion that is the opposite to the direction of the restoring force

25. True or False—Oscillations can occur without force.
a. True
b. False

Snap Lab

Finding Gravity Using a Simple Pendulum
Use a simple pendulum to find the acceleration due to gravity g in your home or classroom.

• 1 string
• 1 stopwatch
• 1 small dense object

1. Cut a piece of a string or dental floss so that it is about 1 m long.
2. Attach a small object of high density to the end of the string (for example, a metal nut or a car key).
3. Starting at an angle of less than 10 degrees, allow the pendulum to swing and measure the pendulum’s period for 10

oscillations using a stopwatch.
4. Calculate g.

GRASP CHECK
How accurate is this measurement for g? How might it be improved?
a. Accuracy for value of g will increase with an increase in the mass of a dense object.
b. Accuracy for the value of g will increase with increase in the length of the pendulum.
c. The value of g will be more accurate if the angle of deflection is more than 15°.
d. The value of g will be more accurate if it maintains simple harmonic motion.
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KEY TERMS
air resistance a frictional force that slows the motion of

objects as they travel through the air; when solving basic
physics problems, air resistance is assumed to be zero

amplitude the maximum displacement from the
equilibrium position of an object oscillating around the
equilibrium position

analytical method the method of determining the
magnitude and direction of a resultant vector using the
Pythagorean theorem and trigonometric identities

component (of a 2-dimensional vector) a piece of a vector
that points in either the vertical or the horizontal
direction; every 2-d vector can be expressed as a sum of
two vertical and horizontal vector components

deformation displacement from equilibrium, or change in
shape due to the application of force

equilibrium position where an object would naturally rest
in the absence of force

frequency number of events per unit of time
graphical method drawing vectors on a graph to add them

using the head-to-tail method
head (of a vector) the end point of a vector; the location of

the vector’s arrow; also referred to as the tip
head-to-tail method a method of adding vectors in which

the tail of each vector is placed at the head of the previous
vector

Hooke’s law proportional relationship between the force F
on a material and the deformation it causes,

kinetic friction a force that opposes the motion of two
systems that are in contact and moving relative to one
another

maximum height (of a projectile) the highest altitude, or
maximum displacement in the vertical position reached
in the path of a projectile

oscillate moving back and forth regularly between two
points

period time it takes to complete one oscillation
periodic motion motion that repeats itself at regular time

intervals
projectile an object that travels through the air and

experiences only acceleration due to gravity
projectile motion the motion of an object that is subject

only to the acceleration of gravity
range the maximum horizontal distance that a projectile

travels
restoring force force acting in opposition to the force

caused by a deformation
resultant the sum of the a collection of vectors
resultant vector the vector sum of two or more vectors
simple harmonic motion the oscillatory motion in a

system where the net force can be described by Hooke’s
law

simple pendulum an object with a small mass suspended
from a light wire or string

static friction a force that opposes the motion of two
systems that are in contact and are not moving relative to
one another

tail the starting point of a vector; the point opposite to the
head or tip of the arrow

trajectory the path of a projectile through the air
vector addition adding together two or more vectors

SECTION SUMMARY
5.1 Vector Addition and
Subtraction: Graphical Methods

• The graphical method of adding vectors and
involves drawing vectors on a graph and adding them by
using the head-to-tail method. The resultant vector is
defined such that A + B = R. The magnitude and
direction of are then determined with a ruler and
protractor.

• The graphical method of subtracting vectors A and B
involves adding the opposite of vector B, which is
defined as −B. In this case,

Next, use the head-to-
tail method as for vector addition to obtain the resultant
vector .

• Addition of vectors is independent of the order in which
they are added; A + B = B + A.

• The head-to-tail method of adding vectors involves

drawing the first vector on a graph and then placing the
tail of each subsequent vector at the head of the
previous vector. The resultant vector is then drawn from
the tail of the first vector to the head of the final vector.

• Variables in physics problems, such as force or velocity,
can be represented with vectors by making the length of
the vector proportional to the magnitude of the force or
velocity.

• Problems involving displacement, force, or velocity may
be solved graphically by measuring the resultant
vector’s magnitude with a ruler and measuring the
direction with a protractor.

5.2 Vector Addition and
Subtraction: Analytical Methods

• The analytical method of vector addition and
subtraction uses the Pythagorean theorem and
trigonometric identities to determine the magnitude
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and direction of a resultant vector.
• The steps to add vectors and using the analytical

method are as follows:
1. Determine the coordinate system for the vectors. Then,

determine the horizontal and vertical components of
each vector using the equations

and

2. Add the horizontal and vertical components of each
vector to determine the components and of the
resultant vector,

and

3. Use the Pythagorean theorem to determine the
magnitude, , of the resultant vector

4. Use a trigonometric identity to determine the direction,
, of

5.3 Projectile Motion
• Projectile motion is the motion of an object through the

air that is subject only to the acceleration of gravity.
• Projectile motion in the horizontal and vertical

directions are independent of one another.
• The maximum height of an projectile is the highest

altitude, or maximum displacement in the vertical
position reached in the path of a projectile.

• The range is the maximum horizontal distance traveled
by a projectile.

• To solve projectile problems: choose a coordinate
system; analyze the motion in the vertical and
horizontal direction separately; then, recombine the
horizontal and vertical components using vector
addition equations.

5.4 Inclined Planes
• Friction is a contact force between systems that opposes

the motion or attempted motion between them. Simple
friction is proportional to the normal force N pushing
the systems together. A normal force is always
perpendicular to the contact surface between systems.
Friction depends on both of the materials involved.

• µs is the coefficient of static friction, which depends on
both of the materials.

• µk is the coefficient of kinetic friction, which also
depends on both materials.

• When objects rest on an inclined plane that makes an
angle with the horizontal surface, the weight of the
object can be broken into components that act
perpendicular and parallel ( ) to the surface of
the plane.

5.5 Simple Harmonic Motion
• An oscillation is a back and forth motion of an object

between two points of deformation.
• An oscillation may create a wave, which is a disturbance

that propagates from where it was created.
• The simplest type of oscillations are related to systems

that can be described by Hooke’s law.
• Periodic motion is a repetitious oscillation.
• The time for one oscillation is the period T.
• The number of oscillations per unit time is the

frequency
• A mass m suspended by a wire of length L is a simple

pendulum and undergoes simple harmonic motion for
amplitudes less than about 15 degrees.

KEY EQUATIONS
5.2 Vector Addition and
Subtraction: Analytical Methods

resultant magnitude

resultant direction

x-component of a vector A (when
an angle is given relative to the
horizontal)

y-component of a vector A (when
an angle is given relative to the
horizontal)

addition of vectors

5.3 Projectile Motion

angle of displacement
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velocity

angle of velocity

maximum height

range

5.4 Inclined Planes

force of static friction

force of kinetic
friction

perpendicular
component of weight
on an inclined plane

parallel component of
weight on an inclined
plane

5.5 Simple Harmonic Motion

Hooke’s law

period in simple harmonic motion

frequency in simple harmonic motion

period of a simple pendulum

CHAPTER REVIEW
Concept Items
5.1 Vector Addition and Subtraction:
Graphical Methods

1. There is a vector , with magnitude 5 units pointing

towards west and vector , with magnitude 3 units,
pointing towards south. Using vector addition, calculate
the magnitude of the resultant vector.
a. 4.0
b. 5.8
c. 6.3
d. 8.0

2. If you draw two vectors using the head-to-tail method,
how can you then draw the resultant vector?
a. By joining the head of the first vector to the head of

the last
b. By joining the head of the first vector with the tail of

the last
c. By joining the tail of the first vector to the head of

the last
d. By joining the tail of the first vector with the tail of

the last

3. What is the global angle of south of west?
a.
b.
c.

d.

5.2 Vector Addition and Subtraction:
Analytical Methods
4. What is the angle between the x and y components of a

vector?
a.
b.
c.
d.

5. Two vectors are equal in magnitude and opposite in
direction. What is the magnitude of their resultant
vector?
a. The magnitude of the resultant vector will be zero.
b. The magnitude of resultant vector will be twice the

magnitude of the original vector.
c. The magnitude of resultant vector will be same as

magnitude of the original vector.
d. The magnitude of resultant vector will be half the

magnitude of the original vector.

6. How can we express the x and y-components of a vector
in terms of its magnitude, , and direction, global angle

?
a.
b.
c.
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d.

7. True or False—Every 2-D vector can be expressed as the
product of its x and y-components.
a. True
b. False

5.3 Projectile Motion
8. Horizontal and vertical motions of a projectile are

independent of each other. What is meant by this?
a. Any object in projectile motion falls at the same rate

as an object in freefall, regardless of its horizontal
velocity.

b. All objects in projectile motion fall at different rates,
regardless of their initial horizontal velocities.

c. Any object in projectile motion falls at the same rate
as its initial vertical velocity, regardless of its initial
horizontal velocity.

d. All objects in projectile motion fall at different rates
and the rate of fall of the object is independent of
the initial velocity.

9. Using the conventional choice for positive and negative
axes described in the text, what is the y-component of the
acceleration of an object experiencing projectile motion?
a.
b.
c.
d.

5.4 Inclined Planes
10. True or False—Kinetic friction is less than the limiting

static friction because once an object is moving, there
are fewer points of contact, and the friction is reduced.
For this reason, more force is needed to start moving an
object than to keep it in motion.
a. True
b. False

11. When there is no motion between objects, what is the
relationship between the magnitude of the static friction

and the normal force ?
a.
b.

c.
d.

12. What equation gives the magnitude of kinetic friction?
a.
b.
c.
d.

5.5 Simple Harmonic Motion
13. Why is there a negative sign in the equation for Hooke’s

law?
a. The negative sign indicates that displacement

decreases with increasing force.
b. The negative sign indicates that the direction of the

applied force is opposite to that of displacement.
c. The negative sign indicates that the direction of the

restoring force is opposite to that of displacement.
d. The negative sign indicates that the force constant

must be negative.

14. With reference to simple harmonic motion, what is the
equilibrium position?
a. The position where velocity is the minimum
b. The position where the displacement is maximum
c. The position where the restoring force is the

maximum
d. The position where the object rests in the absence

of force

15. What is Hooke’s law?
a. Restoring force is directly proportional to the

displacement from the mean position and acts in
the the opposite direction of the displacement.

b. Restoring force is directly proportional to the
displacement from the mean position and acts in
the same direction as the displacement.

c. Restoring force is directly proportional to the
square of the displacement from the mean position
and acts in the opposite direction of the
displacement.

d. Restoring force is directly proportional to the
square of the displacement from the mean position
and acts in the same direction as the displacement.

Critical Thinking Items
5.1 Vector Addition and Subtraction:
Graphical Methods
16. True or False—A person is following a set of directions.

He has to walk 2 km east and then 1 km north. He takes a
wrong turn and walks in the opposite direction for the
second leg of the trip. The magnitude of his total

displacement will be the same as it would have been had
he followed directions correctly.
a. True
b. False
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5.2 Vector Addition and Subtraction:
Analytical Methods
17. What is the magnitude of a vector whose x-component

is and whose angle is ?
a.
b.
c.
d.

18. Vectors and are equal in magnitude and opposite

in direction. Does have the same direction as

vector or ?

a.

b.

5.3 Projectile Motion
19. Two identical items, object 1 and object 2, are dropped

from the top of a building. Object 1 is dropped
with an initial velocity of , while object 2 is thrown
straight downward with an initial velocity of .
What is the difference in time, in seconds rounded to
the nearest tenth, between when the two objects hit the
ground?
a. Object 1 will hit the ground after object 2.
b. Object 1 will hit the ground after object 2.
c. Object 1 will hit the ground at the same time as

object 2.
d. Object 1 will hit the ground after object 2.

20. An object is launched into the air. If the y-component of
its acceleration is 9.8 m/s2, which direction is defined as
positive?
a. Vertically upward in the coordinate system
b. Vertically downward in the coordinate system
c. Horizontally to the right side of the coordinate

system
d. Horizontally to the left side of the coordinate

system

5.4 Inclined Planes
21. A box weighing is at rest on the floor. A person

pushes against it and it starts moving when force
is applied to it. What can be said about the coefficient of
kinetic friction between the box and the floor?
a.
b.
c.
d.

22. The component of the weight parallel to an inclined
plane of an object resting on an incline that makes an
angle of with the horizontal is . What is
the object’s mass?
a.
b.
c.
d.

5.5 Simple Harmonic Motion
23. Two springs are attached to two hooks. Spring A has a

greater force constant than spring B. Equal weights are
suspended from both. Which of the following
statements is true?
a. Spring A will have more extension than spring B.
b. Spring B will have more extension than spring A.
c. Both springs will have equal extension.
d. Both springs are equally stiff.

24. Two simple harmonic oscillators are constructed by
attaching similar objects to two different springs. The
force constant of the spring on the left is and
that of the spring on the right is . If the same
force is applied to both, which of the following
statements is true?
a. The spring on the left will oscillate faster than

spring on the right.
b. The spring on the right will oscillate faster than the

spring on the left.
c. Both the springs will oscillate at the same rate.
d. The rate of oscillation is independent of the force

constant.

Problems
5.1 Vector Addition and Subtraction:
Graphical Methods
25. A person attempts to cross a river in a straight line by

navigating a boat at . If the river flows at
from his left to right, what would be the

magnitude of the boat’s resultant velocity? In what
direction would the boat go, relative to the straight line

across it?
a. The resultant velocity of the boat will be .

The boat will go toward his right at an angle of
to a line drawn across the river.

b. The resultant velocity of the boat will be .
The boat will go toward his left at an angle of
to a line drawn across the river.

c. The resultant velocity of the boat will be .
The boat will go toward his right at an angle of
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to a line drawn across the river.
d. The resultant velocity of the boat will be .

The boat will go toward his left at an angle of
to a line drawn across the river.

26. A river flows in a direction from south west to north east
at a velocity of . A boat captain wants to cross
this river to reach a point on the opposite shore due east
of the boat’s current position. The boat moves at
. Which direction should it head towards if the resultant
velocity is ?
a. It should head in a direction east of south.
b. It should head in a direction south of east.
c. It should head in a direction east of south.
d. It should head in a direction south of east.

5.2 Vector Addition and Subtraction:
Analytical Methods
27. A person walks 10.0 m north and then 2.00 m east.

Solving analytically, what is the resultant displacement
of the person?

a. = 10.2 m, θ = 78.7º east of north

b. = 10.2 m, θ = 78.7º north of east

c. = 12.0 m, θ = 78.7º east of north

d. = 12.0 m, θ = 78.7º north of east

28. A person walks north of west for and
south of west for . What is the magnitude

of his displacement? Solve analytically.
a.
b.
c.
d.

5.3 Projectile Motion
29. A water balloon cannon is fired at at an angle of

above the horizontal. How far away will it fall?
a.
b.
c.
d.

30. A person wants to fire a water balloon cannon such that
it hits a target 100 m away. If the cannon can only be
launched at 45° above the horizontal, what should be the
initial speed at which it is launched?
a. 31.3 m/s
b. 37.2 m/s
c. 980.0 m/s
d. 1,385.9 m/s

5.4 Inclined Planes
31. A coin is sliding down an inclined plane at constant

velocity. If the angle of the plane is to the horizontal,
what is the coefficient of kinetic friction?
a.
b.
c.
d.

32. A skier with a mass of 55 kg is skiing down a snowy slope
that has an incline of 30°. Find the coefficient of kinetic
friction for the skier if friction is known to be 25 N .
a.
b.
c.
d.

5.5 Simple Harmonic Motion
33. What is the time period of a long pendulum on

earth?
a.
b.
c.
d.

34. A simple harmonic oscillator has time period . If the
mass of the system is , what is the force constant of
the spring used?
a.
b.
c.
d.

Performance Task
5.5 Simple Harmonic Motion
35. Construct a seconds pendulum (pendulum with time

period 2 seconds).
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TEST PREP
Multiple Choice
5.1 Vector Addition and Subtraction:
Graphical Methods
36. True or False—We can use Pythagorean theorem to

calculate the length of the resultant vector obtained
from the addition of two vectors which are at right
angles to each other.
a. True
b. False

37. True or False—The direction of the resultant vector
depends on both the magnitude and direction of added
vectors.
a. True
b. False

38. A plane flies north at with a headwind blowing
from the north at . What is the resultant velocity
of the plane?
a. north
b. south
c. north
d. south

39. Two hikers take different routes to reach the same spot.
The first one goes southeast, then turns and goes

at south of east. The second hiker goes
south. How far and in which direction must the second
hiker travel now, in order to reach the first hiker's
location destination?
a. east
b. south
c. east
d. south

5.2 Vector Addition and Subtraction:
Analytical Methods
40. When will the x-component of a vector with angle be

greater than its y-component?
a.
b.
c.
d.

41. The resultant vector of the addition of vectors and

is . The magnitudes of , , and are , , and
, respectively. Which of the following is true?
a.

b.
c.

d.

42. What is the dimensionality of vectors used in the study
of atmospheric sciences?
a. One-dimensional
b. Two-dimensional
c. Three-dimensional

5.3 Projectile Motion
43. After a projectile is launched in the air, in which

direction does it experience constant, non-zero
acceleration, ignoring air resistance?
a. The x direction
b. The y direction
c. Both the x and y directions
d. Neither direction

44. Which is true when the height of a projectile is at its
maximum?
a.
b.
c.

45. A ball is thrown in the air at an angle of 40°. If the
maximum height it reaches is 10 m, what must be its
initial speed?
a. 17.46 m/s
b. 21.78 m/s
c. 304.92 m/s
d. 474.37 m/s

46. A large rock is ejected from a volcano with a speed of
and at an angle above the horizontal. The

rock strikes the side of the volcano at an altitude of
lower than its starting point. Calculate the

horizontal displacement of the rock.
a.
b.
c.
d.

5.4 Inclined Planes
47. For objects of identical masses but made of different

materials, which of the following experiences the most
static friction?
a. Shoes on ice
b. Metal on wood
c. Teflon on steel

48. If an object sits on an inclined plane and no other object
makes contact with the object, what is typically equal in
magnitude to the component of the weight
perpendicular to the plane?
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a. The normal force
b. The total weight
c. The parallel force of weight

49. A 5 kg box is at rest on the floor. The coefficient of static
friction between the box and the floor is 0.4. A
horizontal force of 50 N is applied to the box. Will it
move?
a. No, because the applied force is less than the

maximum limiting static friction.
b. No, because the applied force is more than the

maximum limiting static friction.
c. Yes, because the applied force is less than the

maximum limiting static friction.
d. Yes, because the applied force is more than the

maximum limiting static friction.

50. A skier with a mass of 67 kg is skiing down a snowy
slope with an incline of 37°. Find the friction if the
coefficient of kinetic friction is 0.07.
a. 27.66 N
b. 34.70 N
c. 36.71 N
d. 45.96 N

5.5 Simple Harmonic Motion
51. A change in which of the following is an example of

deformation?
a. Velocity
b. Length
c. Mass
d. Weight

52. The units of amplitude are the same as those for which
of the following measurements?
a. Speed
b. Displacement
c. Acceleration
d. Force

53. Up to approximately what angle is simple harmonic
motion a good model for a pendulum?
a.
b.
c.
d.

54. How would simple harmonic motion be different in the
absence of friction?
a. Oscillation will not happen in the absence of

friction.
b. Oscillation will continue forever in the absence of

friction.
c. Oscillation will have changing amplitude in the

absence of friction.
d. Oscillation will cease after a certain amount of time

in the absence of friction.

55. What mass needs to be attached to a spring with a force
constant of in order to make a simple harmonic
oscillator oscillate with a time period of ?
a.
b.
c.
d.

Short Answer
5.1 Vector Addition and Subtraction:
Graphical Methods

56. Find for the following vectors:

a. 108 cm,
b. 108 cm,
c. 206 cm,
d. 206 cm,

57. Find for the following vectors:

a. 108 cm,
b. 108 cm,
c. 232 cm,
d. 232 cm,

58. Consider six vectors of 2 cm each, joined from head to
tail making a hexagon. What would be the magnitude of

the addition of these vectors?
a. Zero
b. Six
c. Eight
d. Twelve

59. Two people pull on ropes tied to a trolley, each applying
44 N of force. The angle the ropes form with each other
is 39.5°. What is the magnitude of the net force exerted
on the trolley?
a. 0.0 N
b. 79.6 N
c. 82.8 N
d. 88.0 N

5.2 Vector Addition and Subtraction:
Analytical Methods
60. True or False—A vector can form the shape of a right

angle triangle with its x and y components.
a. True
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b. False

61. True or False—All vectors have positive x and y
components.
a. True
b. False

62. Consider . What is in terms of and
?

a.

b.

c.
d.

63. Consider . What is in terms of and
?

a.

b.

c.
d.

64. When a three dimensional vector is used in the study of
atmospheric sciences, what is z?
a. Altitude
b. Heat
c. Temperature
d. Wind speed

65. Which method is not an application of vector calculus?
a. To find the rate of change in atmospheric

temperature
b. To study changes in wind speed and direction
c. To predict changes in atmospheric pressure
d. To measure changes in average rainfall

5.3 Projectile Motion

66. How can you express the velocity, , of a projectile in
terms of its initial velocity, , acceleration, , and
time, ?
a.
b.
c.
d.

67. In the equation for the maximum height of a projectile,

what does stand for?

a. Initial velocity in the x direction
b. Initial velocity in the y direction
c. Final velocity in the x direction
d. Final velocity in the y direction

68. True or False—Range is defined as the maximum
vertical distance travelled by a projectile.

a. True
b. False

69. For what angle of a projectile is its range equal to zero?
a. or
b. or
c. or
d. or

5.4 Inclined Planes
70. What are the units of the coefficient of friction?

a.
b.
c.
d. unitless

71. Two surfaces in contact are moving slowly past each
other. As the relative speed between the two surfaces in
contact increases, what happens to the magnitude of
their coefficient of kinetic friction?
a. It increases with the increase in the relative

motion.
b. It decreases with the increase in the relative

motion.
c. It remains constant and is independent of the

relative motion.

72. When will an object slide down an inclined plane at
constant velocity?
a. When the magnitude of the component of the

weight along the slope is equal to the magnitude of
the frictional force.

b. When the magnitude of the component of the
weight along the slope is greater than the
magnitude of the frictional force.

c. When the magnitude of the component of the
weight perpendicular to the slope is less than the
magnitude of the frictional force.

d. When the magnitude of the component of the
weight perpendicular to the slope is equal to the
magnitude of the frictional force.

73. A box is sitting on an inclined plane. At what angle of
incline is the perpendicular component of the box's
weight at its maximum?
a.
b.
c.
d.

5.5 Simple Harmonic Motion
74. What is the term used for changes in shape due to the

application of force?
a. Amplitude
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b. Deformation
c. Displacement
d. Restoring force

75. What is the restoring force?
a. The normal force on the surface of an object
b. The weight of a mass attached to an object
c. Force which is applied to deform an object from its

original shape
d. Force which brings an object back to its equilibrium

position

76. For a given oscillator, what are the factors that affect its
period and frequency?
a. Mass only
b. Force constant only
c. Applied force and mass
d. Mass and force constant

77. For an object in simple harmonic motion, when does the

maximum speed occur?
a. At the extreme positions
b. At the equilibrium position
c. At the moment when the applied force is removed
d. Midway between the extreme and equilibrium

positions

78. What is the equilibrium position of a pendulum?
a. When the tension in the string is zero
b. When the pendulum is hanging straight down
c. When the tension in the string is maximum
d. When the weight of the mass attached is minimum

79. If a pendulum is displaced by an angle θ, what is the net
restoring force it experiences?
a. mgsinθ
b. mgcosθ
c. –mgsinθ
d. –mgcosθ

Extended Response
5.1 Vector Addition and Subtraction:
Graphical Methods
80. True or False—For vectors the order of addition is

important.
a. True
b. False

81. Consider five vectors a, b, c, d, and e. Is it true or false
that their addition always results in a vector with a
greater magnitude than if only two of the vectors were
added?
a. True
b. False

5.2 Vector Addition and Subtraction:
Analytical Methods
82. For what angle of a vector is it possible that its

magnitude will be equal to its y-component?
a.
b.
c.
d.

83. True or False—If only the angles of two vectors are
known, we can find the angle of their resultant addition
vector.
a. True
b. False

84. True or false—We can find the magnitude and direction
of the resultant vector if we know the angles of two
vectors and the magnitude of one.

a. True
b. False

5.3 Projectile Motion
85. Ignoring drag, what is the x-component of the

acceleration of a projectile? Why?
a. The x-component of the acceleration of a projectile

is because acceleration of a projectile is due to
gravity, which acts in the y direction.

b. The x component of the acceleration of a projectile
is because acceleration of a projectile is due to
gravity, which acts in the x direction.

c. The x-component of the acceleration of a projectile
is because acceleration of a projectile is due to
gravity, which acts in the x direction.

d. The x-component of the acceleration of a projectile
is because acceleration of a projectile is due to
gravity, which acts in the y direction.

86. What is the optimum angle at which a projectile should
be launched in order to cover the maximum distance?
a.
b.
c.
d.

5.4 Inclined Planes
87. True or False—Friction varies from surface to surface

because different substances have different degrees of
roughness or smoothness.
a. True
b. False

88. As the angle of the incline gets larger, what happens to
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the magnitudes of the perpendicular and parallel
components of gravitational force?
a. Both the perpendicular and the parallel component

will decrease.
b. The perpendicular component will decrease and

the parallel component will increase.
c. The perpendicular component will increase and the

parallel component will decrease.
d. Both the perpendicular and the parallel component

will increase.

5.5 Simple Harmonic Motion
89. What physical characteristic of a system is its force

constant related to?
a. The force constant k is related to the stiffness of a

system: The larger the force constant, the stiffer the
system.

b. The force constant k is related to the stiffness of a
system: The larger the force constant, the looser the
system.

c. The force constant k is related to the friction in the
system: The larger the force constant, the greater
the friction in the system.

d. The force constant k is related to the friction in the
system: The larger the force constant, the lower the
friction in the system.

90. How or why does a pendulum oscillate?
a. A pendulum oscillates due to applied force.
b. A pendulum oscillates due to the elastic nature of

the string.
c. A pendulum oscillates due to restoring force

arising from gravity.
d. A pendulum oscillates due to restoring force

arising from tension in the string.

91. If a pendulum from earth is taken to the moon, will its
frequency increase or decrease? Why?
a. It will increase because on the Moon is less than

on Earth.
b. It will decrease because on the Moon is less than

on Earth.
c. It will increase because on the Moon is greater

than on Earth.
d. It will decrease because on the Moon is greater

than on Earth.
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INTRODUCTION

CHAPTER 6
Circular and Rotational Motion

6.1 Angle of Rotation and Angular Velocity

6.2 Uniform Circular Motion

6.3 Rotational Motion

You may recall learning about various aspects of motion along a straight line: kinematics (where we learned
about displacement, velocity, and acceleration), projectile motion (a special case of two-dimensional kinematics), force, and
Newton’s laws of motion. In some ways, this chapter is a continuation of Newton’s laws of motion. Recall that Newton’s first law
tells us that objects move along a straight line at constant speed unless a net external force acts on them. Therefore, if an object
moves along a circular path, such as the car in the photo, it must be experiencing an external force. In this chapter, we explore
both circular motion and rotational motion.

Figure 6.1 This Australian Grand Prix Formula 1 race car moves in a circular path as it makes the turn. Its wheels
also spin rapidly. The same physical principles are involved in both of these motions. (Richard Munckton).

Chapter Outline



6.1 Angle of Rotation and Angular Velocity
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the angle of rotation and relate it to its linear counterpart
• Describe angular velocity and relate it to its linear counterpart
• Solve problems involving angle of rotation and angular velocity

Section Key Terms

angle of rotation angular velocity arc length circular motion

radius of curvature rotational motion spin tangential velocity

Angle of Rotation
What exactly do we mean by circular motion or rotation? Rotational motion is the circular motion of an object about an axis of
rotation. We will discuss specifically circular motion and spin. Circular motion is when an object moves in a circular path.
Examples of circular motion include a race car speeding around a circular curve, a toy attached to a string swinging in a circle
around your head, or the circular loop-the-loop on a roller coaster. Spin is rotation about an axis that goes through the center of
mass of the object, such as Earth rotating on its axis, a wheel turning on its axle, the spin of a tornado on its path of destruction,
or a figure skater spinning during a performance at the Olympics. Sometimes, objects will be spinning while in circular motion,
like the Earth spinning on its axis while revolving around the Sun, but we will focus on these two motions separately.

When solving problems involving rotational motion, we use variables that are similar to linear variables (distance, velocity,
acceleration, and force) but take into account the curvature or rotation of the motion. Here, we define the angle of rotation,
which is the angular equivalence of distance; and angular velocity, which is the angular equivalence of linear velocity.

When objects rotate about some axis—for example, when the CD in Figure 6.2 rotates about its center—each point in the object
follows a circular path.

Figure 6.2 All points on a CD travel in circular paths. The pits (dots) along a line from the center to the edge all move through the same

angle in time .

The arc length, , is the distance traveled along a circular path. The radius of curvature, r, is the radius of the circular path. Both
are shown in Figure 6.3.
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Figure 6.3 The radius (r) of a circle is rotated through an angle . The arc length, , is the distance covered along the circumference.

Consider a line from the center of the CD to its edge. In a given time, each pit (used to record information) on this line moves
through the same angle. The angle of rotation is the amount of rotation and is the angular analog of distance. The angle of
rotation is the arc length divided by the radius of curvature.

The angle of rotation is often measured by using a unit called the radian. (Radians are actually dimensionless, because a radian
is defined as the ratio of two distances, radius and arc length.) A revolution is one complete rotation, where every point on the
circle returns to its original position. One revolution covers radians (or 360 degrees), and therefore has an angle of rotation
of radians, and an arc length that is the same as the circumference of the circle. We can convert between radians,
revolutions, and degrees using the relationship

1 revolution = rad = 360°. See Table 6.1 for the conversion of degrees to radians for some common angles.

Degree Measures Radian Measures

Table 6.1 Commonly Used Angles in Terms of
Degrees and Radians

Angular Velocity
How fast is an object rotating? We can answer this question by using the concept of angular velocity. Consider first the angular
speed is the rate at which the angle of rotation changes. In equation form, the angular speed is

which means that an angular rotation occurs in a time, . If an object rotates through a greater angle of rotation in a
given time, it has a greater angular speed. The units for angular speed are radians per second (rad/s).

Now let’s consider the direction of the angular speed, which means we now must call it the angular velocity. The direction of the

6.1

6.2
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angular velocity is along the axis of rotation. For an object rotating clockwise, the angular velocity points away from you along
the axis of rotation. For an object rotating counterclockwise, the angular velocity points toward you along the axis of rotation.

Angular velocity (ω) is the angular version of linear velocity v. Tangential velocity is the instantaneous linear velocity of an
object in rotational motion. To get the precise relationship between angular velocity and tangential velocity, consider again a pit
on the rotating CD. This pit moves through an arc length in a short time so its tangential speed is

From the definition of the angle of rotation, , we see that . Substituting this into the expression for v gives

The equation says that the tangential speed v is proportional to the distance r from the center of rotation. Consequently,
tangential speed is greater for a point on the outer edge of the CD (with larger r) than for a point closer to the center of the CD
(with smaller r). This makes sense because a point farther out from the center has to cover a longer arc length in the same
amount of time as a point closer to the center. Note that both points will still have the same angular speed, regardless of their
distance from the center of rotation. See Figure 6.4.

Figure 6.4 Points 1 and 2 rotate through the same angle ( ), but point 2 moves through a greater arc length ( ) because it is farther

from the center of rotation.

Now, consider another example: the tire of a moving car (see Figure 6.5). The faster the tire spins, the faster the car moves—large
means large v because . Similarly, a larger-radius tire rotating at the same angular velocity, , will produce a greater

linear (tangential) velocity, v, for the car. This is because a larger radius means a longer arc length must contact the road, so the
car must move farther in the same amount of time.

6.3
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Figure 6.5 A car moving at a velocity, v, to the right has a tire rotating with angular velocity . The speed of the tread of the tire relative to

the axle is v, the same as if the car were jacked up and the wheels spinning without touching the road. Directly below the axle, where the

tire touches the road, the tire tread moves backward with respect to the axle with tangential velocity , where r is the tire radius.

Because the road is stationary with respect to this point of the tire, the car must move forward at the linear velocity v. A larger angular

velocity for the tire means a greater linear velocity for the car.

However, there are cases where linear velocity and tangential velocity are not equivalent, such as a car spinning its tires on ice.
In this case, the linear velocity will be less than the tangential velocity. Due to the lack of friction under the tires of a car on ice,
the arc length through which the tire treads move is greater than the linear distance through which the car moves. It’s similar to
running on a treadmill or pedaling a stationary bike; you are literally going nowhere fast.

TIPS FOR SUCCESS
Angular velocityω and tangential velocity v are vectors, so we must include magnitude and direction. The direction of the
angular velocity is along the axis of rotation, and points away from you for an object rotating clockwise, and toward you for
an object rotating counterclockwise. In mathematics this is described by the right-hand rule. Tangential velocity is usually
described as up, down, left, right, north, south, east, or west, as shown in Figure 6.6.

Figure 6.6 As the fly on the edge of an old-fashioned vinyl record moves in a circle, its instantaneous velocity is always at a tangent to

the circle. The direction of the angular velocity is into the page this case.
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WATCH PHYSICS

Relationship between Angular Velocity and Speed
This video reviews the definition and units of angular velocity and relates it to linear speed. It also shows how to convert
between revolutions and radians.

Click to view content (https://www.youtube.com/embed/zAx61CO5mDw)

GRASP CHECK
For an object traveling in a circular path at a constant angular speed, would the linear speed of the object change if the radius
of the path increases?
a. Yes, because tangential speed is independent of the radius.
b. Yes, because tangential speed depends on the radius.
c. No, because tangential speed is independent of the radius.
d. No, because tangential speed depends on the radius.

Solving Problems Involving Angle of Rotation and Angular Velocity

Snap Lab

Measuring Angular Speed
In this activity, you will create and measure uniform circular motion and then contrast it with circular motions with
different radii.

• One string (1 m long)
• One object (two-hole rubber stopper) to tie to the end
• One timer

Procedure
1. Tie an object to the end of a string.
2. Swing the object around in a horizontal circle above your head (swing from your wrist). It is important that the circle

be horizontal!
3. Maintain the object at uniform speed as it swings.
4. Measure the angular speed of the object in this manner. Measure the time it takes in seconds for the object to travel 10

revolutions. Divide that time by 10 to get the angular speed in revolutions per second, which you can convert to radians
per second.

5. What is the approximate linear speed of the object?
6. Move your hand up the string so that the length of the string is 90 cm. Repeat steps 2–5.
7. Move your hand up the string so that its length is 80 cm. Repeat steps 2–5.
8. Move your hand up the string so that its length is 70 cm. Repeat steps 2–5.
9. Move your hand up the string so that its length is 60 cm. Repeat steps 2–5

10. Move your hand up the string so that its length is 50 cm. Repeat steps 2–5
11. Make graphs of angular speed vs. radius (i.e. string length) and linear speed vs. radius. Describe what each graph looks

like.

GRASP CHECK
If you swing an object slowly, it may rotate at less than one revolution per second. What would be the revolutions per
second for an object that makes one revolution in five seconds? What would be its angular speed in radians per second?
a. The object would spin at . The angular speed of the object would be .

b. The object would spin at . The angular speed of the object would be .
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Now that we have an understanding of the concepts of angle of rotation and angular velocity, we’ll apply them to the real-world
situations of a clock tower and a spinning tire.

WORKED EXAMPLE

Angle of rotation at a Clock Tower
The clock on a clock tower has a radius of 1.0 m. (a) What angle of rotation does the hour hand of the clock travel through when it
moves from 12 p.m. to 3 p.m.? (b) What’s the arc length along the outermost edge of the clock between the hour hand at these
two times?
Strategy
We can figure out the angle of rotation by multiplying a full revolution ( radians) by the fraction of the 12 hours covered by the
hour hand in going from 12 to 3. Once we have the angle of rotation, we can solve for the arc length by rearranging the equation

since the radius is given.

Solution to (a)
In going from 12 to 3, the hour hand covers 1/4 of the 12 hours needed to make a complete revolution. Therefore, the angle
between the hour hand at 12 and at 3 is (i.e., 90 degrees).

Solution to (b)
Rearranging the equation

we get

Inserting the known values gives an arc length of

Discussion
We were able to drop the radians from the final solution to part (b) because radians are actually dimensionless. This is because
the radian is defined as the ratio of two distances (radius and arc length). Thus, the formula gives an answer in units of meters,
as expected for an arc length.

WORKED EXAMPLE

How Fast Does a Car Tire Spin?
Calculate the angular speed of a 0.300 m radius car tire when the car travels at 15.0 m/s (about 54 km/h). See Figure 6.5.
Strategy
In this case, the speed of the tire tread with respect to the tire axle is the same as the speed of the car with respect to the road, so
we have v = 15.0 m/s. The radius of the tire is r = 0.300 m. Since we know v and r, we can rearrange the equation , to get

and find the angular speed.

Solution
To find the angular speed, we use the relationship: .

c. The object would spin at . The angular speed of the object would be .
d. The object would spin at . The angular speed of the object would be .

6.4

6.5

6.6
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Inserting the known quantities gives

Discussion
When we cancel units in the above calculation, we get 50.0/s (i.e., 50.0 per second, which is usually written as 50.0 s−1). But the
angular speed must have units of rad/s. Because radians are dimensionless, we can insert them into the answer for the angular
speed because we know that the motion is circular. Also note that, if an earth mover with much larger tires, say 1.20 m in radius,
were moving at the same speed of 15.0 m/s, its tires would rotate more slowly. They would have an angular speed of

Practice Problems
1. What is the angle in degrees between the hour hand and the minute hand of a clock showing 9:00 a.m.?

a. 0°
b. 90°
c. 180°
d. 360°

2. What is the approximate value of the arc length between the hour hand and the minute hand of a clock showing 10:00 a.m if
the radius of the clock is 0.2 m?
a. 0.1 m
b. 0.2 m
c. 0.3 m
d. 0.6 m

Check Your Understanding
3. What is circular motion?

a. Circular motion is the motion of an object when it follows a linear path.
b. Circular motion is the motion of an object when it follows a zigzag path.
c. Circular motion is the motion of an object when it follows a circular path.
d. Circular motion is the movement of an object along the circumference of a circle or rotation along a circular path.

4. What is meant by radius of curvature when describing rotational motion?
a. The radius of curvature is the radius of a circular path.
b. The radius of curvature is the diameter of a circular path.
c. The radius of curvature is the circumference of a circular path.
d. The radius of curvature is the area of a circular path.

5. What is angular velocity?
a. Angular velocity is the rate of change of the diameter of the circular path.
b. Angular velocity is the rate of change of the angle subtended by the circular path.
c. Angular velocity is the rate of change of the area of the circular path.
d. Angular velocity is the rate of change of the radius of the circular path.

6. What equation defines angular velocity, ? Take that is the radius of curvature, is the angle, and is time.
a.

b.

c.

d.

7. Identify three examples of an object in circular motion.

6.7

6.8
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a. an artificial satellite orbiting the Earth, a race car moving in the circular race track, and a top spinning on its axis
b. an artificial satellite orbiting the Earth, a race car moving in the circular race track, and a ball tied to a string being

swung in a circle around a person's head
c. Earth spinning on its own axis, a race car moving in the circular race track, and a ball tied to a string being swung in a

circle around a person's head
d. Earth spinning on its own axis, blades of a working ceiling fan, and a top spinning on its own axis

8. What is the relative orientation of the radius and tangential velocity vectors of an object in uniform circular motion?
a. Tangential velocity vector is always parallel to the radius of the circular path along which the object moves.
b. Tangential velocity vector is always perpendicular to the radius of the circular path along which the object moves.
c. Tangential velocity vector is always at an acute angle to the radius of the circular path along which the object moves.
d. Tangential velocity vector is always at an obtuse angle to the radius of the circular path along which the object moves.

6.2 Uniform Circular Motion
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe centripetal acceleration and relate it to linear acceleration
• Describe centripetal force and relate it to linear force
• Solve problems involving centripetal acceleration and centripetal force

Section Key Terms

centrifugal force centripetal acceleration centripetal force uniform circular motion

Centripetal Acceleration
In the previous section, we defined circular motion. The simplest case of circular motion is uniform circular motion, where an
object travels a circular path at a constant speed. Note that, unlike speed, the linear velocity of an object in circular motion is
constantly changing because it is always changing direction. We know from kinematics that acceleration is a change in velocity,
either in magnitude or in direction or both. Therefore, an object undergoing uniform circular motion is always accelerating,
even though the magnitude of its velocity is constant.

You experience this acceleration yourself every time you ride in a car while it turns a corner. If you hold the steering wheel steady
during the turn and move at a constant speed, you are executing uniform circular motion. What you notice is a feeling of sliding
(or being flung, depending on the speed) away from the center of the turn. This isn’t an actual force that is acting on you—it only
happens because your body wants to continue moving in a straight line (as per Newton’s first law) whereas the car is turning off
this straight-line path. Inside the car it appears as if you are forced away from the center of the turn. This fictitious force is
known as the centrifugal force. The sharper the curve and the greater your speed, the more noticeable this effect becomes.

Figure 6.7 shows an object moving in a circular path at constant speed. The direction of the instantaneous tangential velocity is
shown at two points along the path. Acceleration is in the direction of the change in velocity; in this case it points roughly toward
the center of rotation. (The center of rotation is at the center of the circular path). If we imagine becoming smaller and
smaller, then the acceleration would point exactly toward the center of rotation, but this case is hard to draw. We call the
acceleration of an object moving in uniform circular motion the centripetal acceleration ac because centripetal means center
seeking.
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Figure 6.7 The directions of the velocity of an object at two different points are shown, and the change in velocity is seen to point

approximately toward the center of curvature (see small inset). For an extremely small value of , points exactly toward the center of

the circle (but this is hard to draw). Because , the acceleration is also toward the center, so ac is called centripetal acceleration.

Now that we know that the direction of centripetal acceleration is toward the center of rotation, let’s discuss the magnitude of
centripetal acceleration. For an object traveling at speed v in a circular path with radius r, the magnitude of centripetal
acceleration is

Centripetal acceleration is greater at high speeds and in sharp curves (smaller radius), as you may have noticed when driving a
car, because the car actually pushes you toward the center of the turn. But it is a bit surprising that ac is proportional to the
speed squared. This means, for example, that the acceleration is four times greater when you take a curve at 100 km/h than at 50
km/h.

We can also express ac in terms of the magnitude of angular velocity. Substituting into the equation above, we get

. Therefore, the magnitude of centripetal acceleration in terms of the magnitude of angular velocity is

TIPS FOR SUCCESS
The equation expressed in the form ac = rω2 is useful for solving problems where you know the angular velocity rather than
the tangential velocity.

6.9

Virtual Physics

Ladybug Motion in 2D
In this simulation, you experiment with the position, velocity, and acceleration of a ladybug in circular and elliptical
motion. Switch the type of motion from linear to circular and observe the velocity and acceleration vectors. Next, try
elliptical motion and notice how the velocity and acceleration vectors differ from those in circular motion.

Click to view content (https://archive.cnx.org/specials/317a2b1e-2fbd-11e5-99b5-e38ffb545fe6/ladybug-motion/)
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Centripetal Force
Because an object in uniform circular motion undergoes constant acceleration (by changing direction), we know from Newton’s
second law of motion that there must be a constant net external force acting on the object.

Any force or combination of forces can cause a centripetal acceleration. Just a few examples are the tension in the rope on a
tether ball, the force of Earth’s gravity on the Moon, the friction between a road and the tires of a car as it goes around a curve, or
the normal force of a roller coaster track on the cart during a loop-the-loop.

Any net force causing uniform circular motion is called a centripetal force. The direction of a centripetal force is toward the
center of rotation, the same as for centripetal acceleration. According to Newton’s second law of motion, a net force causes the
acceleration of mass according to Fnet = ma. For uniform circular motion, the acceleration is centripetal acceleration: a = ac.
Therefore, the magnitude of centripetal force, Fc, is .

By using the two different forms of the equation for the magnitude of centripetal acceleration, and , we
get two expressions involving the magnitude of the centripetal force Fc. The first expression is in terms of tangential speed, the

second is in terms of angular speed: and .

Both forms of the equation depend on mass, velocity, and the radius of the circular path. You may use whichever expression for
centripetal force is more convenient. Newton’s second law also states that the object will accelerate in the same direction as the
net force. By definition, the centripetal force is directed towards the center of rotation, so the object will also accelerate towards
the center. A straight line drawn from the circular path to the center of the circle will always be perpendicular to the tangential
velocity. Note that, if you solve the first expression for r, you get

From this expression, we see that, for a given mass and velocity, a large centripetal force causes a small radius of
curvature—that is, a tight curve.

GRASP CHECK
In uniform circular motion, what is the angle between the acceleration and the velocity? What type of acceleration does a
body experience in the uniform circular motion?
a. The angle between acceleration and velocity is 0°, and the body experiences linear acceleration.
b. The angle between acceleration and velocity is 0°, and the body experiences centripetal acceleration.
c. The angle between acceleration and velocity is 90°, and the body experiences linear acceleration.
d. The angle between acceleration and velocity is 90°, and the body experiences centripetal acceleration.
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Figure 6.8 In this figure, the frictional force f serves as the centripetal force Fc. Centripetal force is perpendicular to tangential velocity and

causes uniform circular motion. The larger the centripetal force Fc, the smaller is the radius of curvature r and the sharper is the curve. The

lower curve has the same velocity v, but a larger centripetal force Fc produces a smaller radius .

WATCH PHYSICS

Centripetal Force and Acceleration Intuition
This video explains why a centripetal force creates centripetal acceleration and uniform circular motion. It also covers the
difference between speed and velocity and shows examples of uniform circular motion.

Click to view content (https://www.youtube.com/embed/vZOk8NnjILg)

GRASP CHECK
Imagine that you are swinging a yoyo in a vertical clockwise circle in front of you, perpendicular to the direction you are
facing. Now, imagine that the string breaks just as the yoyo reaches its bottommost position, nearest the floor. Which of the
following describes the path of the yoyo after the string breaks?
a. The yoyo will fly upward in the direction of the centripetal force.
b. The yoyo will fly downward in the direction of the centripetal force.
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c. The yoyo will fly to the left in the direction of the tangential velocity.
d. The yoyo will fly to the right in the direction of the tangential velocity.

Solving Centripetal Acceleration and Centripetal Force Problems
To get a feel for the typical magnitudes of centripetal acceleration, we’ll do a lab estimating the centripetal acceleration of a
tennis racket and then, in our first Worked Example, compare the centripetal acceleration of a car rounding a curve to
gravitational acceleration. For the second Worked Example, we’ll calculate the force required to make a car round a curve.

WORKED EXAMPLE

Comparing Centripetal Acceleration of a Car Rounding a Curve with Acceleration Due to
Gravity
A car follows a curve of radius 500 m at a speed of 25.0 m/s (about 90 km/h). What is the magnitude of the car’s centripetal
acceleration? Compare the centripetal acceleration for this fairly gentle curve taken at highway speed with acceleration due to
gravity (g).

Snap Lab

Estimating Centripetal Acceleration
In this activity, you will measure the swing of a golf club or tennis racket to estimate the centripetal acceleration of the end
of the club or racket. You may choose to do this in slow motion. Recall that the equation for centripetal acceleration is

or .

• One tennis racket or golf club
• One timer
• One ruler or tape measure

Procedure
1. Work with a partner. Stand a safe distance away from your partner as he or she swings the golf club or tennis racket.
2. Describe the motion of the swing—is this uniform circular motion? Why or why not?
3. Try to get the swing as close to uniform circular motion as possible. What adjustments did your partner need to make?
4. Measure the radius of curvature. What did you physically measure?
5. By using the timer, find either the linear or angular velocity, depending on which equation you decide to use.
6. What is the approximate centripetal acceleration based on these measurements? How accurate do you think they are?

Why? How might you and your partner make these measurements more accurate?

GRASP CHECK

Was it more useful to use the equation or in this activity? Why?

a. It should be simpler to use because measuring angular velocity through observation would be easier.

b. It should be simpler to use because measuring tangential velocity through observation would be easier.

c. It should be simpler to use because measuring angular velocity through observation would be difficult.

d. It should be simpler to use because measuring tangential velocity through observation would be difficult.
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Strategy
Because linear rather than angular speed is given, it is most convenient to use the expression to find the magnitude of
the centripetal acceleration.

Solution
Entering the given values of v = 25.0 m/s and r = 500 m into the expression for ac gives

Discussion
To compare this with the acceleration due to gravity (g = 9.80 m/s2), we take the ratio

. Therefore, , which means that the centripetal acceleration is about
one tenth the acceleration due to gravity.

WORKED EXAMPLE

Frictional Force on Car Tires Rounding a Curve
a. Calculate the centripetal force exerted on a 900 kg car that rounds a 600-m-radius curve on horizontal ground at 25.0 m/s.
b. Static friction prevents the car from slipping. Find the magnitude of the frictional force between the tires and the road that

allows the car to round the curve without sliding off in a straight line.
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Strategy and Solution for (a)
We know that . Therefore,

Strategy and Solution for (b)
The image above shows the forces acting on the car while rounding the curve. In this diagram, the car is traveling into the page
as shown and is turning to the left. Friction acts toward the left, accelerating the car toward the center of the curve. Because
friction is the only horizontal force acting on the car, it provides all of the centripetal force in this case. Therefore, the force of
friction is the centripetal force in this situation and points toward the center of the curve.

Discussion
Since we found the force of friction in part (b), we could also solve for the coefficient of friction, since .

Practice Problems
9. What is the centripetal acceleration of an object with speed going along a path of radius ?

a.
b.
c.
d.

10. Calculate the centripetal acceleration of an object following a path with a radius of a curvature of 0.2 m and at an angular
velocity of 5 rad/s.
a. 1 m/s
b. 5 m/s
c. 1 m/s2

d. 5 m/s2

Check Your Understanding
11. What is uniform circular motion?
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a. Uniform circular motion is when an object accelerates on a circular path at a constantly increasing velocity.
b. Uniform circular motion is when an object travels on a circular path at a variable acceleration.
c. Uniform circular motion is when an object travels on a circular path at a constant speed.
d. Uniform circular motion is when an object travels on a circular path at a variable speed.

12. What is centripetal acceleration?
a. The acceleration of an object moving in a circular path and directed radially toward the center of the circular orbit
b. The acceleration of an object moving in a circular path and directed tangentially along the circular path
c. The acceleration of an object moving in a linear path and directed in the direction of motion of the object
d. The acceleration of an object moving in a linear path and directed in the direction opposite to the motion of the object

13. Is there a net force acting on an object in uniform circular motion?
a. Yes, the object is accelerating, so a net force must be acting on it.
b. Yes, because there is no acceleration.
c. No, because there is acceleration.
d. No, because there is no acceleration.

14. Identify two examples of forces that can cause centripetal acceleration.
a. The force of Earth’s gravity on the moon and the normal force
b. The force of Earth’s gravity on the moon and the tension in the rope on an orbiting tetherball
c. The normal force and the force of friction acting on a moving car
d. The normal force and the tension in the rope on a tetherball

6.3 Rotational Motion
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe rotational kinematic variables and equations and relate them to their linear counterparts
• Describe torque and lever arm
• Solve problems involving torque and rotational kinematics

Section Key Terms

angular acceleration kinematics of rotational motion lever arm

tangential acceleration torque

Rotational Kinematics
In the section on uniform circular motion, we discussed motion in a circle at constant speed and, therefore, constant angular
velocity. However, there are times when angular velocity is not constant—rotational motion can speed up, slow down, or reverse
directions. Angular velocity is not constant when a spinning skater pulls in her arms, when a child pushes a merry-go-round to
make it rotate, or when a CD slows to a halt when switched off. In all these cases, angular acceleration occurs because the
angular velocity changes. The faster the change occurs, the greater is the angular acceleration. Angular acceleration is the
rate of change of angular velocity. In equation form, angular acceleration is

where is the change in angular velocity and is the change in time. The units of angular acceleration are (rad/s)/s, or rad/
s2. If increases, then is positive. If decreases, then is negative. Keep in mind that, by convention, counterclockwise is
the positive direction and clockwise is the negative direction. For example, the skater in Figure 6.9 is rotating counterclockwise
as seen from above, so her angular velocity is positive. Acceleration would be negative, for example, when an object that is
rotating counterclockwise slows down. It would be positive when an object that is rotating counterclockwise speeds up.
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Figure 6.9 A figure skater spins in the counterclockwise direction, so her angular velocity is normally considered to be positive. (Luu,

Wikimedia Commons)

The relationship between the magnitudes of tangential acceleration, a, and angular acceleration,

These equations mean that the magnitudes of tangential acceleration and angular acceleration are directly proportional to each
other. The greater the angular acceleration, the larger the change in tangential acceleration, and vice versa. For example,
consider riders in their pods on a Ferris wheel at rest. A Ferris wheel with greater angular acceleration will give the riders
greater tangential acceleration because, as the Ferris wheel increases its rate of spinning, it also increases its tangential velocity.
Note that the radius of the spinning object also matters. For example, for a given angular acceleration , a smaller Ferris wheel
leads to a smaller tangential acceleration for the riders.

TIPS FOR SUCCESS
Tangential acceleration is sometimes denoted at. It is a linear acceleration in a direction tangent to the circle at the point of
interest in circular or rotational motion. Remember that tangential acceleration is parallel to the tangential velocity (either in
the same direction or in the opposite direction.) Centripetal acceleration is always perpendicular to the tangential velocity.

So far, we have defined three rotational variables: , , and . These are the angular versions of the linear variables x, v, and a.
Table 6.2 shows how they are related.

Rotational Linear Relationship

x

Table 6.2 Rotational and Linear Variables

6.10
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Rotational Linear Relationship

v

a

Table 6.2 Rotational and Linear Variables

We can now begin to see how rotational quantities like , , and are related to each other. For example, if a motorcycle wheel
that starts at rest has a large angular acceleration for a fairly long time, it ends up spinning rapidly and rotates through many
revolutions. Putting this in terms of the variables, if the wheel’s angular acceleration is large for a long period of time t, then
the final angular velocity and angle of rotation are large. In the case of linear motion, if an object starts at rest and
undergoes a large linear acceleration, then it has a large final velocity and will have traveled a large distance.

The kinematics of rotational motion describes the relationships between the angle of rotation, angular velocity, angular
acceleration, and time. It only describes motion—it does not include any forces or masses that may affect rotation (these are
part of dynamics). Recall the kinematics equation for linear motion: (constant a).

As in linear kinematics, we assume a is constant, which means that angular acceleration is also a constant, because .
The equation for the kinematics relationship between , , and t is

where is the initial angular velocity. Notice that the equation is identical to the linear version, except with angular analogs of
the linear variables. In fact, all of the linear kinematics equations have rotational analogs, which are given in Table 6.3. These
equations can be used to solve rotational or linear kinematics problem in which a and are constant.

Rotational Linear

constant , a

constant , a

constant , a

Table 6.3 Equations for Rotational Kinematics

In these equations, and are initial values, is zero, and the average angular velocity and average velocity are
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FUN IN PHYSICS

Storm Chasing

Figure 6.10 Tornadoes descend from clouds in funnel-like shapes that spin violently. (Daphne Zaras, U.S. National Oceanic and

Atmospheric Administration)

Storm chasers tend to fall into one of three groups: Amateurs chasing tornadoes as a hobby, atmospheric scientists gathering
data for research, weather watchers for news media, or scientists having fun under the guise of work. Storm chasing is a
dangerous pastime because tornadoes can change course rapidly with little warning. Since storm chasers follow in the wake of
the destruction left by tornadoes, changing flat tires due to debris left on the highway is common. The most active part of the
world for tornadoes, called tornado alley, is in the central United States, between the Rocky Mountains and Appalachian
Mountains.

Tornadoes are perfect examples of rotational motion in action in nature. They come out of severe thunderstorms called
supercells, which have a column of air rotating around a horizontal axis, usually about four miles across. The difference in wind
speeds between the strong cold winds higher up in the atmosphere in the jet stream and weaker winds traveling north from the
Gulf of Mexico causes the column of rotating air to shift so that it spins around a vertical axis, creating a tornado.

Tornadoes produce wind speeds as high as 500 km/h (approximately 300 miles/h), particularly at the bottom where the funnel is
narrowest because the rate of rotation increases as the radius decreases. They blow houses away as if they were made of paper
and have been known to pierce tree trunks with pieces of straw.

GRASP CHECK
What is the physics term for the eye of the storm? Why would winds be weaker at the eye of the tornado than at its outermost
edge?
a. The eye of the storm is the center of rotation. Winds are weaker at the eye of a tornado because tangential velocity is

directly proportional to radius of curvature.
b. The eye of the storm is the center of rotation. Winds are weaker at the eye of a tornado because tangential velocity is

inversely proportional to radius of curvature.
c. The eye of the storm is the center of rotation. Winds are weaker at the eye of a tornado because tangential velocity is

directly proportional to the square of the radius of curvature.
d. The eye of the storm is the center of rotation. Winds are weaker at the eye of a tornado because tangential velocity is

inversely proportional to the square of the radius of curvature.

Torque
If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular velocity. The
farther the force is applied from the pivot point (or fulcrum), the greater the angular acceleration. For example, a door opens
slowly if you push too close to its hinge, but opens easily if you push far from the hinges. Furthermore, we know that the more
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massive the door is, the more slowly it opens; this is because angular acceleration is inversely proportional to mass. These
relationships are very similar to the relationships between force, mass, and acceleration from Newton’s second law of motion.
Since we have already covered the angular versions of distance, velocity and time, you may wonder what the angular version of
force is, and how it relates to linear force.

The angular version of force is torque , which is the turning effectiveness of a force. See Figure 6.11. The equation for the
magnitude of torque is

where r is the magnitude of the lever arm, F is the magnitude of the linear force, and is the angle between the lever arm and
the force. The lever arm is the vector from the point of rotation (pivot point or fulcrum) to the location where force is applied.
Since the magnitude of the lever arm is a distance, its units are in meters, and torque has units of N⋅m. Torque is a vector
quantity and has the same direction as the angular acceleration that it produces.

Figure 6.11 A man pushes a merry-go-round at its edge and perpendicular to the lever arm to achieve maximum torque.

Applying a stronger torque will produce a greater angular acceleration. For example, the harder the man pushes the merry-go-
round in Figure 6.11, the faster it accelerates. Furthermore, the more massive the merry-go-round is, the slower it accelerates for
the same torque. If the man wants to maximize the effect of his force on the merry-go-round, he should push as far from the
center as possible to get the largest lever arm and, therefore, the greatest torque and angular acceleration. Torque is also
maximized when the force is applied perpendicular to the lever arm.

Solving Rotational Kinematics and Torque Problems
Just as linear forces can balance to produce zero net force and no linear acceleration, the same is true of rotational motion.
When two torques of equal magnitude act in opposing directions, there is no net torque and no angular acceleration, as you can
see in the following video. If zero net torque acts on a system spinning at a constant angular velocity, the system will continue to
spin at the same angular velocity.

WATCH PHYSICS

Introduction to Torque
This video (https://www.khanacademy.org/science/physics/torque-angular-momentum/torque-tutorial/v/introduction-to-
torque) defines torque in terms of moment arm (which is the same as lever arm). It also covers a problem with forces acting in
opposing directions about a pivot point. (At this stage, you can ignore Sal’s references to work and mechanical advantage.)

GRASP CHECK
Click to view content (https://www.openstax.org/l/28torque)
If the net torque acting on the ruler from the example was positive instead of zero, what would this say about the angular
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acceleration? What would happen to the ruler over time?
a. The ruler is in a state of rotational equilibrium so it will not rotate about its center of mass. Thus, the angular

acceleration will be zero.
b. The ruler is not in a state of rotational equilibrium so it will not rotate about its center of mass. Thus, the angular

acceleration will be zero.
c. The ruler is not in a state of rotational equilibrium so it will rotate about its center of mass. Thus, the angular

acceleration will be non-zero.
d. The ruler is in a state of rotational equilibrium so it will rotate about its center of mass. Thus, the angular acceleration

will be non-zero.

Now let’s look at examples applying rotational kinematics to a fishing reel and the concept of torque to a merry-go-round.

WORKED EXAMPLE

Calculating the Time for a Fishing Reel to Stop Spinning
A deep-sea fisherman uses a fishing rod with a reel of radius 4.50 cm. A big fish takes the bait and swims away from the boat,
pulling the fishing line from his fishing reel. As the fishing line unwinds from the reel, the reel spins at an angular velocity of 220
rad/s. The fisherman applies a brake to the spinning reel, creating an angular acceleration of −300 rad/s2. How long does it take
the reel to come to a stop?

Strategy
We are asked to find the time t for the reel to come to a stop. The magnitude of the initial angular velocity is rad/s,
and the magnitude of the final angular velocity . The signed magnitude of the angular acceleration is rad/s2,
where the minus sign indicates that it acts in the direction opposite to the angular velocity. Looking at the rotational kinematic
equations, we see all quantities but t are known in the equation , making it the easiest equation to use for this
problem.

Solution
The equation to use is .

We solve the equation algebraically for t, and then insert the known values.

Discussion
The time to stop the reel is fairly small because the acceleration is fairly large. Fishing lines sometimes snap because of the forces
involved, and fishermen often let the fish swim for a while before applying brakes on the reel. A tired fish will be slower,
requiring a smaller acceleration and therefore a smaller force.

6.12
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WORKED EXAMPLE

Calculating the Torque on a Merry-Go-Round
Consider the man pushing the playground merry-go-round in Figure 6.11. He exerts a force of 250 N at the edge of the merry-
go-round and perpendicular to the radius, which is 1.50 m. How much torque does he produce? Assume that friction acting on
the merry-go-round is negligible.
Strategy
To find the torque, note that the applied force is perpendicular to the radius and that friction is negligible.

Solution

Discussion
The man maximizes the torque by applying force perpendicular to the lever arm, so that and . The man also
maximizes his torque by pushing at the outer edge of the merry-go-round, so that he gets the largest-possible lever arm.

Practice Problems
15. How much torque does a person produce if he applies a force away from the pivot point, perpendicularly to the

lever arm?
a.
b.
c.
d.

16. An object’s angular velocity changes from 3 rad/s clockwise to 8 rad/s clockwise in 5 s. What is its angular acceleration?
a. 0.6 rad/s2

b. 1.6 rad/s2

c. 1 rad/s2

d. 5 rad/s2

Check Your Understanding
17. What is angular acceleration?

a. Angular acceleration is the rate of change of the angular displacement.
b. Angular acceleration is the rate of change of the angular velocity.
c. Angular acceleration is the rate of change of the linear displacement.
d. Angular acceleration is the rate of change of the linear velocity.

18. What is the equation for angular acceleration,α? Assume θ is the angle,ω is the angular velocity, and t is time.
a.
b.
c.
d.

19. Which of the following best describes torque?
a. It is the rotational equivalent of a force.
b. It is the force that affects linear motion.
c. It is the rotational equivalent of acceleration.
d. It is the acceleration that affects linear motion.

20. What is the equation for torque?

6.13
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a.
b.
c.
d.
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KEY TERMS
angle of rotation the ratio of the arc length to the radius of

curvature of a circular path
angular acceleration the rate of change of angular velocity

with time
angular velocity ( ) the rate of change in the angular

position of an object following a circular path
arc length ( ) the distance traveled by an object along a

circular path
centrifugal force a fictitious force that acts in the direction

opposite the centripetal acceleration
centripetal acceleration the acceleration of an object

moving in a circle, directed toward the center of the circle
centripetal force any force causing uniform circular

motion
circular motion the motion of an object along a circular

path
kinematics of rotational motion the relationships between

rotation angle, angular velocity, angular acceleration, and

time
lever arm the distance between the point of rotation (pivot

point) and the location where force is applied
radius of curvature the distance between the center of a

circular path and the path
rotational motion the circular motion of an object about an

axis of rotation
spin rotation about an axis that goes through the center of

mass of the object
tangential acceleration the acceleration in a direction

tangent to the circular path of motion and in the same
direction or opposite direction as the tangential velocity

tangential velocity the instantaneous linear velocity of an
object in circular or rotational motion

torque the effectiveness of a force to change the rotational
speed of an object

uniform circular motion the motion of an object in a
circular path at constant speed

SECTION SUMMARY
6.1 Angle of Rotation and Angular
Velocity

• Circular motion is motion in a circular path.
• The angle of rotation is defined as the ratio of the

arc length to the radius of curvature.
• The arc length is the distance traveled along a

circular path and r is the radius of curvature of the
circular path.

• The angle of rotation is measured in units of radians
(rad), where revolution.

• Angular velocity is the rate of change of an angle,
where a rotation occurs in a time .

• The units of angular velocity are radians per second
(rad/s).

• Tangential speed v and angular speed are related by
, and tangential velocity has units of m/s.

• The direction of angular velocity is along the axis of
rotation, toward (away) from you for clockwise
(counterclockwise) motion.

6.2 Uniform Circular Motion
• Centripetal acceleration ac is the acceleration

experienced while in uniform circular motion.
• Centripetal acceleration force is a center-seeking force

that always points toward the center of rotation,
perpendicular to the linear velocity, in the same
direction as the net force, and in the direction opposite
that of the radius vector.

• The standard unit for centripetal acceleration is m/s2.
• Centripetal force Fc is any net force causing uniform

circular motion.

6.3 Rotational Motion
• Kinematics is the description of motion.
• The kinematics of rotational motion describes the

relationships between rotation angle, angular velocity,
angular acceleration, and time.

• Torque is the effectiveness of a force to change the
rotational speed of an object. Torque is the rotational
analog of force.

• The lever arm is the distance between the point of
rotation (pivot point) and the location where force is
applied.

• Torque is maximized by applying force perpendicular to
the lever arm and at a point as far as possible from the
pivot point or fulcrum. If torque is zero, angular
acceleration is zero.
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KEY EQUATIONS
6.1 Angle of Rotation and Angular
Velocity

Angle of rotation

Angular speed:

Tangential speed:

6.2 Uniform Circular Motion

Centripetal
acceleration

or

Centripetal force
, ,

6.3 Rotational Motion

Angular
acceleration

Rotational
kinematic
equations

, ,
,

Tangential
(linear)
acceleration

Torque

CHAPTER REVIEW
Concept Items
6.1 Angle of Rotation and Angular Velocity
1. One revolution is equal to how many radians? Degrees?

a.
b.
c.
d.

2. What is tangential velocity?
a. Tangential velocity is the average linear velocity of

an object in a circular motion.
b. Tangential velocity is the instantaneous linear

velocity of an object undergoing rotational motion.
c. Tangential velocity is the average angular velocity of

an object in a circular motion.
d. Tangential velocity is the instantaneous angular

velocity of an object in a circular motion.

3. What kind of motion is called spin?
a. Spin is rotational motion of an object about an axis

parallel to the axis of the object.
b. Spin is translational motion of an object about an

axis parallel to the axis of the object.
c. Spin is the rotational motion of an object about its

center of mass.
d. Spin is translational motion of an object about its

own axis.

6.2 Uniform Circular Motion
4. What is the equation for centripetal acceleration in terms

of angular velocity and the radius?

a.
b.
c.
d.

5. How can you express centripetal force in terms of
centripetal acceleration?

a.
b.
c.
d.

6. What is meant by the word centripetal?
a. center-seeking
b. center-avoiding
c. central force
d. central acceleration

6.3 Rotational Motion
7. Conventionally, for which direction of rotation of an

object is angular acceleration considered positive?
a. the positive x direction of the coordinate system
b. the negative x direction of the coordinate system
c. the counterclockwise direction
d. the clockwise direction
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8. When you push a door closer to the hinges, why does it
open more slowly?
a. It opens slowly, because the lever arm is shorter so

the torque is large.
b. It opens slowly because the lever arm is longer so the

torque is large.
c. It opens slowly, because the lever arm is shorter so

the torque is less.
d. It opens slowly, because the lever arm is longer so

the torque is less.

9. When is angular acceleration negative?
a. Angular acceleration is the rate of change of the

displacement and is negative when increases.
b. Angular acceleration is the rate of change of the

displacement and is negative when decreases.
c. Angular acceleration is the rate of change of angular

velocity and is negative when increases.
d. Angular acceleration is the rate of change of angular

velocity and is negative when decreases.

Critical Thinking Items
6.1 Angle of Rotation and Angular Velocity
10. When the radius of the circular path of rotational

motion increases, what happens to the arc length for a
given angle of rotation?
a. The arc length is directly proportional to the radius

of the circular path, and it increases with the
radius.

b. The arc length is inversely proportional to the
radius of the circular path, and it decreases with
the radius.

c. The arc length is directly proportional to the radius
of the circular path, and it decreases with the
radius.

d. The arc length is inversely proportional to the
radius of the circular path, and it increases with the
radius.

11. Consider a CD spinning clockwise. What is the sum of
the instantaneous velocities of two points on both ends
of its diameter?
a.
b.
c.
d.

6.2 Uniform Circular Motion
12. What are the directions of the velocity and acceleration

of an object in uniform circular motion?
a. Velocity is tangential, and acceleration is radially

outward.
b. Velocity is tangential, and acceleration is radially

inward.
c. Velocity is radially outward, and acceleration is

tangential.
d. Velocity is radially inward, and acceleration is

tangential.

13. Suppose you have an object tied to a rope and are
rotating it over your head in uniform circular motion. If

you increase the length of the rope, would you have to
apply more or less force to maintain the same speed?
a. More force is required, because the force is

inversely proportional to the radius of the circular
orbit.

b. More force is required because the force is directly
proportional to the radius of the circular orbit.

c. Less force is required because the force is inversely
proportional to the radius of the circular orbit.

d. Less force is required because the force is directly
proportional to the radius of the circular orbit.

6.3 Rotational Motion
14. Consider two spinning tops with different radii. Both

have the same linear instantaneous velocities at their
edges. Which top has a higher angular velocity?
a. the top with the smaller radius because the radius

of curvature is inversely proportional to the angular
velocity

b. the top with the smaller radius because the radius
of curvature is directly proportional to the angular
velocity

c. the top with the larger radius because the radius of
curvature is inversely proportional to the angular
velocity

d. The top with the larger radius because the radius of
curvature is directly proportional to the angular
velocity

15. A person tries to lift a stone by using a lever. If the lever
arm is constant and the mass of the stone increases,
what is true of the torque necessary to lift it?
a. It increases, because the torque is directly

proportional to the mass of the body.
b. It increases because the torque is inversely

proportional to the mass of the body.
c. It decreases because the torque is directly

proportional to the mass of the body.
d. It decreases, because the torque is inversely

proportional to the mass of the body.
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Problems
6.1 Angle of Rotation and Angular Velocity
16. What is the angle of rotation (in degrees) between two

hands of a clock, if the radius of the clock is and
the arc length separating the two hands is ?
a.
b.
c.
d.

17. A clock has radius of . The outermost point on its
minute hand travels along the edge. What is its
tangential speed?
a.
b.
c.
d.

6.2 Uniform Circular Motion
18. What is the centripetal force exerted on a 1,600 kg car

that rounds a 100 m radius curve at 12 m/s?
a. 192 N
b. 1, 111 N
c. 2, 300 N

d. 13, 333 N

19. Find the frictional force between the tires and the road
that allows a 1,000 kg car traveling at 30 m/s to round a
20 m radius curve.
a. 22 N
b. 667 N
c. 1, 500 N
d. 45, 000 N

6.3 Rotational Motion
20. An object’s angular acceleration is 36 rad/s2. If it were

initially spinning with a velocity of 6.0 m/s, what would
its angular velocity be after 5.0 s?
a. 186 rad/s
b. 190 rad/s2

c. −174 rad/s
d. −174 rad/s2

21. When a fan is switched on, it undergoes an angular
acceleration of 150 rad/s2. How long will it take to
achieve its maximum angular velocity of 50 rad/s?
a. −0.3 s
b. 0.3 s
c. 3.0 s

Performance Task
6.3 Rotational Motion
22. Design a lever arm capable of lifting a 0.5 kg object such

as a stone. The force for lifting should be provided by

placing coins on the other end of the lever. How many
coins would you need? What happens if you shorten or
lengthen the lever arm? What does this say about
torque?

TEST PREP
Multiple Choice
6.1 Angle of Rotation and Angular Velocity
23. What is 1 radian approximately in degrees?

a. 57.3°
b. 360°
c. π°
d. 2π°

24. If the following objects are spinning at the same angular
velocities, the edge of which one would have the highest
speed?
a. Mini CD
b. Regular CD
c. Vinyl record

25. What are possible units for tangential velocity?
a.
b.

c.

26. What is in radians?
a.
b.
c.
d.

27. For a given object, what happens to the arc length as the
angle of rotation increases?
a. The arc length is directly proportional to the angle

of rotation, so it increases with the angle of
rotation.

b. The arc length is inversely proportional to the angle
of rotation, so it decreases with the angle of
rotation.

c. The arc length is directly proportional to the angle
of rotation, so it decreases with the angle of
rotation.
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d. The arc length is inversely proportional to the angle
of rotation, so it increases with the angle of
rotation.

6.2 Uniform Circular Motion
28. Which of these quantities is constant in uniform

circular motion?
a. Speed
b. Velocity
c. Acceleration
d. Displacement

29. Which of these quantities impact centripetal force?
a. Mass and speed only
b. Mass and radius only
c. Speed and radius only
d. Mass, speed, and radius all impact centripetal force

30. An increase in the magnitude of which of these
quantities causes a reduction in centripetal force?
a. Mass
b. Radius of curvature
c. Speed

31. What happens to centripetal acceleration as the radius
of curvature decreases and the speed is constant, and
why?
a. It increases, because the centripetal acceleration is

inversely proportional to the radius of the
curvature.

b. It increases, because the centripetal acceleration is
directly proportional to the radius of curvature.

c. It decreases, because the centripetal acceleration is
inversely proportional to the radius of the
curvature.

d. It decreases, because the centripetal acceleration is
directly proportional to the radius of the curvature.

32. Why do we experience more sideways acceleration while
driving around sharper curves?

a. Centripetal acceleration is inversely proportional to
the radius of curvature, so it increases as the radius
of curvature decreases.

b. Centripetal acceleration is directly proportional to
the radius of curvature, so it decreases as the
radius of curvature decreases.

c. Centripetal acceleration is directly proportional to
the radius of curvature, so it decreases as the
radius of curvature increases.

d. Centripetal acceleration is directly proportional to
the radius of curvature, so it increases as the radius
of curvature increases.

6.3 Rotational Motion
33. Which of these quantities is not described by the

kinematics of rotational motion?
a. Rotation angle
b. Angular acceleration
c. Centripetal force
d. Angular velocity

34. In the equation , what is F?
a. Linear force
b. Centripetal force
c. Angular force

35. What happens when two torques act equally in opposite
directions?
a. Angular velocity is zero.
b. Angular acceleration is zero.

36. What is the mathematical relationship between angular
and linear accelerations?
a.
b.
c.
d.

Short Answer
6.1 Angle of Rotation and Angular Velocity
37. What is the rotational analog of linear velocity?

a. Angular displacement
b. Angular velocity
c. Angular acceleration
d. Angular momentum

38. What is the rotational analog of distance?
a. Rotational angle
b. Torque
c. Angular velocity
d. Angular momentum

39. What is the equation that relates the linear speed of a
point on a rotating object with the object's angular
quantities?
a.
b.
c.
d.

40. As the angular velocity of an object increases, what
happens to the linear velocity of a point on that object?
a. It increases, because linear velocity is directly

proportional to angular velocity.
b. It increases, because linear velocity is inversely

proportional to angular velocity.
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c. It decreases because linear velocity is directly
proportional to angular velocity.

d. It decreases because linear velocity is inversely
proportional to angular velocity.

41. What is angular speed in terms of tangential speed and
the radius?

a.
b.
c.
d.

42. Why are radians dimensionless?
a. Radians are dimensionless, because they are

defined as a ratio of distances. They are defined as
the ratio of the arc length to the radius of the circle.

b. Radians are dimensionless because they are
defined as a ratio of distances. They are defined as
the ratio of the area to the radius of the circle.

c. Radians are dimensionless because they are
defined as multiplication of distance. They are
defined as the multiplication of the arc length to
the radius of the circle.

d. Radians are dimensionless because they are
defined as multiplication of distance. They are
defined as the multiplication of the area to the
radius of the circle.

6.2 Uniform Circular Motion
43. What type of quantity is centripetal acceleration?

a. Scalar quantity; centripetal acceleration has
magnitude only but no direction

b. Scalar quantity; centripetal acceleration has
magnitude as well as direction

c. Vector quantity; centripetal acceleration has
magnitude only but no direction

d. Vector quantity; centripetal acceleration has
magnitude as well as direction

44. What are the standard units for centripetal
acceleration?
a. m/s
b.
c.
d.

45. What is the angle formed between the vectors of
tangential velocity and centripetal force?
a.
b.
c.
d.

46. What is the angle formed between the vectors of
centripetal acceleration and centripetal force?

a.
b.
c.
d.

47. What are the standard units for centripetal force?
a. m
b. m/s
c. m/s2

d. newtons

48. As the mass of an object in uniform circular motion
increases, what happens to the centripetal force
required to keep it moving at the same speed?
a. It increases, because the centripetal force is

directly proportional to the mass of the rotating
body.

b. It increases, because the centripetal force is
inversely proportional to the mass of the rotating
body.

c. It decreases, because the centripetal force is
directly proportional to the mass of the rotating
body.

d. It decreases, because the centripetal force is
inversely proportional to the mass of the rotating
body.

6.3 Rotational Motion
49. The relationships between which variables are described

by the kinematics of rotational motion?
a. The kinematics of rotational motion describes the

relationships between rotation angle, angular
velocity, and angular acceleration.

b. The kinematics of rotational motion describes the
relationships between rotation angle, angular
velocity, angular acceleration, and angular
momentum.

c. The kinematics of rotational motion describes the
relationships between rotation angle, angular
velocity, angular acceleration, and time.

d. The kinematics of rotational motion describes the
relationships between rotation angle, angular
velocity, angular acceleration, torque, and time.

50. What is the kinematics relationship between , , and
?
a.
b.
c.
d.

51. What kind of quantity is torque?
a. Scalar
b. Vector
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c. Dimensionless
d. Fundamental quantity

52. If a linear force is applied to a lever arm farther away
from the pivot point, what happens to the resultant
torque?
a. It decreases.
b. It increases.
c. It remains the same.
d. It changes the direction.

53. How can the same force applied to a lever produce
different torques?
a. By applying the force at different points of the lever

arm along the length of the lever or by changing the
angle between the lever arm and the applied force.

b. By applying the force at the same point of the lever
arm along the length of the lever or by changing the
angle between the lever arm and the applied force.

c. By applying the force at different points of the lever
arm along the length of the lever or by maintaining
the same angle between the lever arm and the
applied force.

d. By applying the force at the same point of the lever
arm along the length of the lever or by maintaining
the same angle between the lever arm and the
applied force.

Extended Response
6.1 Angle of Rotation and Angular Velocity
54. Consider two pits on a CD, one close to the center and

one close to the outer edge. When the CD makes one full
rotation, which pit would have gone through a greater
angle of rotation? Which one would have covered a
greater arc length?
a. The one close to the center would go through the

greater angle of rotation. The one near the outer
edge would trace a greater arc length.

b. The one close to the center would go through the
greater angle of rotation. The one near the center
would trace a greater arc length.

c. Both would go through the same angle of rotation.
The one near the outer edge would trace a greater
arc length.

d. Both would go through the same angle of rotation.
The one near the center would trace a greater arc
length.

55. Consider two pits on a CD, one close to the center and
one close to the outer edge. For a given angular velocity
of the CD, which pit has a higher angular velocity?
Which has a higher tangential velocity?
a. The point near the center would have the greater

angular velocity and the point near the outer edge
would have the higher linear velocity.

b. The point near the edge would have the greater
angular velocity and the point near the center
would have the higher linear velocity.

c. Both have the same angular velocity and the point
near the outer edge would have the higher linear
velocity.

d. Both have the same angular velocity and the point
near the center would have the higher linear
velocity.

56. What happens to tangential velocity as the radius of an
object increases provided the angular velocity remains

the same?
a. It increases because tangential velocity is directly

proportional to the radius.
b. It increases because tangential velocity is inversely

proportional to the radius.
c. It decreases because tangential velocity is directly

proportional to the radius.
d. It decreases because tangential velocity is inversely

proportional to the radius.

6.2 Uniform Circular Motion
57. Is an object in uniform circular motion accelerating?

Why or why not?
a. Yes, because the velocity is not constant.
b. No, because the velocity is not constant.
c. Yes, because the velocity is constant.
d. No, because the velocity is constant.

58. An object is in uniform circular motion. Suppose the
centripetal force was removed. In which direction would
the object now travel?
a. In the direction of the centripetal force
b. In the direction opposite to the direction of the

centripetal force
c. In the direction of the tangential velocity
d. In the direction opposite to the direction of the

tangential velocity

59. An object undergoes uniform circular motion. If the
radius of curvature and mass of the object are constant,
what is the centripetal force proportional to?
a.
b.

c.
d.

6.3 Rotational Motion
60. Why do tornadoes produce more wind speed at the
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bottom of the funnel?
a. Wind speed is greater at the bottom because rate of

rotation increases as the radius increases.
b. Wind speed is greater at the bottom because rate of

rotation increases as the radius decreases.
c. Wind speed is greater at the bottom because rate of

rotation decreases as the radius increases.
d. Wind speed is greater at the bottom because rate of

rotation decreases as the radius increases.

61. How can you maximize the torque applied to a given
lever arm without applying more force?
a. The force should be applied perpendicularly to the

lever arm as close as possible from the pivot point.

b. The force should be applied perpendicularly to the
lever arm as far as possible from the pivot point.

c. The force should be applied parallel to the lever arm
as far as possible from the pivot point.

d. The force should be applied parallel to the lever arm
as close as possible from the pivot point.

62. When will an object continue spinning at the same
angular velocity?
a. When net torque acting on it is zero
b. When net torque acting on it is non zero
c. When angular acceleration is positive
d. When angular acceleration is negative
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INTRODUCTION

CHAPTER 7
Newton's Law of Gravitation

7.1 Kepler's Laws of Planetary Motion

7.2 Newton's Law of Universal Gravitation and Einstein's Theory of General Relativity

What do a falling apple and the orbit of the moon have in common? You will learn in this chapter that each is
caused by gravitational force. The motion of all celestial objects, in fact, is determined by the gravitational force, which depends
on their mass and separation.

Johannes Kepler discovered three laws of planetary motion that all orbiting planets and moons follow. Years later, Isaac Newton
found these laws useful in developing his law of universal gravitation. This law relates gravitational force to the masses of objects
and the distance between them. Many years later still, Albert Einstein showed there was a little more to the gravitation story
when he published his theory of general relativity.

7.1 Kepler's Laws of Planetary Motion
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain Kepler’s three laws of planetary motion
• Apply Kepler’s laws to calculate characteristics of orbits

Figure 7.1 Johannes Kepler (left) showed how the planets move, and Isaac Newton (right) discovered that
gravitational force caused them to move that way. ((left) unknown, Public Domain; (right) Sir Godfrey Kneller, Public
Domain)
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Section Key Terms

aphelion Copernican model eccentricity

Kepler’s laws of planetary motion perihelion Ptolemaic model

Concepts Related to Kepler’s Laws of Planetary Motion
Examples of orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of debris. The moon’s
orbit around Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors, and comets around
the sun are no less interesting. If we look farther, we see almost unimaginable numbers of stars, galaxies, and other celestial
objects orbiting one another and interacting through gravity.

All these motions are governed by gravitational force. The orbital motions of objects in our own solar system are simple enough
to describe with a few fairly simple laws. The orbits of planets and moons satisfy the following two conditions:

• The mass of the orbiting object, m, is small compared to the mass of the object it orbits, M.
• The system is isolated from other massive objects.

Based on the motion of the planets about the sun, Kepler devised a set of three classical laws, called Kepler’s laws of planetary
motion, that describe the orbits of all bodies satisfying these two conditions:

1. The orbit of each planet around the sun is an ellipse with the sun at one focus.
2. Each planet moves so that an imaginary line drawn from the sun to the planet sweeps out equal areas in equal times.
3. The ratio of the squares of the periods of any two planets about the sun is equal to the ratio of the cubes of their average

distances from the sun.

These descriptive laws are named for the German astronomer Johannes Kepler (1571–1630). He devised them after careful study
(over some 20 years) of a large amount of meticulously recorded observations of planetary motion done by Tycho Brahe
(1546–1601). Such careful collection and detailed recording of methods and data are hallmarks of good science. Data constitute
the evidence from which new interpretations and meanings can be constructed. Let’s look closer at each of these laws.

Kepler’s First Law
The orbit of each planet about the sun is an ellipse with the sun at one focus, as shown in Figure 7.2. The planet’s closest
approach to the sun is called aphelion and its farthest distance from the sun is called perihelion.

230 Chapter 7 • Newton's Law of Gravitation

Access for free at openstax.org.



Figure 7.2 (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci (f1 and f2) is constant.

(b) For any closed orbit, m follows an elliptical path with M at one focus. (c) The aphelion (ra) is the closest distance between the planet and

the sun, while the perihelion (rp) is the farthest distance from the sun.

If you know the aphelion (ra) and perihelion (rp) distances, then you can calculate the semi-major axis (a) and semi-minor axis
(b).

Figure 7.3 You can draw an ellipse as shown by putting a pin at each focus, and then placing a loop of string around a pen and the pins and

tracing a line on the paper.
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Kepler’s Second Law
Each planet moves so that an imaginary line drawn from the sun to the planet sweeps out equal areas in equal times, as shown
in Figure 7.4.

Figure 7.4 The shaded regions have equal areas. The time for m to go from A to B is the same as the time to go from C to D and from E to F.

The mass m moves fastest when it is closest to M. Kepler’s second law was originally devised for planets orbiting the sun, but it has broader

validity.

TIPS FOR SUCCESS
Note that while, for historical reasons, Kepler’s laws are stated for planets orbiting the sun, they are actually valid for all
bodies satisfying the two previously stated conditions.

Kepler’s Third Law
The ratio of the periods squared of any two planets around the sun is equal to the ratio of their average distances from the sun
cubed. In equation form, this is

where T is the period (time for one orbit) and r is the average distance (also called orbital radius). This equation is valid only for
comparing two small masses orbiting a single large mass. Most importantly, this is only a descriptive equation; it gives no
information about the cause of the equality.

LINKS TO PHYSICS

History: Ptolemy vs. Copernicus
Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth
as shown in Figure 7.5 (a). This is called the Ptolemaic model, named for the Greek philosopher Ptolemy who lived in the second
century AD. The Ptolemaic model is characterized by a list of facts for the motions of planets, with no explanation of cause and
effect. There tended to be a different rule for each heavenly body and a general lack of simplicity.

Figure 7.5 (b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force
explain not only all planetary motion in the solar system, but also all other situations involving gravity. The breadth and
simplicity of the laws of physics are compelling.

232 Chapter 7 • Newton's Law of Gravitation

Access for free at openstax.org.



Figure 7.5 (a) The Ptolemaic model of the universe has Earth at the center with the moon, the planets, the sun, and the stars revolving

about it in complex circular paths. This geocentric (Earth-centered) model, which can be made progressively more accurate by adding more

circles, is purely descriptive, containing no hints about the causes of these motions. (b) The Copernican heliocentric (sun-centered) model

is a simpler and more accurate model.

Nicolaus Copernicus (1473–1543) first had the idea that the planets circle the sun, in about 1514. It took him almost 20 years to
work out the mathematical details for his model. He waited another 10 years or so to publish his work. It is thought he hesitated
because he was afraid people would make fun of his theory. Actually, the reaction of many people was more one of fear and
anger. Many people felt the Copernican model threatened their basic belief system. About 100 years later, the astronomer Galileo
was put under house arrest for providing evidence that planets, including Earth, orbited the sun. In all, it took almost 300 years
for everyone to admit that Copernicus had been right all along.

GRASP CHECK
Explain why Earth does actually appear to be the center of the solar system.
a. Earth appears to be the center of the solar system because Earth is at the center of the universe, and everything revolves

around it in a circular orbit.
b. Earth appears to be the center of the solar system because, in the reference frame of Earth, the sun, moon, and planets

all appear to move across the sky as if they were circling Earth.
c. Earth appears to be at the center of the solar system because Earth is at the center of the solar system and all the

heavenly bodies revolve around it.
d. Earth appears to be at the center of the solar system because Earth is located at one of the foci of the elliptical orbit of

the sun, moon, and other planets.

Virtual Physics

Acceleration
This simulation allows you to create your own solar system so that you can see how changing distances and masses
determines the orbits of planets. Click Help for instructions.

Click to view content (https://archive.cnx.org/specials/ee816dff-0b5f-4e6f-8250-f9fb9e39d716/my-solar-system/)

GRASP CHECK
When the central object is off center, how does the speed of the orbiting object vary?
a. The orbiting object moves fastest when it is closest to the central object and slowest when it is farthest away.
b. The orbiting object moves slowest when it is closest to the central object and fastest when it is farthest away.
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Calculations Related to Kepler’s Laws of Planetary Motion
Kepler’s First Law
Refer back to Figure 7.2 (a). Notice which distances are constant. The foci are fixed, so distance is a constant. The definition
of an ellipse states that the sum of the distances is also constant. These two facts taken together mean that the
perimeter of triangle must also be constant. Knowledge of these constants will help you determine positions and
distances of objects in a system that includes one object orbiting another.

Kepler’s Second Law
Refer back to Figure 7.4. The second law says that the segments have equal area and that it takes equal time to sweep through
each segment. That is, the time it takes to travel from A to B equals the time it takes to travel from C to D, and so forth. Velocity v
equals distance d divided by time t: . Then, , so distance divided by velocity is also a constant. For example, if we
know the average velocity of Earth on June 21 and December 21, we can compare the distance Earth travels on those days.

The degree of elongation of an elliptical orbit is called its eccentricity (e). Eccentricity is calculated by dividing the distance f
from the center of an ellipse to one of the foci by half the long axis a.

When , the ellipse is a circle.

The area of an ellipse is given by , where b is half the short axis. If you know the axes of Earth’s orbit and the area Earth
sweeps out in a given period of time, you can calculate the fraction of the year that has elapsed.

WORKED EXAMPLE

Kepler’s First Law
At its closest approach, a moon comes within 200,000 km of the planet it orbits. At that point, the moon is 300,000 km from the
other focus of its orbit, f2. The planet is focus f1 of the moon’s elliptical orbit. How far is the moon from the planet when it is
260,000 km from f2?
Strategy
Show and label the ellipse that is the orbit in your solution. Picture the triangle f1mf2 collapsed along the major axis and add up
the lengths of the three sides. Find the length of the unknown side of the triangle when the moon is 260,000 km from f2.

Solution
Perimeter of

Discussion
The perimeter of triangle f1mf2 must be constant because the distance between the foci does not change and Kepler’s first law
says the orbit is an ellipse. For any ellipse, the sum of the two sides of the triangle, which are f1m and mf2, is constant.

WORKED EXAMPLE

Kepler’s Second Law
Figure 7.6 shows the major and minor axes of an ellipse. The semi-major and semi-minor axes are half of these, respectively.

c. The orbiting object moves with the same speed at every point on the circumference of the elliptical orbit.
d. There is no relationship between the speed of the object and the location of the planet on the circumference of the

orbit.

7.1
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Figure 7.6 The major axis is the length of the ellipse, and the minor axis is the width of the ellipse. The semi-major axis is half the major

axis, and the semi-minor axis is half the minor axis.

Earth’s orbit is slightly elliptical, with a semi-major axis of 152 million km and a semi-minor axis of 147 million km. If Earth’s
period is 365.26 days, what area does an Earth-to-sun line sweep past in one day?
Strategy
Each day, Earth sweeps past an equal-sized area, so we divide the total area by the number of days in a year to find the area
swept past in one day. For total area use . Calculate A, the area inside Earth’s orbit and divide by the number of days in
a year (i.e., its period).

Solution

The area swept out in one day is thus .

Discussion
The answer is based on Kepler’s law, which states that a line from a planet to the sun sweeps out equal areas in equal times.

Kepler’s Third Law
Kepler’s third law states that the ratio of the squares of the periods of any two planets (T1, T2) is equal to the ratio of the cubes of
their average orbital distance from the sun (r1, r2). Mathematically, this is represented by

From this equation, it follows that the ratio r3/T2 is the same for all planets in the solar system. Later we will see how the work of
Newton leads to a value for this constant.

WORKED EXAMPLE

Kepler’s Third Law
Given that the moon orbits Earth each 27.3 days and that it is an average distance of from the center of Earth,
calculate the period of an artificial satellite orbiting at an average altitude of 1,500 km above Earth’s surface.
Strategy
The period, or time for one orbit, is related to the radius of the orbit by Kepler’s third law, given in mathematical form by

7.2
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. Let us use the subscript 1 for the moon and the subscript 2 for the satellite. We are asked to find T2. The given

information tells us that the orbital radius of the moon is , and that the period of the moon is
. The height of the artificial satellite above Earth’s surface is given, so to get the distance r2 from the center of

Earth we must add the height to the radius of Earth (6380 km). This gives . Now all
quantities are known, so T2 can be found.

Solution
To solve for T2, we cross-multiply and take the square root, yielding

Discussion
This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any satellite at this altitude will complete one
orbit in the same amount of time.

Practice Problems
1. A planet with no axial tilt is located in another solar system. It circles its sun in a very elliptical orbit so that the temperature

varies greatly throughout the year. If the year there has 612 days and the inhabitants celebrate the coldest day on day 1 of their
calendar, when is the warmest day?
a. Day 1
b. Day 153
c. Day 306
d. Day 459

2. A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for
communication and weather observation because the satellite remains above the same point on Earth (provided it orbits in

the equatorial plane in the same direction as Earth’s rotation). The ratio for the moon is . Calculate the

radius of the orbit of such a satellite.
a.
b.
c.
d.

Check Your Understanding
3. Are Kepler’s laws purely descriptive, or do they contain causal information?

a. Kepler’s laws are purely descriptive.
b. Kepler’s laws are purely causal.
c. Kepler’s laws are descriptive as well as causal.
d. Kepler’s laws are neither descriptive nor causal.

4. True or false—According to Kepler’s laws of planetary motion, a satellite increases its speed as it approaches its parent body
and decreases its speed as it moves away from the parent body.
a. True
b. False

5. Identify the locations of the foci of an elliptical orbit.
a. One focus is the parent body, and the other is located at the opposite end of the ellipse, at the same distance from the

center as the parent body.
b. One focus is the parent body, and the other is located at the opposite end of the ellipse, at half the distance from the

center as the parent body.

7.3
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c. One focus is the parent body and the other is located outside of the elliptical orbit, on the line on which is the semi-
major axis of the ellipse.

d. One focus is on the line containing the semi-major axis of the ellipse, and the other is located anywhere on the elliptical
orbit of the satellite.

7.2 Newton's Law of Universal Gravitation and Einstein's
Theory of General Relativity
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain Newton’s law of universal gravitation and compare it to Einstein’s theory of general relativity
• Perform calculations using Newton’s law of universal gravitation

Section Key Terms

Einstein’s theory of general relativity gravitational constant Newton’s universal law of gravitation

Concepts Related to Newton’s Law of Universal Gravitation
Sir Isaac Newton was the first scientist to precisely define the gravitational force, and to show that it could explain both falling
bodies and astronomical motions. See Figure 7.7. But Newton was not the first to suspect that the same force caused both our
weight and the motion of planets. His forerunner, Galileo Galilei, had contended that falling bodies and planetary motions had
the same cause. Some of Newton’s contemporaries, such as Robert Hooke, Christopher Wren, and Edmund Halley, had also
made some progress toward understanding gravitation. But Newton was the first to propose an exact mathematical form and to
use that form to show that the motion of heavenly bodies should be conic sections—circles, ellipses, parabolas, and hyperbolas.
This theoretical prediction was a major triumph. It had been known for some time that moons, planets, and comets follow such
paths, but no one had been able to propose an explanation of the mechanism that caused them to follow these paths and not
others.

Figure 7.7 The popular legend that Newton suddenly discovered the law of universal gravitation when an apple fell from a tree and hit him

on the head has an element of truth in it. A more probable account is that he was walking through an orchard and wondered why all the

apples fell in the same direction with the same acceleration. Great importance is attached to it because Newton’s universal law of

gravitation and his laws of motion answered very old questions about nature and gave tremendous support to the notion of underlying

simplicity and unity in nature. Scientists still expect underlying simplicity to emerge from their ongoing inquiries into nature.

The gravitational force is relatively simple. It is always attractive, and it depends only on the masses involved and the distance
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between them. Expressed in modern language, Newton’s universal law of gravitation states that every object in the universe
attracts every other object with a force that is directed along a line joining them. The force is directly proportional to the product
of their masses and inversely proportional to the square of the distance between them. This attraction is illustrated by Figure
7.8.

Figure 7.8 Gravitational attraction is along a line joining the centers of mass (CM) of the two bodies. The magnitude of the force on each

body is the same, consistent with Newton’s third law (action-reaction).

For two bodies having masses m and M with a distance r between their centers of mass, the equation for Newton’s universal law
of gravitation is

where F is the magnitude of the gravitational force and G is a proportionality factor called the gravitational constant. G is a
universal constant, meaning that it is thought to be the same everywhere in the universe. It has been measured experimentally
to be .

If a person has a mass of 60.0 kg, what would be the force of gravitational attraction on him at Earth’s surface? G is given above,
Earth’s mass M is 5.97 × 1024 kg, and the radius r of Earth is 6.38 × 106 m. Putting these values into Newton’s universal law of
gravitation gives

We can check this result with the relationship:

You may remember that g, the acceleration due to gravity, is another important constant related to gravity. By substituting g for
a in the equation for Newton’s second law of motion we get . Combining this with the equation for universal
gravitation gives

Cancelling the mass m on both sides of the equation and filling in the values for the gravitational constant and mass and radius
of the Earth, gives the value of g, which may look familiar.

This is a good point to recall the difference between mass and weight. Mass is the amount of matter in an object; weight is the
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force of attraction between the mass within two objects. Weight can change because g is different on every moon and planet. An
object’s mass m does not change but its weight mg can.

It is possible to derive Kepler’s third law from Newton’s law of universal gravitation. Applying Newton’s second law of motion to

Virtual Physics

Gravity and Orbits
Move the sun, Earth, moon and space station in this simulation to see how it affects their gravitational forces and orbital
paths. Visualize the sizes and distances between different heavenly bodies. Turn off gravity to see what would happen
without it!

Click to view content (https://archive.cnx.org/specials/a14085c8-96b8-4d04-bb5a-56d9ccbe6e69/gravity-and-orbits/)

GRASP CHECK
Why doesn’t the Moon travel in a smooth circle around the Sun?
a. The Moon is not affected by the gravitational field of the Sun.
b. The Moon is not affected by the gravitational field of the Earth.
c. The Moon is affected by the gravitational fields of both the Earth and the Sun, which are always additive.
d. The moon is affected by the gravitational fields of both the Earth and the Sun, which are sometimes additive and

sometimes opposite.

Snap Lab

Take-Home Experiment: Falling Objects
In this activity you will study the effects of mass and air resistance on the acceleration of falling objects. Make predictions
(hypotheses) about the outcome of this experiment. Write them down to compare later with results.

• Four sheets of -inch paper

Procedure
• Take four identical pieces of paper.

◦ Crumple one up into a small ball.
◦ Leave one uncrumpled.
◦ Take the other two and crumple them up together, so that they make a ball of exactly twice the mass of the other

crumpled ball.
◦ Now compare which ball of paper lands first when dropped simultaneously from the same height.

1. Compare crumpled one-paper ball with crumpled two-paper ball.
2. Compare crumpled one-paper ball with uncrumpled paper.

GRASP CHECK
Why do some objects fall faster than others near the surface of the earth if all mass is attracted equally by the force of
gravity?
a. Some objects fall faster because of air resistance, which acts in the direction of the motion of the object and exerts

more force on objects with less surface area.
b. Some objects fall faster because of air resistance, which acts in the direction opposite the motion of the object and

exerts more force on objects with less surface area.
c. Some objects fall faster because of air resistance, which acts in the direction of motion of the object and exerts more

force on objects with more surface area.
d. Some objects fall faster because of air resistance, which acts in the direction opposite the motion of the object and

exerts more force on objects with more surface area.
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angular motion gives an expression for centripetal force, which can be equated to the expression for force in the universal
gravitation equation. This expression can be manipulated to produce the equation for Kepler’s third law. We saw earlier that the
expression r3/T2 is a constant for satellites orbiting the same massive object. The derivation of Kepler’s third law from Newton’s
law of universal gravitation and Newton’s second law of motion yields that constant:

where M is the mass of the central body about which the satellites orbit (for example, the sun in our solar system). The
usefulness of this equation will be seen later.

The universal gravitational constant G is determined experimentally. This definition was first done accurately in 1798 by English
scientist Henry Cavendish (1731–1810), more than 100 years after Newton published his universal law of gravitation. The
measurement of G is very basic and important because it determines the strength of one of the four forces in nature.
Cavendish’s experiment was very difficult because he measured the tiny gravitational attraction between two ordinary-sized
masses (tens of kilograms at most) by using an apparatus like that in Figure 7.9. Remarkably, his value for G differs by less than
1% from the modern value.

Figure 7.9 Cavendish used an apparatus like this to measure the gravitational attraction between two suspended spheres (m) and two

spheres on a stand (M) by observing the amount of torsion (twisting) created in the fiber. The distance between the masses can be varied to

check the dependence of the force on distance. Modern experiments of this type continue to explore gravity.

Einstein’s Theory of General Relativity
Einstein’s theory of general relativity explained some interesting properties of gravity not covered by Newton’s theory. Einstein
based his theory on the postulate that acceleration and gravity have the same effect and cannot be distinguished from each
other. He concluded that light must fall in both a gravitational field and in an accelerating reference frame. Figure 7.10 shows
this effect (greatly exaggerated) in an accelerating elevator. In Figure 7.10(a), the elevator accelerates upward in zero gravity. In
Figure 7.10(b), the room is not accelerating but is subject to gravity. The effect on light is the same: it “falls” downward in both
situations. The person in the elevator cannot tell whether the elevator is accelerating in zero gravity or is stationary and subject
to gravity. Thus, gravity affects the path of light, even though we think of gravity as acting between masses, while photons are
massless.
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Figure 7.10 (a) A beam of light emerges from a flashlight in an upward-accelerating elevator. Since the elevator moves up during the time

the light takes to reach the wall, the beam strikes lower than it would if the elevator were not accelerated. (b) Gravity must have the same

effect on light, since it is not possible to tell whether the elevator is accelerating upward or is stationary and acted upon by gravity.

Einstein’s theory of general relativity got its first verification in 1919 when starlight passing near the sun was observed during a
solar eclipse. (See Figure 7.11.) During an eclipse, the sky is darkened and we can briefly see stars. Those on a line of sight nearest
the sun should have a shift in their apparent positions. Not only was this shift observed, but it agreed with Einstein’s predictions
well within experimental uncertainties. This discovery created a scientific and public sensation. Einstein was now a folk hero as
well as a very great scientist. The bending of light by matter is equivalent to a bending of space itself, with light following the
curve. This is another radical change in our concept of space and time. It is also another connection that any particle with mass
or energy (e.g., massless photons) is affected by gravity.

Figure 7.11 This schematic shows how light passing near a massive body like the sun is curved toward it. The light that reaches the Earth

then seems to be coming from different locations than the known positions of the originating stars. Not only was this effect observed, but

the amount of bending was precisely what Einstein predicted in his general theory of relativity.

To summarize the two views of gravity, Newton envisioned gravity as a tug of war along the line connecting any two objects in
the universe. In contrast, Einstein envisioned gravity as a bending of space-time by mass.
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BOUNDLESS PHYSICS

NASA gravity probe B
NASA’s Gravity Probe B (GP-B) mission has confirmed two key predictions derived from Albert Einstein’s general theory of
relativity. The probe, shown in Figure 7.12 was launched in 2004. It carried four ultra-precise gyroscopes designed to measure
two effects hypothesized by Einstein’s theory:

• The geodetic effect, which is the warping of space and time by the gravitational field of a massive body (in this case, Earth)
• The frame-dragging effect, which is the amount by which a spinning object pulls space and time with it as it rotates

Figure 7.12 Artist concept of Gravity Probe B spacecraft in orbit around the Earth. (credit: NASA/MSFC)

Both effects were measured with unprecedented precision. This was done by pointing the gyroscopes at a single star while
orbiting Earth in a polar orbit. As predicted by relativity theory, the gyroscopes experienced very small, but measureable,
changes in the direction of their spin caused by the pull of Earth’s gravity.

The principle investigator suggested imagining Earth spinning in honey. As Earth rotates it drags space and time with it as it
would a surrounding sea of honey.

GRASP CHECK
According to the general theory of relativity, a gravitational field bends light. What does this have to do with time and space?
a. Gravity has no effect on the space-time continuum, and gravity only affects the motion of light.
b. The space-time continuum is distorted by gravity, and gravity has no effect on the motion of light.
c. Gravity has no effect on either the space-time continuum or on the motion of light.
d. The space-time continuum is distorted by gravity, and gravity affects the motion of light.

Calculations Based on Newton’s Law of Universal Gravitation

TIPS FOR SUCCESS
When performing calculations using the equations in this chapter, use units of kilograms for mass, meters for distances,
newtons for force, and seconds for time.

The mass of an object is constant, but its weight varies with the strength of the gravitational field. This means the value of g
varies from place to place in the universe. The relationship between force, mass, and acceleration from the second law of motion
can be written in terms of g.

In this case, the force is the weight of the object, which is caused by the gravitational attraction of the planet or moon on which
the object is located. We can use this expression to compare weights of an object on different moons and planets.
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WATCH PHYSICS

Mass and Weight Clarification
This video shows the mathematical basis of the relationship between mass and weight. The distinction between mass and weight
are clearly explained. The mathematical relationship between mass and weight are shown mathematically in terms of the
equation for Newton’s law of universal gravitation and in terms of his second law of motion.

Click to view content (https://www.khanacademy.org/embed_video?v=IuBoeDihLUc)

GRASP CHECK
Would you have the same mass on the moon as you do on Earth? Would you have the same weight?
a. You would weigh more on the moon than on Earth because gravity on the moon is stronger than gravity on Earth.
b. You would weigh less on the moon than on Earth because gravity on the moon is weaker than gravity on Earth.
c. You would weigh less on the moon than on Earth because gravity on the moon is stronger than gravity on Earth.
d. You would weigh more on the moon than on Earth because gravity on the moon is weaker than gravity on Earth.

Two equations involving the gravitational constant, G, are often useful. The first is Newton’s equation, . Several of

the values in this equation are either constants or easily obtainable. F is often the weight of an object on the surface of a large
object with mass M, which is usually known. The mass of the smaller object, m, is often known, and G is a universal constant
with the same value anywhere in the universe. This equation can be used to solve problems involving an object on or orbiting
Earth or other massive celestial object. Sometimes it is helpful to equate the right-hand side of the equation to mg and cancel
the m on both sides.

The equation is also useful for problems involving objects in orbit. Note that there is no need to know the mass of the

object. Often, we know the radius r or the period T and want to find the other. If these are both known, we can use the equation
to calculate the mass of a planet or star.

WATCH PHYSICS

Mass and Weight Clarification
This video demonstrates calculations involving Newton’s universal law of gravitation.

Click to view content (https://www.khanacademy.org/embed_video?v=391txUI76gM)

GRASP CHECK
Identify the constants and .
a. and are both the acceleration due to gravity
b. is acceleration due to gravity on Earth and is the universal gravitational constant.
c. is the gravitational constant and is the acceleration due to gravity on Earth.
d. and are both the universal gravitational constant.

WORKED EXAMPLE

Change in g
The value of g on the planet Mars is 3.71 m/s2. If you have a mass of 60.0 kg on Earth, what would be your mass on Mars? What
would be your weight on Mars?
Strategy
Weight equals acceleration due to gravity times mass: . An object’s mass is constant. Call acceleration due to gravity
on Mars gM and weight on Mars WM.
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Solution
Mass on Mars would be the same, 60 kg.

Discussion
The value of g on any planet depends on the mass of the planet and the distance from its center. If the material below the surface
varies from point to point, the value of g will also vary slightly.

WORKED EXAMPLE

Earth’s g at the Moon
Find the acceleration due to Earth’s gravity at the distance of the moon.

Express the force of gravity in terms of g.

Combine with the equation for universal gravitation.

Solution
Cancel m and substitute.

Discussion
The value of g for the moon is 1.62 m/s2. Comparing this value to the answer, we see that Earth’s gravitational influence on an
object on the moon’s surface would be insignificant.

Practice Problems
6. What is the mass of a person who weighs ?

a.
b.
c.
d.

7. Calculate Earth’s mass given that the acceleration due to gravity at the North Pole is and the radius of the Earth is
from pole to center.

a.
b.
c.
d.

Check Your Understanding
8. Some of Newton’s predecessors and contemporaries also studied gravity and proposed theories. What important advance

did Newton make in the study of gravity that the other scientists had failed to do?
a. He gave an exact mathematical form for the theory.

7.4

7.5

7.6

7.7

7.8
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b. He added a correction term to a previously existing formula.
c. Newton found the value of the universal gravitational constant.
d. Newton showed that gravitational force is always attractive.

9. State the law of universal gravitation in words only.
a. Gravitational force between two objects is directly proportional to the sum of the squares of their masses and inversely

proportional to the square of the distance between them.
b. Gravitational force between two objects is directly proportional to the product of their masses and inversely

proportional to the square of the distance between them.
c. Gravitational force between two objects is directly proportional to the sum of the squares of their masses and inversely

proportional to the distance between them.
d. Gravitational force between two objects is directly proportional to the product of their masses and inversely

proportional to the distance between them.

10. Newton’s law of universal gravitation explains the paths of what?
a. A charged particle
b. A ball rolling on a plane surface
c. A planet moving around the sun
d. A stone tied to a string and whirled at constant speed in a horizontal circle
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KEY TERMS
aphelion closest distance between a planet and the sun

(called apoapsis for other celestial bodies)
Copernican model the model of the solar system where the

sun is at the center of the solar system and all the planets
orbit around it; this is also called the heliocentric model

eccentricity a measure of the separation of the foci of an
ellipse

Einstein’s theory of general relativity the theory that
gravitational force results from the bending of spacetime
by an object’s mass

gravitational constant the proportionality constant in
Newton’s law of universal gravitation

Kepler’s laws of planetary motion three laws derived by

Johannes Kepler that describe the properties of all
orbiting satellites

Newton’s universal law of gravitation states that
gravitational force between two objects is directly
proportional to the product of their masses and inversely
proportional to the square of the distance between them.

perihelion farthest distance between a planet and the sun
(called periapsis for other celestial bodies)

Ptolemaic model the model of the solar system where Earth
is at the center of the solar system and the sun and all the
planets orbit around it; this is also called the geocentric
model

SECTION SUMMARY
7.1 Kepler's Laws of Planetary
Motion

• All satellites follow elliptical orbits.
• The line from the satellite to the parent body sweeps out

equal areas in equal time.
• The radius cubed divided by the period squared is a

constant for all satellites orbiting the same parent body.

7.2 Newton's Law of Universal
Gravitation and Einstein's Theory of
General Relativity

• Newton’s law of universal gravitation provides a
mathematical basis for gravitational force and Kepler’s
laws of planetary motion.

• Einstein’s theory of general relativity shows that
gravitational fields change the path of light and warp
space and time.

• An object’s mass is constant, but its weight changes
when acceleration due to gravity, g, changes.

KEY EQUATIONS
7.1 Kepler's Laws of Planetary
Motion

Kepler’s third law

eccentricity

area of an ellipse

semi-major axis of an ellipse

semi-minor axis of an ellipse

7.2 Newton's Law of Universal
Gravitation and Einstein's Theory of
General Relativity

Newton’s second law of motion

Newton’s universal law of gravitation

acceleration due to gravity

constant for satellites orbiting the
same massive object

CHAPTER REVIEW
Concept Items
7.1 Kepler's Laws of Planetary Motion
1. A circle is a special case of an ellipse. Explain how a circle

is different from other ellipses.
a. The foci of a circle are at the same point and are

located at the center of the circle.
b. The foci of a circle are at the same point and are
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located at the circumference of the circle.
c. The foci of a circle are at the same point and are

located outside of the circle.
d. The foci of a circle are at the same point and are

located anywhere on the diameter, except on its
midpoint.

2. Comets have very elongated elliptical orbits with the sun
at one focus. Using Kepler's Law, explain why a comet
travels much faster near the sun than it does at the other
end of the orbit.
a. Because the satellite sweeps out equal areas in equal

times
b. Because the satellite sweeps out unequal areas in

equal times
c. Because the satellite is at the other focus of the

ellipse
d. Because the square of the period of the satellite is

proportional to the cube of its average distance from
the sun

3. True or False—A planet-satellite system must be isolated
from other massive objects to follow Kepler’s laws of
planetary motion.
a. True
b. False

4. Explain why the string, pins, and pencil method works
for drawing an ellipse.
a. The string, pins, and pencil method works because

the length of the two sides of the triangle remains
constant as you are drawing the ellipse.

b. The string, pins, and pencil method works because
the area of the triangle remains constant as you are
drawing the ellipse.

c. The string, pins, and pencil method works because
the perimeter of the triangle remains constant as
you are drawing the ellipse.

d. The string, pins, and pencil method works because
the volume of the triangle remains constant as you
are drawing the ellipse.

7.2 Newton's Law of Universal Gravitation
and Einstein's Theory of General Relativity
5. Describe the postulate on which Einstein based the

theory of general relativity and describe an everyday
experience that illustrates this postulate.
a. Gravity and velocity have the same effect and cannot

be distinguished from each other. An acceptable
illustration of this is any description of the feeling of
constant velocity in a situation where no outside
frame of reference is considered.

b. Gravity and velocity have different effects and can be
distinguished from each other. An acceptable

illustration of this is any description of the feeling of
constant velocity in a situation where no outside
frame of reference is considered.

c. Gravity and acceleration have the same effect and
cannot be distinguished from each other. An
acceptable illustration of this is any description of
the feeling of acceleration in a situation where no
outside frame of reference is considered.

d. Gravity and acceleration have different effects and
can be distinguished from each other. An acceptable
illustration of this is any description of the feeling of
acceleration in a situation where no outside frame of
reference is considered.

6. Titan, with a radius of , is the largest
moon of the planet Saturn. If the mass of Titan is

, what is the acceleration due to gravity
on the surface of this moon?
a.
b.
c.
d.

7. Saturn’s moon Titan has an orbital period of 15.9 days. If
Saturn has a mass of 5.68×1023 kg, what is the average
distance from Titan to the center of Saturn?
a. 1.22×106 m
b. 4.26×107 m
c. 5.25×104 km
d. 4.26×1010 km

8. Explain why doubling the mass of an object doubles its
weight, but doubling its distance from the center of
Earth reduces its weight fourfold.
a. The weight is two times the gravitational force

between the object and Earth.
b. The weight is half the gravitational force between

the object and Earth.
c. The weight is equal to the gravitational force

between the object and Earth, and the gravitational
force is inversely proportional to the distance
squared between the object and Earth.

d. The weight is directly proportional to the square of
the gravitational force between the object and Earth.

9. Explain why a star on the other side of the Sun might
appear to be in a location that is not its true location.
a. It can be explained by using the concept of

atmospheric refraction.
b. It can be explained by using the concept of the

special theory of relativity.
c. It can be explained by using the concept of the

general theory of relativity.
d. It can be explained by using the concept of light
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scattering in the atmosphere.

10. The Cavendish experiment marked a milestone in the
study of gravity.
Part A. What important value did the experiment
determine?
Part B. Why was this so difficult in terms of the masses
used in the apparatus and the strength of the
gravitational force?
a. Part A. The experiment measured the acceleration

due to gravity, g. Part B. Gravity is a very weak force
but despite this limitation, Cavendish was able to
measure the attraction between very massive
objects.

b. Part A. The experiment measured the gravitational

constant, G. Part B. Gravity is a very weak force
but, despite this limitation, Cavendish was able to
measure the attraction between very massive
objects.

c. Part A. The experiment measured the acceleration
due to gravity, g. Part B. Gravity is a very weak force
but despite this limitation, Cavendish was able to
measure the attraction between less massive
objects.

d. Part A. The experiment measured the gravitational
constant, G. Part B. Gravity is a very weak force but
despite this limitation, Cavendish was able to
measure the attraction between less massive
objects.

Critical Thinking Items
7.1 Kepler's Laws of Planetary Motion
11. In the figure, the time it takes for the planet to go from A

to B, C to D, and E to F is the same.

Compare the areas A1, A2, and A3 in terms of size.
a. A1 ≠ A2 ≠ A3

b. A1 = A2 = A3

c. A1 = A2 > A3

d. A1 > A2 = A3

12. A moon orbits a planet in an elliptical orbit. The foci of
the ellipse are 50, 000 km apart. The closest approach of
the moon to the planet is 400, 000 km. What is the
length of the major axis of the orbit?
a. 400, 000 km
b. 450, 000, km
c. 800, 000 km
d. 850, 000 km

13. In this figure, if f1 represents the parent body, which set
of statements holds true?

a. Area X < Area Y; the speed is greater for area X.
b. Area X > Area Y; the speed is greater for area Y.
c. Area X = Area Y; the speed is greater for area X.
d. Area X = Area Y; the speed is greater for area Y.

7.2 Newton's Law of Universal Gravitation
and Einstein's Theory of General Relativity
14. Rhea, with a radius of 7.63×105 m, is the second-largest

moon of the planet Saturn. If the mass of Rhea is
2.31×1021 kg, what is the acceleration due to gravity on
the surface of this moon?
a. 2.65×10−1 m/s
b. 2.02×105 m/s
c. 2.65×10−1 m/s2

d. 2.02×105 m/s2

15. Earth has a mass of 5.971×1024 kg and a radius of
6.371×106 m. Use the data to check the value of the
gravitational constant.
a. it matches the value of the

gravitational constant G.
b. it matches the value of the

gravitational constant G.

c. it matches the value of the

gravitational constant G.
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d. it matches the value of the

gravitational constant G.

16. The orbit of the planet Mercury has a period of 88.0 days
and an average radius of 5.791×1010 m. What is the mass
of the sun?

a. 3.43×1019 kg
b. 1.99×1030 kg
c. 2.56×1029 kg
d. 1.48×1040 kg

Problems
7.1 Kepler's Laws of Planetary Motion
17. The closest Earth comes to the sun is 1.47×108 km, and

Earth’s farthest distance from the sun is 1.52×108 km.
What is the area inside Earth’s orbit?
a. 2.23×1016 km2

b. 6.79×1016 km2

c. 7.02×1016 km2

d. 7.26×1016 km2

18. Earth is 1.496×108 km from the sun, and Neptune is
4.490×109 km from the sun. What best represents the
number of Earth years it takes for Neptune to complete
one orbit around the sun?
a. 10 years
b. 30 years
c. 160 years
d. 900 years

Performance Task
7.2 Newton's Law of Universal Gravitation
and Einstein's Theory of General Relativity
19. Design an experiment to test whether magnetic force is

inversely proportional to the square of distance.
Gravitational, magnetic, and electrical fields all act at a
distance, but do they all follow the inverse square law?
One difference in the forces related to these fields is that
gravity is only attractive, but the other two can repel as
well. In general, the inverse square law says that force F
equals a constant C divided by the distance between
objects, d, squared: .
Incorporate these materials into your design:

• Two strong, permanent bar magnets
• A spring scale that can measure small forces
• A short ruler calibrated in millimeters

Use the magnets to study the relationship between
attractive force and distance.
a. What will be the independent variable?
b. What will be the dependent variable?
c. How will you measure each of these variables?
d. If you plot the independent variable versus the

dependent variable and the inverse square law is
upheld, will the plot be a straight line? Explain.

e. Which plot would be a straight line if the inverse
square law were upheld?

TEST PREP
Multiple Choice
7.1 Kepler's Laws of Planetary Motion
20. A planet of mass m circles a sun of mass M. Which

distance changes throughout the planet’s orbit?
a.
b.
c.
d.

21. The focal point of the elliptical orbit of a moon is
from the center of the orbit. If the

eccentricity of the orbit is , what is the length of the
semi-major axis?
a.
b.
c.
d.

22. An artificial satellite orbits the Earth at a distance of
1.45×104 km from Earth’s center. The moon orbits the
Earth at a distance of 3.84×105 km once every 27.3 days.
How long does it take the satellite to orbit the Earth?
a. 0.200 days
b. 3.07 days
c. 243 days
d. 3721 days

23. Earth is 1.496×108 km from the sun, and Venus is
1.08×108 km from the sun. One day on Venus is 243
Earth days long. What best represents the number of
Venusian days in a Venusian year?
a. 0.78 days
b. 0.92 days
c. 1.08 days
d. 1.21 days
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7.2 Newton's Law of Universal Gravitation
and Einstein's Theory of General Relativity
24. What did the Cavendish experiment measure?

a. The mass of Earth
b. The gravitational constant
c. Acceleration due to gravity
d. The eccentricity of Earth’s orbit

25. You have a mass of and you have just landed on
one of the moons of Jupiter where you have a weight of

. What is the acceleration due to gravity, , on
the moon you are visiting?
a.
b.
c.
d.

26. A person is in an elevator that suddenly begins to
descend. The person knows, intuitively, that the feeling
of suddenly becoming lighter is because the elevator is
accelerating downward. What other change would

produce the same feeling? How does this demonstrate
Einstein’s postulate on which he based the theory of
general relativity?
a. It would feel the same if the force of gravity

suddenly became weaker. This illustrates Einstein’s
postulates that gravity and acceleration are
indistinguishable.

b. It would feel the same if the force of gravity
suddenly became stronger. This illustrates
Einstein’s postulates that gravity and acceleration
are indistinguishable.

c. It would feel the same if the force of gravity
suddenly became weaker. This illustrates Einstein’s
postulates that gravity and acceleration are
distinguishable.

d. It would feel the same if the force of gravity
suddenly became stronger. This illustrates
Einstein’s postulates that gravity and acceleration
are distinguishable.

Short Answer
7.1 Kepler's Laws of Planetary Motion
27. Explain how the masses of a satellite and its parent body

must compare in order to apply Kepler’s laws of
planetary motion.
a. The mass of the parent body must be much less

than that of the satellite.
b. The mass of the parent body must be much greater

than that of the satellite.
c. The mass of the parent body must be equal to the

mass of the satellite.
d. There is no specific relationship between the

masses for applying Kepler’s laws of planetary
motion.

28. Hyperion is a moon of the planet Saturn. Its orbit has an
eccentricity of and a semi-major axis of

. How far is the center of the orbit from
the center of Saturn?
a.
b.
c.
d.

29. The orbits of satellites are elliptical. Define an ellipse.
a. An ellipse is an open curve wherein the sum of the

distance from the foci to any point on the curve is
constant.

b. An ellipse is a closed curve wherein the sum of the
distance from the foci to any point on the curve is
constant.

c. An ellipse is an open curve wherein the distances
from the two foci to any point on the curve are
equal.

d. An ellipse is a closed curve wherein the distances
from the two foci to any point on the curve are
equal.

30. Mars has two moons, Deimos and Phobos. The orbit of
Deimos has a period of and an average
radius of . The average radius of the
orbit of Phobos is . According to
Kepler’s third law of planetary motion, what is the
period of Phobos?
a.
b.
c.
d.

7.2 Newton's Law of Universal Gravitation
and Einstein's Theory of General Relativity
31. Newton’s third law of motion says that, for every action

force, there is a reaction force equal in magnitude but
that acts in the opposite direction. Apply this law to
gravitational forces acting between the Washington
Monument and Earth.
a. The monument is attracted to Earth with a force

equal to its weight, and Earth is attracted to the
monument with a force equal to Earth’s weight. The
situation can be represented with two force vectors
of unequal magnitude and pointing in the same
direction.
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b. The monument is attracted to Earth with a force
equal to its weight, and Earth is attracted to the
monument with a force equal to Earth’s weight. The
situation can be represented with two force vectors
of unequal magnitude but pointing in opposite
directions.

c. The monument is attracted to Earth with a force
equal to its weight, and Earth is attracted to the
monument with an equal force. The situation can
be represented with two force vectors of equal
magnitude and pointing in the same direction.

d. The monument is attracted to Earth with a force
equal to its weight, and Earth is attracted to the
monument with an equal force. The situation can
be represented with two force vectors of equal
magnitude but pointing in opposite directions.

32. True or false—Gravitational force is the attraction of the
mass of one object to the mass of another. Light, either

as a particle or a wave, has no rest mass. Despite this
fact gravity bends a beam of light.
a. True
b. False

33. The average radius of Earth is . What is
Earth’s mass?
a.
b.
c.
d.

34. What is the gravitational force between two
people sitting apart?
a.
b.
c.
d.

Extended Response
7.1 Kepler's Laws of Planetary Motion
35. The orbit of Halley’'s Comet has an eccentricity of 0.967

and stretches to the edge of the solar system.
Part A. Describe the shape of the comet’s orbit.
Part B. Compare the distance traveled per day when it is
near the sun to the distance traveled per day when it is at
the edge of the solar system.
Part C. Describe variations in the comet's speed as it
completes an orbit. Explain the variations in terms of
Kepler's second law of planetary motion.
a. Part A. The orbit is circular, with the sun at the

center. Part B. The comet travels much farther
when it is near the sun than when it is at the edge
of the solar system. Part C. The comet decelerates
as it approaches the sun and accelerates as it leaves
the sun.

b. Part A. The orbit is circular, with the sun at the
center. Part B. The comet travels much farther
when it is near the sun than when it is at the edge
of the solar system. Part C. The comet accelerates
as it approaches the sun and decelerates as it leaves
the sun.

c. Part A. The orbit is very elongated, with the sun
near one end. Part B. The comet travels much
farther when it is near the sun than when it is at the
edge of the solar system. Part C. The comet
decelerates as it approaches the sun and accelerates
as it moves away from the sun.

36. For convenience, astronomers often use astronomical
units (AU) to measure distances within the solar system.
One AU equals the average distance from Earth to the

sun. Halley’s Comet returns once every 75.3 years. What
is the average radius of the orbit of Halley’s Comet in
AU?
a. 0.002 AU
b. 0.056 AU
c. 17.8 AU
d. 653 AU

7.2 Newton's Law of Universal Gravitation
and Einstein's Theory of General Relativity
37. It took scientists a long time to arrive at the

understanding of gravity as explained by Galileo and
Newton. They were hindered by two ideas that seemed
like common sense but were serious misconceptions.
First was the fact that heavier things fall faster than light
things. Second, it was believed impossible that forces
could act at a distance. Explain why these ideas
persisted and why they prevented advances.
a. Heavier things fall faster than light things if they

have less surface area and greater mass density. In
the Renaissance and before, forces that acted at a
distance were considered impossible, so people
were skeptical about scientific theories that
invoked such forces.

b. Heavier things fall faster than light things because
they have greater surface area and less mass
density. In the Renaissance and before, forces that
act at a distance were considered impossible, so
people were skeptical about scientific theories that
invoked such forces.

c. Heavier things fall faster than light things because
they have less surface area and greater mass
density. In the Renaissance and before, forces that
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act at a distance were considered impossible, so
people were quick to accept scientific theories that
invoked such forces.

d. Heavier things fall faster than light things because
they have larger surface area and less mass density.
In the Renaissance and before, forces that act at a
distance were considered impossible because of
people’s faith in scientific theories.

38. The masses of Earth and the moon are 5.97×1024 kg and

7.35×1022 kg, respectively. The distance from Earth to the
moon is 3.80×105 km. At what point between the Earth
and the moon are the opposing gravitational forces
equal? (Use subscripts e and m to represent Earth and
moon.)
a. 3.42×105 km from the center of Earth
b. 3.80×105 km from the center of Earth
c. 3.42×106 km from the center of Earth
d. 3.10×107 km from the center of Earth
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INTRODUCTION

CHAPTER 8
Momentum

8.1 Linear Momentum, Force, and Impulse

8.2 Conservation of Momentum

8.3 Elastic and Inelastic Collisions

We know from everyday use of the word momentum that it is a tendency to continue on course in the same
direction. Newscasters speak of sports teams or politicians gaining, losing, or maintaining the momentum to win. As we
learned when studying about inertia, which is Newton's first law of motion, every object or system has inertia—that is, a
tendency for an object in motion to remain in motion or an object at rest to remain at rest. Mass is a useful variable that lets us
quantify inertia. Momentum is mass in motion.

Momentum is important because it is conserved in isolated systems; this fact is convenient for solving problems where objects
collide. The magnitude of momentum grows with greater mass and/or speed. For example, look at the football players in the
photograph (Figure 8.1). They collide and fall to the ground. During their collisions, momentum will play a large part. In this
chapter, we will learn about momentum, the different types of collisions, and how to use momentum equations to solve collision
problems.

Figure 8.1 NFC defensive backs Ronde Barber and Roy Williams along with linebacker Jeremiah Trotter gang tackle
AFC running back LaDainian Tomlinson during the 2006 Pro Bowl in Hawaii. (United States Marine Corps)
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8.1 Linear Momentum, Force, and Impulse
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe momentum, what can change momentum, impulse, and the impulse-momentum theorem
• Describe Newton’s second law in terms of momentum
• Solve problems using the impulse-momentum theorem

Section Key Terms

change in momentum impulse impulse–momentum theorem linear momentum

Momentum, Impulse, and the Impulse-Momentum Theorem
Linear momentum is the product of a system’s mass and its velocity. In equation form, linear momentum p is

You can see from the equation that momentum is directly proportional to the object’s mass (m) and velocity (v). Therefore, the
greater an object’s mass or the greater its velocity, the greater its momentum. A large, fast-moving object has greater
momentum than a smaller, slower object.

Momentum is a vector and has the same direction as velocity v. Since mass is a scalar, when velocity is in a negative direction
(i.e., opposite the direction of motion), the momentum will also be in a negative direction; and when velocity is in a positive
direction, momentum will likewise be in a positive direction. The SI unit for momentum is kg m/s.

Momentum is so important for understanding motion that it was called the quantity of motion by physicists such as Newton.
Force influences momentum, and we can rearrange Newton’s second law of motion to show the relationship between force and
momentum.

Recall our study of Newton’s second law of motion (Fnet = ma). Newton actually stated his second law of motion in terms of
momentum: The net external force equals the change in momentum of a system divided by the time over which it changes. The
change in momentum is the difference between the final and initial values of momentum.

In equation form, this law is

where Fnet is the net external force, is the change in momentum, and is the change in time.

We can solve for by rearranging the equation

to be

is known as impulse and this equation is known as the impulse-momentum theorem. From the equation, we see that
the impulse equals the average net external force multiplied by the time this force acts. It is equal to the change in momentum.
The effect of a force on an object depends on how long it acts, as well as the strength of the force. Impulse is a useful concept
because it quantifies the effect of a force. A very large force acting for a short time can have a great effect on the momentum of
an object, such as the force of a racket hitting a tennis ball. A small force could cause the same change in momentum, but it
would have to act for a much longer time.

Newton’s Second Law in Terms of Momentum
When Newton’s second law is expressed in terms of momentum, it can be used for solving problems where mass varies, since

. In the more traditional form of the law that you are used to working with, mass is assumed to be constant. In
fact, this traditional form is a special case of the law, where mass is constant. is actually derived from the equation:
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For the sake of understanding the relationship between Newton’s second law in its two forms, let’s recreate the derivation of
from

by substituting the definitions of acceleration and momentum.

The change in momentum is given by

If the mass of the system is constant, then

By substituting for , Newton’s second law of motion becomes

for a constant mass.

Because

we can substitute to get the familiar equation

when the mass of the system is constant.

TIPS FOR SUCCESS
We just showed how applies only when the mass of the system is constant. An example of when this formula
would not apply would be a moving rocket that burns enough fuel to significantly change the mass of the rocket. In this case,
you would need to use Newton’s second law expressed in terms of momentum to account for the changing mass.

Snap Lab

Hand Movement and Impulse
In this activity you will experiment with different types of hand motions to gain an intuitive understanding of the
relationship between force, time, and impulse.

• one ball
• one tub filled with water

Procedure:
1. Try catching a ball while giving with the ball, pulling your hands toward your body.
2. Next, try catching a ball while keeping your hands still.
3. Hit water in a tub with your full palm. Your full palm represents a swimmer doing a belly flop.
4. After the water has settled, hit the water again by diving your hand with your fingers first into the water. Your diving

hand represents a swimmer doing a dive.
5. Explain what happens in each case and why.

GRASP CHECK
What are some other examples of motions that impulse affects?
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LINKS TO PHYSICS

Engineering: Saving Lives Using the Concept of Impulse
Cars during the past several decades have gotten much safer. Seat belts play a major role in automobile safety by preventing
people from flying into the windshield in the event of a crash. Other safety features, such as airbags, are less visible or obvious,
but are also effective at making auto crashes less deadly (see Figure 8.2). Many of these safety features make use of the concept
of impulse from physics. Recall that impulse is the net force multiplied by the duration of time of the impact. This was expressed
mathematically as .

Figure 8.2 Vehicles have safety features like airbags and seat belts installed.

Airbags allow the net force on the occupants in the car to act over a much longer time when there is a sudden stop. The
momentum change is the same for an occupant whether an airbag is deployed or not. But the force that brings the occupant to a

stop will be much less if it acts over a larger time. By rearranging the equation for impulse to solve for force you can
see how increasing while stays the same will decrease Fnet. This is another example of an inverse relationship. Similarly, a
padded dashboard increases the time over which the force of impact acts, thereby reducing the force of impact.

Cars today have many plastic components. One advantage of plastics is their lighter weight, which results in better gas mileage.
Another advantage is that a car will crumple in a collision, especially in the event of a head-on collision. A longer collision time
means the force on the occupants of the car will be less. Deaths during car races decreased dramatically when the rigid frames of
racing cars were replaced with parts that could crumple or collapse in the event of an accident.

GRASP CHECK
You may have heard the advice to bend your knees when jumping. In this example, a friend dares you to jump off of a park
bench onto the ground without bending your knees. You, of course, refuse. Explain to your friend why this would be a foolish
thing. Show it using the impulse-momentum theorem.
a. Bending your knees increases the time of the impact, thus decreasing the force.
b. Bending your knees decreases the time of the impact, thus decreasing the force.
c. Bending your knees increases the time of the impact, thus increasing the force.
d. Bending your knees decreases the time of the impact, thus increasing the force.

a. a football player colliding with another, or a car moving at a constant velocity
b. a car moving at a constant velocity, or an object moving in the projectile motion
c. a car moving at a constant velocity, or a racket hitting a ball
d. a football player colliding with another, or a racket hitting a ball
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Solving Problems Using the Impulse-Momentum Theorem

WORKED EXAMPLE

Calculating Momentum: A Football Player and a Football
(a) Calculate the momentum of a 110 kg football player running at 8 m/s. (b) Compare the player’s momentum with the
momentum of a 0.410 kg football thrown hard at a speed of 25 m/s.
Strategy
No information is given about the direction of the football player or the football, so we can calculate only the magnitude of the
momentum, p. (A symbol in italics represents magnitude.) In both parts of this example, the magnitude of momentum can be
calculated directly from the definition of momentum:

Solution for (a)
To find the player’s momentum, substitute the known values for the player’s mass and speed into the equation.

Solution for (b)
To find the ball’s momentum, substitute the known values for the ball’s mass and speed into the equation.

The ratio of the player’s momentum to the ball’s momentum is

Discussion
Although the ball has greater velocity, the player has a much greater mass. Therefore, the momentum of the player is about 86
times greater than the momentum of the football.

WORKED EXAMPLE

Calculating Force: Venus Williams’ Racquet
During the 2007 French Open, Venus Williams (Figure 8.3) hit the fastest recorded serve in a premier women’s match, reaching a
speed of 58 m/s (209 km/h). What was the average force exerted on the 0.057 kg tennis ball by Williams’ racquet? Assume that the
ball’s speed just after impact was 58 m/s, the horizontal velocity before impact is negligible, and that the ball remained in
contact with the racquet for 5 ms (milliseconds).

Figure 8.3 Venus Williams playing in the 2013 US Open (Edwin Martinez, Flickr)

Strategy
Recall that Newton’s second law stated in terms of momentum is
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As noted above, when mass is constant, the change in momentum is given by

where vf is the final velocity and vi is the initial velocity. In this example, the velocity just after impact and the change in time are

given, so after we solve for , we can use to find the force.

Solution
To determine the change in momentum, substitute the values for mass and the initial and final velocities into the equation
above.

Now we can find the magnitude of the net external force using

Discussion
This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact. This problem
could also be solved by first finding the acceleration and then using Fnet = ma, but we would have had to do one more step. In
this case, using momentum was a shortcut.

Practice Problems
1. What is the momentum of a bowling ball with mass and velocity ?

a.
b.
c.
d.

2. What will be the change in momentum caused by a net force of acting on an object for seconds?
a.
b.
c.
d.

Check Your Understanding
3. What is linear momentum?

a. the sum of a system’s mass and its velocity
b. the ratio of a system’s mass to its velocity
c. the product of a system’s mass and its velocity
d. the product of a system’s moment of inertia and its velocity

4. If an object’s mass is constant, what is its momentum proportional to?
a. Its velocity
b. Its weight
c. Its displacement
d. Its moment of inertia

5. What is the equation for Newton’s second law of motion, in terms of mass, velocity, and time, when the mass of the system is

8.1

8.2
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constant?
a.

b.

c.

d.

6. Give an example of a system whose mass is not constant.
a. A spinning top
b. A baseball flying through the air
c. A rocket launched from Earth
d. A block sliding on a frictionless inclined plane

8.2 Conservation of Momentum
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the law of conservation of momentum verbally and mathematically

Section Key Terms

angular momentum isolated system law of conservation of momentum

Conservation of Momentum
It is important we realize that momentum is conserved during collisions, explosions, and other events involving objects in
motion. To say that a quantity is conserved means that it is constant throughout the event. In the case of conservation of
momentum, the total momentum in the system remains the same before and after the collision.

You may have noticed that momentum was not conserved in some of the examples previously presented in this chapter. where
forces acting on the objects produced large changes in momentum. Why is this? The systems of interest considered in those
problems were not inclusive enough. If the systems were expanded to include more objects, then momentum would in fact be
conserved in those sample problems. It is always possible to find a larger system where momentum is conserved, even though
momentum changes for individual objects within the system.

For example, if a football player runs into the goalpost in the end zone, a force will cause him to bounce backward. His
momentum is obviously greatly changed, and considering only the football player, we would find that momentum is not
conserved. However, the system can be expanded to contain the entire Earth. Surprisingly, Earth also recoils—conserving
momentum—because of the force applied to it through the goalpost. The effect on Earth is not noticeable because it is so much
more massive than the player, but the effect is real.

Next, consider what happens if the masses of two colliding objects are more similar than the masses of a football player and
Earth—in the example shown in Figure 8.4 of one car bumping into another. Both cars are coasting in the same direction when
the lead car, labeled m2, is bumped by the trailing car, labeled m1. The only unbalanced force on each car is the force of the
collision, assuming that the effects due to friction are negligible. Car m1 slows down as a result of the collision, losing some
momentum, while car m2 speeds up and gains some momentum. If we choose the system to include both cars and assume that
friction is negligible, then the momentum of the two-car system should remain constant. Now we will prove that the total
momentum of the two-car system does in fact remain constant, and is therefore conserved.
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Figure 8.4 Car of mass m1 moving with a velocity of v1 bumps into another car of mass m2 and velocity v2. As a result, the first car slows

down to a velocity of v′1 and the second speeds up to a velocity of v′2. The momentum of each car is changed, but the total momentum ptot

of the two cars is the same before and after the collision if you assume friction is negligible.

Using the impulse-momentum theorem, the change in momentum of car 1 is given by

where F1 is the force on car 1 due to car 2, and is the time the force acts, or the duration of the collision.

Similarly, the change in momentum of car 2 is where F2 is the force on car 2 due to car 1, and we assume the
duration of the collision is the same for both cars. We know from Newton’s third law of motion that F2 = –F1, and so

.

Therefore, the changes in momentum are equal and opposite, and .

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

where p′1 and p′2 are the momenta of cars 1 and 2 after the collision.

This result that momentum is conserved is true not only for this example involving the two cars, but for any system where the
net external force is zero, which is known as an isolated system. The law of conservation of momentum states that for an
isolated system with any number of objects in it, the total momentum is conserved. In equation form, the law of conservation of
momentum for an isolated system is written as

or

where ptot is the total momentum, or the sum of the momenta of the individual objects in the system at a given time, and p′tot is
the total momentum some time later.

The conservation of momentum principle can be applied to systems as diverse as a comet striking the Earth or a gas containing
huge numbers of atoms and molecules. Conservation of momentum appears to be violated only when the net external force is
not zero. But another larger system can always be considered in which momentum is conserved by simply including the source
of the external force. For example, in the collision of two cars considered above, the two-car system conserves momentum while
each one-car system does not.
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TIPS FOR SUCCESS
Momenta is the plural form of the word momentum. One object is said to have momentum, but two or more objects are said
to have momenta.

FUN IN PHYSICS

Angular Momentum in Figure Skating
So far we have covered linear momentum, which describes the inertia of objects traveling in a straight line. But we know that
many objects in nature have a curved or circular path. Just as linear motion has linear momentum to describe its tendency to
move forward, circular motion has the equivalent angular momentum to describe how rotational motion is carried forward.

This is similar to how torque is analogous to force, angular acceleration is analogous to translational acceleration, and mr2 is
analogous to mass or inertia. You may recall learning that the quantity mr2 is called the rotational inertia or moment of inertia
of a point mass m at a distance r from the center of rotation.

We already know the equation for linear momentum, p = mv. Since angular momentum is analogous to linear momentum, the
moment of inertia (I) is analogous to mass, and angular velocity is analogous to linear velocity, it makes sense that angular
momentum (L) is defined as

Angular momentum is conserved when the net external torque ( ) is zero, just as linear momentum is conserved when the net
external force is zero.

Figure skaters take advantage of the conservation of angular momentum, likely without even realizing it. In Figure 8.5, a figure
skater is executing a spin. The net torque on her is very close to zero, because there is relatively little friction between her skates
and the ice, and because the friction is exerted very close to the pivot point. Both F and r are small, and so is negligibly small.

Figure 8.5 (a) An ice skater is spinning on the tip of her skate with her arms extended. In the next image, (b), her rate of spin increases

greatly when she pulls in her arms.

Consequently, she can spin for quite some time. She can do something else, too. She can increase her rate of spin by pulling her
arms and legs in. Why does pulling her arms and legs in increase her rate of spin? The answer is that her angular momentum is
constant, so that L = L′.

Expressing this equation in terms of the moment of inertia,

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because I′
is smaller, the angular velocity must increase to keep the angular momentum constant. This allows her to spin much faster
without exerting any extra torque.

A video (http://openstax.org/l/28figureskater) is also available that shows a real figure skater executing a spin. It discusses the
physics of spins in figure skating.
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GRASP CHECK
Based on the equation L = Iω, how would you expect the moment of inertia of an object to affect angular momentum? How
would angular velocity affect angular momentum?
a. Large moment of inertia implies large angular momentum, and large angular velocity implies large angular

momentum.
b. Large moment of inertia implies small angular momentum, and large angular velocity implies small angular

momentum.
c. Large moment of inertia implies large angular momentum, and large angular velocity implies small angular

momentum.
d. Large moment of inertia implies small angular momentum, and large angular velocity implies large angular

momentum.

Check Your Understanding
7. When is momentum said to be conserved?

a. When momentum is changing during an event
b. When momentum is increasing during an event
c. When momentum is decreasing during an event
d. When momentum is constant throughout an event

8. A ball is hit by a racket and its momentum changes. How is momentum conserved in this case?
a. Momentum of the system can never be conserved in this case.
b. Momentum of the system is conserved if the momentum of the racket is not considered.
c. Momentum of the system is conserved if the momentum of the racket is also considered.
d. Momentum of the system is conserved if the momenta of the racket and the player are also considered.

9. State the law of conservation of momentum.
a. Momentum is conserved for an isolated system with any number of objects in it.
b. Momentum is conserved for an isolated system with an even number of objects in it.
c. Momentum is conserved for an interacting system with any number of objects in it.
d. Momentum is conserved for an interacting system with an even number of objects in it.

8.3 Elastic and Inelastic Collisions
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Distinguish between elastic and inelastic collisions
• Solve collision problems by applying the law of conservation of momentum

Section Key Terms

elastic collision inelastic collision point masses recoil

Elastic and Inelastic Collisions
When objects collide, they can either stick together or bounce off one another, remaining separate. In this section, we’ll cover
these two different types of collisions, first in one dimension and then in two dimensions.

In an elastic collision, the objects separate after impact and don’t lose any of their kinetic energy. Kinetic energy is the energy of
motion and is covered in detail elsewhere. The law of conservation of momentum is very useful here, and it can be used
whenever the net external force on a system is zero. Figure 8.6 shows an elastic collision where momentum is conserved.
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Figure 8.6 The diagram shows a one-dimensional elastic collision between two objects.

An animation of an elastic collision between balls can be seen by watching this video (http://openstax.org/l/28elasticball) . It
replicates the elastic collisions between balls of varying masses.

Perfectly elastic collisions can happen only with subatomic particles. Everyday observable examples of perfectly elastic collisions
don’t exist—some kinetic energy is always lost, as it is converted into heat transfer due to friction. However, collisions between
everyday objects are almost perfectly elastic when they occur with objects and surfaces that are nearly frictionless, such as with
two steel blocks on ice.

Now, to solve problems involving one-dimensional elastic collisions between two objects, we can use the equation for
conservation of momentum. First, the equation for conservation of momentum for two objects in a one-dimensional collision is

Substituting the definition of momentum p = mv for each initial and final momentum, we get

where the primes (') indicate values after the collision; In some texts, you may see i for initial (before collision) and f for final
(after collision). The equation assumes that the mass of each object does not change during the collision.

WATCH PHYSICS

Momentum: Ice Skater Throws a Ball
This video covers an elastic collision problem in which we find the recoil velocity of an ice skater who throws a ball straight
forward. To clarify, Sal is using the equation

.

Click to view content (https://www.khanacademy.org/embed_video?v=vPkkCOlGND4)

GRASP CHECK

The resultant vector of the addition of vectors and is . The magnitudes of , , and are , , and ,
respectively. Which of the following is true?
a.

b.
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c.
d.

Now, let us turn to the second type of collision. An inelastic collision is one in which objects stick together after impact, and
kinetic energy is not conserved. This lack of conservation means that the forces between colliding objects may convert kinetic
energy to other forms of energy, such as potential energy or thermal energy. The concepts of energy are discussed more
thoroughly elsewhere. For inelastic collisions, kinetic energy may be lost in the form of heat. Figure 8.7 shows an example of an
inelastic collision. Two objects that have equal masses head toward each other at equal speeds and then stick together. The two
objects come to rest after sticking together, conserving momentum but not kinetic energy after they collide. Some of the energy
of motion gets converted to thermal energy, or heat.

Figure 8.7 A one-dimensional inelastic collision between two objects. Momentum is conserved, but kinetic energy is not conserved. (a) Two

objects of equal mass initially head directly toward each other at the same speed. (b) The objects stick together, creating a perfectly

inelastic collision. In the case shown in this figure, the combined objects stop; This is not true for all inelastic collisions.

Since the two objects stick together after colliding, they move together at the same speed. This lets us simplify the conservation
of momentum equation from

to

for inelastic collisions, where v′ is the final velocity for both objects as they are stuck together, either in motion or at rest.

WATCH PHYSICS

Introduction to Momentum
This video reviews the definitions of momentum and impulse. It also covers an example of using conservation of momentum to
solve a problem involving an inelastic collision between a car with constant velocity and a stationary truck. Note that Sal
accidentally gives the unit for impulse as Joules; it is actually N s or k gm/s.

Click to view content (https://www.khanacademy.org/embed_video?v=XFhntPxow0U)

GRASP CHECK
How would the final velocity of the car-plus-truck system change if the truck had some initial velocity moving in the same
direction as the car? What if the truck were moving in the opposite direction of the car initially? Why?
a. If the truck was initially moving in the same direction as the car, the final velocity would be greater. If the truck was

initially moving in the opposite direction of the car, the final velocity would be smaller.
b. If the truck was initially moving in the same direction as the car, the final velocity would be smaller. If the truck was

initially moving in the opposite direction of the car, the final velocity would be greater.
c. The direction in which the truck was initially moving would not matter. If the truck was initially moving in either
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direction, the final velocity would be smaller.
d. The direction in which the truck was initially moving would not matter. If the truck was initially moving in either

direction, the final velocity would be greater.

TIPS FOR SUCCESS
Here’s a trick for remembering which collisions are elastic and which are inelastic: Elastic is a bouncy material, so when
objects bounce off one another in the collision and separate, it is an elastic collision. When they don’t, the collision is
inelastic.

Solving Collision Problems
The Khan Academy videos referenced in this section show examples of elastic and inelastic collisions in one dimension. In one-
dimensional collisions, the incoming and outgoing velocities are all along the same line. But what about collisions, such as those
between billiard balls, in which objects scatter to the side? These are two-dimensional collisions, and just as we did with two-
dimensional forces, we will solve these problems by first choosing a coordinate system and separating the motion into its x and y
components.

One complication with two-dimensional collisions is that the objects might rotate before or after their collision. For example, if
two ice skaters hook arms as they pass each other, they will spin in circles. We will not consider such rotation until later, and so
for now, we arrange things so that no rotation is possible. To avoid rotation, we consider only the scattering of point
masses—that is, structureless particles that cannot rotate or spin.

We start by assuming that Fnet = 0, so that momentum p is conserved. The simplest collision is one in which one of the particles
is initially at rest. The best choice for a coordinate system is one with an axis parallel to the velocity of the incoming particle, as
shown in Figure 8.8. Because momentum is conserved, the components of momentum along the x- and y-axes, displayed as px

and py, will also be conserved. With the chosen coordinate system, py is initially zero and px is the momentum of the incoming
particle.

Snap Lab

Ice Cubes and Elastic Collisions
In this activity, you will observe an elastic collision by sliding an ice cube into another ice cube on a smooth surface, so that a
negligible amount of energy is converted to heat.

• Several ice cubes (The ice must be in the form of cubes.)
• A smooth surface

Procedure
1. Find a few ice cubes that are about the same size and a smooth kitchen tabletop or a table with a glass top.
2. Place the ice cubes on the surface several centimeters away from each other.
3. Flick one ice cube toward a stationary ice cube and observe the path and velocities of the ice cubes after the collision.

Try to avoid edge-on collisions and collisions with rotating ice cubes.
4. Explain the speeds and directions of the ice cubes using momentum.

GRASP CHECK
Was the collision elastic or inelastic?
a. perfectly elastic
b. perfectly inelastic
c. Nearly perfect elastic
d. Nearly perfect inelastic
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Figure 8.8 A two-dimensional collision with the coordinate system chosen so that m2 is initially at rest and v1 is parallel to the x-axis.

Now, we will take the conservation of momentum equation, p1 + p2 = p′1 + p′2 and break it into its x and y components.

Along the x-axis, the equation for conservation of momentum is

In terms of masses and velocities, this equation is

But because particle 2 is initially at rest, this equation becomes

The components of the velocities along the x-axis have the form v cos θ . Because particle 1 initially moves along the x-axis, we
find v1x = v1. Conservation of momentum along the x-axis gives the equation

where and are as shown in Figure 8.8.

Along the y-axis, the equation for conservation of momentum is

or

But v1y is zero, because particle 1 initially moves along the x-axis. Because particle 2 is initially at rest, v2y is also zero. The
equation for conservation of momentum along the y-axis becomes

The components of the velocities along the y-axis have the form v sin . Therefore, conservation of momentum along the y-axis
gives the following equation:

8.3

8.4

8.5

8.6

8.7

Virtual Physics

Collision Lab
In this simulation, you will investigate collisions on an air hockey table. Place checkmarks next to the momentum vectors
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WORKED EXAMPLE

Calculating Velocity: Inelastic Collision of a Puck and a Goalie
Find the recoil velocity of a 70 kg ice hockey goalie who catches a 0.150-kg hockey puck slapped at him at a velocity of 35 m/s.
Assume that the goalie is at rest before catching the puck, and friction between the ice and the puck-goalie system is negligible
(see Figure 8.9).

Figure 8.9 An ice hockey goalie catches a hockey puck and recoils backward in an inelastic collision.

Strategy
Momentum is conserved because the net external force on the puck-goalie system is zero. Therefore, we can use conservation of
momentum to find the final velocity of the puck and goalie system. Note that the initial velocity of the goalie is zero and that the
final velocity of the puck and goalie are the same.

Solution
For an inelastic collision, conservation of momentum is

where v′ is the velocity of both the goalie and the puck after impact. Because the goalie is initially at rest, we know v2 = 0. This
simplifies the equation to

Solving for v′ yields

and momenta diagram options. Experiment with changing the masses of the balls and the initial speed of ball 1. How does
this affect the momentum of each ball? What about the total momentum? Next, experiment with changing the elasticity of
the collision. You will notice that collisions have varying degrees of elasticity, ranging from perfectly elastic to perfectly
inelastic.

Click to view content (https://archive.cnx.org/specials/2c7acb3c-2fbd-11e5-b2d9-e7f92291703c/collision-lab/)

GRASP CHECK
If you wanted to maximize the velocity of ball 2 after impact, how would you change the settings for the masses of the
balls, the initial speed of ball 1, and the elasticity setting? Why? Hint—Placing a checkmark next to the velocity vectors
and removing the momentum vectors will help you visualize the velocity of ball 2, and pressing the More Data button
will let you take readings.
a. Maximize the mass of ball 1 and initial speed of ball 1; minimize the mass of ball 2; and set elasticity to 50 percent.
b. Maximize the mass of ball 2 and initial speed of ball 1; minimize the mass of ball 1; and set elasticity to 100 percent.
c. Maximize the mass of ball 1 and initial speed of ball 1; minimize the mass of ball 2; and set elasticity to 100 percent.
d. Maximize the mass of ball 2 and initial speed of ball 1; minimize the mass of ball 1; and set elasticity to 50 percent.

8.8

8.9
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Entering known values in this equation, we get

Discussion
This recoil velocity is small and in the same direction as the puck’s original velocity.

WORKED EXAMPLE

Calculating Final Velocity: Elastic Collision of Two Carts
Two hard, steel carts collide head-on and then ricochet off each other in opposite directions on a frictionless surface (see Figure
8.10). Cart 1 has a mass of 0.350 kg and an initial velocity of 2 m/s. Cart 2 has a mass of 0.500 kg and an initial velocity of −0.500
m/s. After the collision, cart 1 recoils with a velocity of −4 m/s. What is the final velocity of cart 2?

Figure 8.10 Two carts collide with each other in an elastic collision.

Strategy
Since the track is frictionless, Fnet = 0 and we can use conservation of momentum to find the final velocity of cart 2.

Solution
As before, the equation for conservation of momentum for a one-dimensional elastic collision in a two-object system is

The only unknown in this equation is v′2. Solving for v′2 and substituting known values into the previous equation yields

Discussion
The final velocity of cart 2 is large and positive, meaning that it is moving to the right after the collision.

8.10

8.11

8.12

8.13
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WORKED EXAMPLE

Calculating Final Velocity in a Two-Dimensional Collision
Suppose the following experiment is performed (Figure 8.11). An object of mass 0.250 kg (m1) is slid on a frictionless surface into
a dark room, where it strikes an initially stationary object of mass 0.400 kg (m2). The 0.250 kg object emerges from the room at
an angle of 45º with its incoming direction. The speed of the 0.250 kg object is originally 2 m/s and is 1.50 m/s after the collision.
Calculate the magnitude and direction of the velocity (v′2 and ) of the 0.400 kg object after the collision.

Figure 8.11 The incoming object of mass m1 is scattered by an initially stationary object. Only the stationary object’s mass m2 is known.

By measuring the angle and speed at which the object of mass m1 emerges from the room, it is possible to calculate the magnitude and

direction of the initially stationary object’s velocity after the collision.

Strategy
Momentum is conserved because the surface is frictionless. We chose the coordinate system so that the initial velocity is parallel
to the x-axis, and conservation of momentum along the x- and y-axes applies.

Everything is known in these equations except v′2 and θ2, which we need to find. We can find two unknowns because we have
two independent equations—the equations describing the conservation of momentum in the x and y directions.

Solution
First, we’ll solve both conservation of momentum equations ( and

) for v′2 sin .

For conservation of momentum along x-axis, let’s substitute sin /tan for cos so that terms may cancel out later on. This
comes from rearranging the definition of the trigonometric identity tan = sin /cos . This gives us

Solving for v′2 sin yields

For conservation of momentum along y-axis, solving for v′2 sin yields

8.14

8.15

8.16
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Since both equations equal v′2 sin , we can set them equal to one another, yielding

Solving this equation for tan , we get

Entering known values into the previous equation gives

Therefore,

Since angles are defined as positive in the counterclockwise direction, m2 is scattered to the right.

We’ll use the conservation of momentum along the y-axis equation to solve for v′2.

Entering known values into this equation gives

Therefore,

Discussion
Either equation for the x- or y-axis could have been used to solve for v′2, but the equation for the y-axis is easier because it has
fewer terms.

Practice Problems
10. In an elastic collision, an object with momentum collides with another object moving to the right that has a

momentum . After the collision, both objects are still moving to the right, but the first object’s momentum
changes to . What is the final momentum of the second object?
a.
b.
c.
d.

11. In an elastic collision, an object with momentum 25 kg ⋅ m/s collides with another that has a momentum 35 kg ⋅ m/s. The
first object’s momentum changes to 10 kg ⋅ m/s. What is the final momentum of the second object?
a. 10 kg ⋅ m/s
b. 20 kg ⋅ m/s
c. 35 kg ⋅ m/s
d. 50 kg ⋅ m/s

Check Your Understanding
12. What is an elastic collision?

a. An elastic collision is one in which the objects after impact are deformed permanently.
b. An elastic collision is one in which the objects after impact lose some of their internal kinetic energy.

8.17

8.18

8.19

8.20

8.21

8.22

8.23
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c. An elastic collision is one in which the objects after impact do not lose any of their internal kinetic energy.
d. An elastic collision is one in which the objects after impact become stuck together and move with a common velocity.

13. Are perfectly elastic collisions possible?
a. Perfectly elastic collisions are not possible.
b. Perfectly elastic collisions are possible only with subatomic particles.
c. Perfectly elastic collisions are possible only when the objects stick together after impact.
d. Perfectly elastic collisions are possible if the objects and surfaces are nearly frictionless.

14. What is the equation for conservation of momentum for two objects in a one-dimensional collision?
a. p1 + p1′ = p2 + p2′
b. p1 + p2 = p1′ + p2′
c. p1 − p2 = p1′ − p2′
d. p1 + p2 + p1′ + p2′ = 0
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KEY TERMS
angular momentum the product of the moment of inertia

and angular velocity
change in momentum the difference between the final and

initial values of momentum; the mass times the change in
velocity

elastic collision collision in which objects separate after
impact and kinetic energy is conserved

impulse average net external force multiplied by the time
the force acts; equal to the change in momentum

impulse–momentum theorem the impulse, or change in
momentum, is the product of the net external force and
the time over which the force acts

inelastic collision collision in which objects stick together

after impact and kinetic energy is not conserved
isolated system system in which the net external force is

zero
law of conservation of momentum when the net external

force is zero, the total momentum of the system is
conserved or constant

linear momentum the product of a system's mass and
velocity

point masses structureless particles that cannot rotate or
spin

recoil backward movement of an object caused by the
transfer of momentum from another object in a collision

SECTION SUMMARY
8.1 Linear Momentum, Force, and
Impulse

• Linear momentum, often referenced as momentum for
short, is defined as the product of a system’s mass
multiplied by its velocity,
p = mv.

• The SI unit for momentum is kg m/s.
• Newton’s second law of motion in terms of momentum

states that the net external force equals the change in
momentum of a system divided by the time over which

it changes, .
• Impulse is the average net external force multiplied by

the time this force acts, and impulse equals the change
in momentum, .

• Forces are usually not constant over a period of time, so
we use the average of the force over the time it acts.

8.2 Conservation of Momentum
• The law of conservation of momentum is written ptot =

constant or ptot = p′tot (isolated system), where ptot is the
initial total momentum and p′tot is the total momentum
some time later.

• In an isolated system, the net external force is zero.
• Conservation of momentum applies only when the net

external force is zero, within the defined system.

8.3 Elastic and Inelastic Collisions
• If objects separate after impact, the collision is elastic;

If they stick together, the collision is inelastic.
• Kinetic energy is conserved in an elastic collision, but

not in an inelastic collision.
• The approach to two-dimensional collisions is to choose

a convenient coordinate system and break the motion
into components along perpendicular axes. Choose a
coordinate system with the x-axis parallel to the velocity
of the incoming particle.

• Two-dimensional collisions of point masses, where
mass 2 is initially at rest, conserve momentum along
the initial direction of mass 1, or the x-axis, and along
the direction perpendicular to the initial direction, or
the y-axis.

• Point masses are structureless particles that cannot
spin.

KEY EQUATIONS
8.1 Linear Momentum, Force, and
Impulse

impulse

impulse–momentum theorem

linear momentum

Newton’s second law in terms of
momentum

8.2 Conservation of Momentum

law of conservation of
momentum

ptot = constant, or ptot =
p′tot
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conservation of momentum
for two objects

p1 + p2 = constant, or p1

+ p2 = p′1 + p′2

angular momentum L = I

8.3 Elastic and Inelastic Collisions

conservation
of
momentum
in an elastic
collision

conservation
of
momentum
in an
inelastic
collision

conservation
of
momentum
along x-axis
for 2D
collisions

conservation
of
momentum
along y-axis
for 2D
collisions

CHAPTER REVIEW
Concept Items
8.1 Linear Momentum, Force, and Impulse
1. What is impulse?

a. Change in velocity
b. Change in momentum
c. Rate of change of velocity
d. Rate of change of momentum

2. In which equation of Newton’s second law is mass
assumed to be constant?
a.

b.
c.
d.

3. What is the SI unit of momentum?
a.
b.
c.
d.

4. What is the equation for linear momentum?
a.
b.
c.
d.

8.2 Conservation of Momentum
5. What is angular momentum?

a. The sum of moment of inertia and angular velocity
b. The ratio of moment of inertia to angular velocity
c. The product of moment of inertia and angular

velocity
d. Half the product of moment of inertia and square of

angular velocity

6. What is an isolated system?
a. A system in which the net internal force is zero
b. A system in which the net external force is zero
c. A system in which the net internal force is a nonzero

constant
d. A system in which the net external force is a nonzero

constant

8.3 Elastic and Inelastic Collisions
7. In the equation p1 + p2 = p'1 + p'2 for the collision of two

objects, what is the assumption made regarding the
friction acting on the objects?
a. Friction is zero.
b. Friction is nearly zero.
c. Friction acts constantly.
d. Friction before and after the impact remains the

same.

8. What is an inelastic collision?
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a. when objects stick together after impact, and their
internal energy is not conserved

b. when objects stick together after impact, and their
internal energy is conserved

c. when objects stick together after impact, and always
come to rest instantaneously after collision

d. when objects stick together after impact, and their
internal energy increases

Critical Thinking Items
8.1 Linear Momentum, Force, and Impulse
9. Consider two objects of the same mass. If a force of

acts on the first for a duration of and on the
other for a duration of , which of the following
statements is true?
a. The first object will acquire more momentum.
b. The second object will acquire more momentum.
c. Both objects will acquire the same momentum.
d. Neither object will experience a change in

momentum.

10. Cars these days have parts that can crumple or collapse
in the event of an accident. How does this help protect
the passengers?
a. It reduces injury to the passengers by increasing

the time of impact.
b. It reduces injury to the passengers by decreasing

the time of impact.
c. It reduces injury to the passengers by increasing

the change in momentum.
d. It reduces injury to the passengers by decreasing

the change in momentum.

11. How much force would be needed to cause a 17 kg ⋅ m/s
change in the momentum of an object, if the force acted
for 5 seconds?
a. 3.4 N
b. 12 N
c. 22 N
d. 85 N

8.2 Conservation of Momentum
12. A billiards ball rolling on the table has momentum p1. It

hits another stationary ball, which then starts rolling.
Considering friction to be negligible, what will happen
to the momentum of the first ball?

a. It will decrease.
b. It will increase.
c. It will become zero.
d. It will remain the same.

13. A ball rolling on the floor with momentum p1 collides
with a stationary ball and sets it in motion. The
momentum of the first ball becomes p'1, and that of the
second becomes p'2. Compare the magnitudes of p1 and
p'2.
a. Momenta p1 and p'2 are the same in magnitude.
b. The sum of the magnitudes of p1 and p'2 is zero.
c. The magnitude of p1 is greater than that of p'2.
d. The magnitude of p'2 is greater than that of p1.

14. Two cars are moving in the same direction. One car with
momentum p1 collides with another, which has
momentum p2. Their momenta become p'1 and p'2
respectively. Considering frictional losses, compare (p'1
+ p'2 ) with (p1 + p2).
a. The value of (p'1 + p'2 ) is zero.
b. The values of (p1 + p2) and (p'1 + p'2 ) are equal.
c. The value of (p1 + p2) will be greater than (p'1 + p'2 ).
d. The value of (p'1 + p'2 ) will be greater than (p1 + p2).

8.3 Elastic and Inelastic Collisions
15. Two people, who have the same mass, throw two

different objects at the same velocity. If the first object is
heavier than the second, compare the velocities gained
by the two people as a result of recoil.
a. The first person will gain more velocity as a result of

recoil.
b. The second person will gain more velocity as a

result of recoil.
c. Both people will gain the same velocity as a result of

recoil.
d. The velocity of both people will be zero as a result of

recoil.

Problems
8.1 Linear Momentum, Force, and Impulse
16. If a force of is applied to an object for , and it

changes its velocity by , what could be the mass
of the object?
a.
b.

c.
d.

17. For how long should a force of 130 N be applied to an
object of mass 50 kg to change its speed from 20 m/s to
60 m/s?
a. 0.031 s
b. 0.065 s
c. 15.4 s
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d. 40 s

8.3 Elastic and Inelastic Collisions
18. If a man with mass 70 kg, standing still, throws an

object with mass 5 kg at 50 m/s, what will be the recoil
velocity of the man, assuming he is standing on a
frictionless surface?
a. −3.6 m/s
b. 0 m/s
c. 3.6 m/s

d. 50.0 m/s

19. Find the recoil velocity of a ice hockey goalie who
catches a hockey puck slapped at him at a
velocity of . Assume that the goalie is at rest
before catching the puck, and friction between the ice
and the puck-goalie system is negligible.
a.
b.
c.
d.

Performance Task
8.3 Elastic and Inelastic Collisions
20. You will need the following:

• balls of different weights
• a ruler or wooden strip
• some books
• a paper cup

Make an inclined plane by resting one end of a ruler on a
stack of books. Place a paper cup on the other end. Roll

a ball from the top of the ruler so that it hits the paper
cup. Measure the displacement of the paper cup due to
the collision. Now use increasingly heavier balls for this
activity and see how that affects the displacement of the
cup. Plot a graph of mass vs. displacement. Now repeat
the same activity, but this time, instead of using
different balls, change the incline of the ruler by varying
the height of the stack of books. This will give you
different velocities of the ball. See how this affects the
displacement of the paper cup.

TEST PREP
Multiple Choice
8.1 Linear Momentum, Force, and Impulse
21. What kind of quantity is momentum?

a. Scalar
b. Vector

22. When does the net force on an object increase?
a. When Δp decreases
b. When Δt increases
c. When Δt decreases

23. In the equation Δp = m(vf − vi), which quantity is
considered to be constant?
a. Initial velocity
b. Final velocity
c. Mass
d. Momentum

24. For how long should a force of be applied to
change the momentum of an object by ?
a.
b.
c.
d.

8.2 Conservation of Momentum

25. In the equation L = Iω, what is I?

a. Linear momentum
b. Angular momentum
c. Torque
d. Moment of inertia

26. Give an example of an isolated system.
a. A cyclist moving along a rough road
b. A figure skater gliding in a straight line on an ice

rink
c. A baseball player hitting a home run
d. A man drawing water from a well

8.3 Elastic and Inelastic Collisions
27. In which type of collision is kinetic energy conserved?

a. Elastic
b. Inelastic

28. In physics, what are structureless particles that cannot
rotate or spin called?
a. Elastic particles
b. Point masses
c. Rigid masses

29. Two objects having equal masses and velocities collide
with each other and come to a rest. What type of a
collision is this and why?
a. Elastic collision, because internal kinetic energy is

conserved

Chapter 8 • Test Prep 275



b. Inelastic collision, because internal kinetic energy
is not conserved

c. Elastic collision, because internal kinetic energy is
not conserved

d. Inelastic collision, because internal kinetic energy
is conserved

30. Two objects having equal masses and velocities collide
with each other and come to a rest. Is momentum
conserved in this case?
a. Yes
b. No

Short Answer
8.1 Linear Momentum, Force, and Impulse
31. If an object’s velocity is constant, what is its momentum

proportional to?
a. Its shape
b. Its mass
c. Its length
d. Its breadth

32. If both mass and velocity of an object are constant, what
can you tell about its impulse?
a. Its impulse would be constant.
b. Its impulse would be zero.
c. Its impulse would be increasing.
d. Its impulse would be decreasing.

33. When the momentum of an object increases with
respect to time, what is true of the net force acting on it?
a. It is zero, because the net force is equal to the rate

of change of the momentum.
b. It is zero, because the net force is equal to the

product of the momentum and the time interval.
c. It is nonzero, because the net force is equal to the

rate of change of the momentum.
d. It is nonzero, because the net force is equal to the

product of the momentum and the time interval.

34. How can you express impulse in terms of mass and
velocity when neither of those are constant?
a.

b.
c.

d.

35. How can you express impulse in terms of mass and
initial and final velocities?
a.

b.

c.

d.

36. Why do we use average force while solving momentum
problems? How is net force related to the momentum of
the object?
a. Forces are usually constant over a period of time,

and net force acting on the object is equal to the
rate of change of the momentum.

b. Forces are usually not constant over a period of
time, and net force acting on the object is equal to
the product of the momentum and the time
interval.

c. Forces are usually constant over a period of time,
and net force acting on the object is equal to the
product of the momentum and the time interval.

d. Forces are usually not constant over a period of
time, and net force acting on the object is equal to
the rate of change of the momentum.

8.2 Conservation of Momentum
37. Under what condition(s) is the angular momentum of a

system conserved?
a. When net torque is zero
b. When net torque is not zero
c. When moment of inertia is constant
d. When both moment of inertia and angular

momentum are constant

38. If the moment of inertia of an isolated system increases,
what happens to its angular velocity?
a. It increases.
b. It decreases.
c. It stays constant.
d. It becomes zero.

39. If both the moment of inertia and the angular velocity of
a system increase, what must be true of the force acting
on the system?
a. Force is zero.
b. Force is not zero.
c. Force is constant.
d. Force is decreasing.

8.3 Elastic and Inelastic Collisions
40. Two objects collide with each other and come to a rest.

How can you use the equation of conservation of
momentum to describe this situation?
a. m1v1 + m2v2 = 0
b. m1v1 − m2v2 = 0
c. m1v1 + m2v2 = m1v1′
d. m1v1 + m2v2 = m1v2
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41. What is the difference between momentum and
impulse?
a. Momentum is the sum of mass and velocity.

Impulse is the change in momentum.
b. Momentum is the sum of mass and velocity.

Impulse is the rate of change in momentum.
c. Momentum is the product of mass and velocity.

Impulse is the change in momentum.
d. Momentum is the product of mass and velocity.

Impulse is the rate of change in momentum.

42. What is the equation for conservation of momentum
along the x-axis for 2D collisions in terms of mass and
velocity, where one of the particles is initially at rest?

a. m1v1 = m1v1′cos θ1

b. m1v1 = m1v1′cos θ1 + m2v2′cos θ2

c. m1v1 = m1v1′cos θ1 − m2v2′cos θ2

d. m1v1 = m1v1′sin θ1 + m2v2′sin θ2

43. What is the equation for conservation of momentum
along the y-axis for 2D collisions in terms of mass and
velocity, where one of the particles is initially at rest?
a. 0 = m1v1′sin θ1

b. 0 = m1v1′sin θ1 + m2v2′sin θ2

c. 0 = m1v1′sin θ1 − m2v2′sin θ2

d. 0 = m1v1′cos θ1 + m2v2′cos θ2

Extended Response
8.1 Linear Momentum, Force, and Impulse
44. Can a lighter object have more momentum than a

heavier one? How?
a. No, because momentum is independent of the

velocity of the object.
b. No, because momentum is independent of the

mass of the object.
c. Yes, if the lighter object’s velocity is considerably

high.
d. Yes, if the lighter object’s velocity is considerably

low.

45. Why does it hurt less when you fall on a softer surface?
a. The softer surface increases the duration of the

impact, thereby reducing the effect of the force.
b. The softer surface decreases the duration of the

impact, thereby reducing the effect of the force.
c. The softer surface increases the duration of the

impact, thereby increasing the effect of the force.
d. The softer surface decreases the duration of the

impact, thereby increasing the effect of the force.

46. Can we use the equation when the mass is
constant?
a. No, because the given equation is applicable for the

variable mass only.
b. No, because the given equation is not applicable for

the constant mass.
c. Yes, and the resultant equation is F = mv
d. Yes, and the resultant equation is F = ma

8.2 Conservation of Momentum
47. Why does a figure skater spin faster if he pulls his arms

and legs in?
a. Due to an increase in moment of inertia
b. Due to an increase in angular momentum
c. Due to conservation of linear momentum
d. Due to conservation of angular momentum

8.3 Elastic and Inelastic Collisions
48. A driver sees another car approaching him from behind.

He fears it is going to collide with his car. Should he
speed up or slow down in order to reduce damage?
a. He should speed up.
b. He should slow down.
c. He should speed up and then slow down just before

the collision.
d. He should slow down and then speed up just before

the collision.

49. What approach would you use to solve problems
involving 2D collisions?
a. Break the momenta into components and then

choose a coordinate system.
b. Choose a coordinate system and then break the

momenta into components.
c. Find the total momenta in the x and y directions,

and then equate them to solve for the unknown.
d. Find the sum of the momenta in the x and y

directions, and then equate it to zero to solve for
the unknown.
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INTRODUCTION

CHAPTER 9
Work, Energy, and Simple
Machines

9.1 Work, Power, and the Work–Energy Theorem

9.2 Mechanical Energy and Conservation of Energy

9.3 Simple Machines

Roller coasters have provided thrills for daring riders around the world since the nineteenth century.
Inventors of roller coasters used simple physics to build the earliest examples using railroad tracks on mountainsides and old
mines. Modern roller coaster designers use the same basic laws of physics to create the latest amusement park favorites. Physics
principles are used to engineer the machines that do the work to lift a roller coaster car up its first big incline before it is set
loose to roll. Engineers also have to understand the changes in the car’s energy that keep it speeding over hills, through twists,
turns, and even loops.

What exactly is energy? How can changes in force, energy, and simple machines move objects like roller coaster cars? How can
machines help us do work? In this chapter, you will discover the answer to this question and many more, as you learn about

Figure 9.1 People on a roller coaster experience thrills caused by changes in types of energy. (Jonrev, Wikimedia
Commons)

Chapter Outline



work, energy, and simple machines.

9.1 Work, Power, and the Work–Energy Theorem
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe and apply the work–energy theorem
• Describe and calculate work and power

Section Key Terms

energy gravitational potential energy joule kinetic energy mechanical energy

potential energy power watt work work–energy theorem

The Work–Energy Theorem
In physics, the term work has a very specific definition. Work is application of force, , to move an object over a distance, d, in
the direction that the force is applied. Work, W, is described by the equation

Some things that we typically consider to be work are not work in the scientific sense of the term. Let’s consider a few examples.
Think about why each of the following statements is true.

• Homework is not work.
• Lifting a rock upwards off the ground is work.
• Carrying a rock in a straight path across the lawn at a constant speed is not work.

The first two examples are fairly simple. Homework is not work because objects are not being moved over a distance. Lifting a
rock up off the ground is work because the rock is moving in the direction that force is applied. The last example is less obvious.
Recall from the laws of motion that force is not required to move an object at constant velocity. Therefore, while some force may
be applied to keep the rock up off the ground, no net force is applied to keep the rock moving forward at constant velocity.

Work and energy are closely related. When you do work to move an object, you change the object’s energy. You (or an object) also
expend energy to do work. In fact, energy can be defined as the ability to do work. Energy can take a variety of different forms,
and one form of energy can transform to another. In this chapter we will be concerned with mechanical energy, which comes in
two forms: kinetic energy and potential energy.

• Kinetic energy is also called energy of motion. A moving object has kinetic energy.
• Potential energy, sometimes called stored energy, comes in several forms. Gravitational potential energy is the stored

energy an object has as a result of its position above Earth’s surface (or another object in space). A roller coaster car at the
top of a hill has gravitational potential energy.

Let’s examine how doing work on an object changes the object’s energy. If we apply force to lift a rock off the ground, we
increase the rock’s potential energy, PE. If we drop the rock, the force of gravity increases the rock’s kinetic energy as the rock
moves downward until it hits the ground.

The force we exert to lift the rock is equal to its weight, w, which is equal to its mass, m, multiplied by acceleration due to gravity,
g.

The work we do on the rock equals the force we exert multiplied by the distance, d, that we lift the rock. The work we do on the
rock also equals the rock’s gain in gravitational potential energy, PEe.

Kinetic energy depends on the mass of an object and its velocity, v.
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When we drop the rock the force of gravity causes the rock to fall, giving the rock kinetic energy. When work done on an object
increases only its kinetic energy, then the net work equals the change in the value of the quantity . This is a statement of
the work–energy theorem, which is expressed mathematically as

The subscripts 2 and 1 indicate the final and initial velocity, respectively. This theorem was proposed and successfully tested by
James Joule, shown in Figure 9.2.

Does the name Joule sound familiar? The joule (J) is the metric unit of measurement for both work and energy. The
measurement of work and energy with the same unit reinforces the idea that work and energy are related and can be converted
into one another. 1.0 J = 1.0 N∙m, the units of force multiplied by distance. 1.0 N = 1.0 k∙m/s2, so 1.0 J = 1.0 k∙m2/s2. Analyzing
the units of the term (1/2)mv2 will produce the same units for joules.

Figure 9.2 The joule is named after physicist James Joule (1818–1889). (C. H. Jeens, Wikimedia Commons)

WATCH PHYSICS

Work and Energy
This video explains the work energy theorem and discusses how work done on an object increases the object’s KE.

Click to view content (https://www.khanacademy.org/embed_video?v=2WS1sG9fhOk)

GRASP CHECK
True or false—The energy increase of an object acted on only by a gravitational force is equal to the product of the object's
weight and the distance the object falls.
a. True
b. False

Calculations Involving Work and Power
In applications that involve work, we are often interested in how fast the work is done. For example, in roller coaster design, the
amount of time it takes to lift a roller coaster car to the top of the first hill is an important consideration. Taking a half hour on
the ascent will surely irritate riders and decrease ticket sales. Let’s take a look at how to calculate the time it takes to do work.

Recall that a rate can be used to describe a quantity, such as work, over a period of time. Power is the rate at which work is done.
In this case, rate means per unit of time. Power is calculated by dividing the work done by the time it took to do the work.

Let’s consider an example that can help illustrate the differences among work, force, and power. Suppose the woman in Figure
9.3 lifting the TV with a pulley gets the TV to the fourth floor in two minutes, and the man carrying the TV up the stairs takes five
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minutes to arrive at the same place. They have done the same amount of work on the TV, because they have moved the same
mass over the same vertical distance, which requires the same amount of upward force. However, the woman using the pulley
has generated more power. This is because she did the work in a shorter amount of time, so the denominator of the power
formula, t, is smaller. (For simplicity’s sake, we will leave aside for now the fact that the man climbing the stairs has also done
work on himself.)

Figure 9.3 No matter how you move a TV to the fourth floor, the amount of work performed and the potential energy gain are the same.

Power can be expressed in units of watts (W). This unit can be used to measure power related to any form of energy or work. You
have most likely heard the term used in relation to electrical devices, especially light bulbs. Multiplying power by time gives the
amount of energy. Electricity is sold in kilowatt-hours because that equals the amount of electrical energy consumed.

The watt unit was named after James Watt (1736–1819) (see Figure 9.4). He was a Scottish engineer and inventor who discovered
how to coax more power out of steam engines.

Figure 9.4 Is James Watt thinking about watts? (Carl Frederik von Breda, Wikimedia Commons)
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LINKS TO PHYSICS

Watt’s Steam Engine
James Watt did not invent the steam engine, but by the time he was finished tinkering with it, it was more useful. The first
steam engines were not only inefficient, they only produced a back and forth, or reciprocal, motion. This was natural because
pistons move in and out as the pressure in the chamber changes. This limitation was okay for simple tasks like pumping water or
mashing potatoes, but did not work so well for moving a train. Watt was able build a steam engine that converted reciprocal
motion to circular motion. With that one innovation, the industrial revolution was off and running. The world would never be
the same. One of Watt's steam engines is shown in Figure 9.5. The video that follows the figure explains the importance of the
steam engine in the industrial revolution.

Figure 9.5 A late version of the Watt steam engine. (Nehemiah Hawkins, Wikimedia Commons)

WATCH PHYSICS

Watt's Role in the Industrial Revolution
This video demonstrates how the watts that resulted from Watt's inventions helped make the industrial revolution possible and
allowed England to enter a new historical era.

Click to view content (https://www.youtube.com/embed/zhL5DCizj5c)

GRASP CHECK
Which form of mechanical energy does the steam engine generate?
a. Potential energy
b. Kinetic energy
c. Nuclear energy
d. Solar energy

Before proceeding, be sure you understand the distinctions among force, work, energy, and power. Force exerted on an object
over a distance does work. Work can increase energy, and energy can do work. Power is the rate at which work is done.

WORKED EXAMPLE

Applying the Work–Energy Theorem
An ice skater with a mass of 50 kg is gliding across the ice at a speed of 8 m/s when her friend comes up from behind and gives
her a push, causing her speed to increase to 12 m/s. How much work did the friend do on the skater?
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Strategy
The work–energy theorem can be applied to the problem. Write the equation for the theorem and simplify it if possible.

Solution
Identify the variables. m = 50 kg,

Substitute.

Discussion
Work done on an object or system increases its energy. In this case, the increase is to the skater’s kinetic energy. It follows that
the increase in energy must be the difference in KE before and after the push.

TIPS FOR SUCCESS
This problem illustrates a general technique for approaching problems that require you to apply formulas: Identify the
unknown and the known variables, express the unknown variables in terms of the known variables, and then enter all the
known values.

Practice Problems
1. How much work is done when a weightlifter lifts a barbell from the floor to a height of ?

a.
b.
c.
d.

2. Identify which of the following actions generates more power. Show your work.

• carrying a TV to the second floor in or
• carrying a watermelon to the second floor in ?

a. Carrying a TV generates more power than carrying a watermelon to the same height because power is
defined as work done times the time interval.

b. Carrying a TV generates more power than carrying a watermelon to the same height because power is
defined as the ratio of work done to the time interval.

c. Carrying a watermelon generates more power than carrying a TV to the same height because power is
defined as work done times the time interval.

d. Carrying a watermelon generates more power than carrying a TV to the same height because power is
defined as the ratio of work done and the time interval.

Check Your Understanding
3. Identify two properties that are expressed in units of joules.

a. work and force
b. energy and weight
c. work and energy
d. weight and force

9.1

9.2
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4. When a coconut falls from a tree, work W is done on it as it falls to the beach. This work is described by the equation

Identify the quantities F, d, m, v1, and v2 in this event.
a. F is the force of gravity, which is equal to the weight of the coconut, d is the distance the nut falls, m is the mass of the

earth, v1 is the initial velocity, and v2 is the velocity with which it hits the beach.
b. F is the force of gravity, which is equal to the weight of the coconut, d is the distance the nut falls, m is the mass of the

coconut, v1 is the initial velocity, and v2 is the velocity with which it hits the beach.
c. F is the force of gravity, which is equal to the weight of the coconut, d is the distance the nut falls, m is the mass of the

earth, v1 is the velocity with which it hits the beach, and v2 is the initial velocity.
d. F is the force of gravity, which is equal to the weight of the coconut, d is the distance the nut falls, m is the mass of the

coconut, v1 is the velocity with which it hits the beach, and v2 is the initial velocity.

9.2 Mechanical Energy and Conservation of Energy
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain the law of conservation of energy in terms of kinetic and potential energy
• Perform calculations related to kinetic and potential energy. Apply the law of conservation of energy

Section Key Terms

law of conservation of energy

Mechanical Energy and Conservation of Energy
We saw earlier that mechanical energy can be either potential or kinetic. In this section we will see how energy is transformed
from one of these forms to the other. We will also see that, in a closed system, the sum of these forms of energy remains
constant.

Quite a bit of potential energy is gained by a roller coaster car and its passengers when they are raised to the top of the first hill.
Remember that the potential part of the term means that energy has been stored and can be used at another time. You will see
that this stored energy can either be used to do work or can be transformed into kinetic energy. For example, when an object
that has gravitational potential energy falls, its energy is converted to kinetic energy. Remember that both work and energy are
expressed in joules.

Refer back to . The amount of work required to raise the TV from point A to point B is equal to the amount of gravitational
potential energy the TV gains from its height above the ground. This is generally true for any object raised above the ground. If
all the work done on an object is used to raise the object above the ground, the amount work equals the object’s gain in
gravitational potential energy. However, note that because of the work done by friction, these energy–work transformations are
never perfect. Friction causes the loss of some useful energy. In the discussions to follow, we will use the approximation that
transformations are frictionless.

Now, let’s look at the roller coaster in Figure 9.6. Work was done on the roller coaster to get it to the top of the first rise; at this
point, the roller coaster has gravitational potential energy. It is moving slowly, so it also has a small amount of kinetic energy. As
the car descends the first slope, its PE is converted to KE. At the low point much of the original PE has been transformed to KE,
and speed is at a maximum. As the car moves up the next slope, some of the KE is transformed back into PE and the car slows
down.

9.3
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Figure 9.6 During this roller coaster ride, there are conversions between potential and kinetic energy.

On an actual roller coaster, there are many ups and downs, and each of these is accompanied by transitions between kinetic and
potential energy. Assume that no energy is lost to friction. At any point in the ride, the total mechanical energy is the same, and
it is equal to the energy the car had at the top of the first rise. This is a result of the law of conservation of energy, which says
that, in a closed system, total energy is conserved—that is, it is constant. Using subscripts 1 and 2 to represent initial and final
energy, this law is expressed as

Either side equals the total mechanical energy. The phrase in a closed system means we are assuming no energy is lost to the
surroundings due to friction and air resistance. If we are making calculations on dense falling objects, this is a good
assumption. For the roller coaster, this assumption introduces some inaccuracy to the calculation.

Virtual Physics

Energy Skate Park Basics
This simulation shows how kinetic and potential energy are related, in a scenario similar to the roller coaster. Observe the
changes in KE and PE by clicking on the bar graph boxes. Also try the three differently shaped skate parks. Drag the skater
to the track to start the animation.

Click to view content (http://phet.colorado.edu/sims/html/energy-skate-park-basics/latest/energy-skate-park-
basics_en.html)

GRASP CHECK
This simulation (http://phet.colorado.edu/en/simulation/energy-skate-park-basics (http://phet.colorado.edu/en/
simulation/energy-skate-park-basics) ) shows how kinetic and potential energy are related, in a scenario similar to the
roller coaster. Observe the changes in KE and PE by clicking on the bar graph boxes. Also try the three differently shaped
skate parks. Drag the skater to the track to start the animation. The bar graphs show how KE and PE are transformed
back and forth. Which statement best explains what happens to the mechanical energy of the system as speed is
increasing?
a. The mechanical energy of the system increases, provided there is no loss of energy due to friction. The energy would

transform to kinetic energy when the speed is increasing.
b. The mechanical energy of the system remains constant provided there is no loss of energy due to friction. The

energy would transform to kinetic energy when the speed is increasing.
c. The mechanical energy of the system increases provided there is no loss of energy due to friction. The energy would

transform to potential energy when the speed is increasing.
d. The mechanical energy of the system remains constant provided there is no loss of energy due to friction. The

energy would transform to potential energy when the speed is increasing.
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Calculations involving Mechanical Energy and Conservation of Energy

TIPS FOR SUCCESS
When calculating work or energy, use units of meters for distance, newtons for force, kilograms for mass, and seconds for
time. This will assure that the result is expressed in joules.

WATCH PHYSICS

Conservation of Energy
This video discusses conversion of PE to KE and conservation of energy. The scenario is very similar to the roller coaster and the
skate park. It is also a good explanation of the energy changes studied in the snap lab.

Click to view content (https://www.khanacademy.org/embed_video?v=kw_4Loo1HR4)

GRASP CHECK
Did you expect the speed at the bottom of the slope to be the same as when the object fell straight down? Which statement
best explains why this is not exactly the case in real-life situations?
a. The speed was the same in the scenario in the animation because the object was sliding on the ice, where there is large

amount of friction. In real life, much of the mechanical energy is lost as heat caused by friction.
b. The speed was the same in the scenario in the animation because the object was sliding on the ice, where there is small

amount of friction. In real life, much of the mechanical energy is lost as heat caused by friction.
c. The speed was the same in the scenario in the animation because the object was sliding on the ice, where there is large

amount of friction. In real life, no mechanical energy is lost due to conservation of the mechanical energy.
d. The speed was the same in the scenario in the animation because the object was sliding on the ice, where there is small

amount of friction. In real life, no mechanical energy is lost due to conservation of the mechanical energy.

WORKED EXAMPLE

Applying the Law of Conservation of Energy
A 10 kg rock falls from a 20 m cliff. What is the kinetic and potential energy when the rock has fallen 10 m?
Strategy
Choose the equation.

List the knowns.

m = 10 kg, v1 = 0, g = 9.80

h1 = 20 m, h2 = 10 m

Identify the unknowns.

KE2 and PE2

Substitute the known values into the equation and solve for the unknown variables.

9.4

9.5

9.6

9.7
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Solution

Discussion
Alternatively, conservation of energy equation could be solved for v2 and KE2 could be calculated. Note that m could also be
eliminated.

TIPS FOR SUCCESS
Note that we can solve many problems involving conversion between KE and PE without knowing the mass of the object in
question. This is because kinetic and potential energy are both proportional to the mass of the object. In a situation where
KE = PE, we know that mgh = (1/2)mv2.
Dividing both sides by m and rearranging, we have the relationship

2gh = v2.

Practice Problems
5. A child slides down a playground slide. If the slide is 3 m high and the child weighs 300 N, how much potential energy does

the child have at the top of the slide? (Round g to )
a. 0 J
b. 100 J
c. 300 J
d. 900 J

6. A 0.2 kg apple on an apple tree has a potential energy of 10 J. It falls to the ground, converting all of its PE to kinetic energy.
What is the velocity of the apple just before it hits the ground?
a. 0 m/s
b. 2 m/s
c. 10 m/s
d. 50 m/s

9.8

9.9

Snap Lab

Converting Potential Energy to Kinetic Energy
In this activity, you will calculate the potential energy of an object and predict the object’s speed when all that potential
energy has been converted to kinetic energy. You will then check your prediction.

You will be dropping objects from a height. Be sure to stay a safe distance from the edge. Don’t lean over the railing too far.
Make sure that you do not drop objects into an area where people or vehicles pass by. Make sure that dropping objects will
not cause damage.

You will need the following:

Materials for each pair of students:
• Four marbles (or similar small, dense objects)
• Stopwatch

Materials for class:
• Metric measuring tape long enough to measure the chosen height
• A scale

Instructions
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Check Your Understanding
7. Describe the transformation between forms of mechanical energy that is happening to a falling skydiver before his parachute

opens.
a. Kinetic energy is being transformed into potential energy.
b. Potential energy is being transformed into kinetic energy.
c. Work is being transformed into kinetic energy.
d. Kinetic energy is being transformed into work.

8. True or false—If a rock is thrown into the air, the increase in the height would increase the rock’s kinetic energy, and then
the increase in the velocity as it falls to the ground would increase its potential energy.
a. True
b. False

9. Identify equivalent terms for stored energy and energy of motion.
a. Stored energy is potential energy, and energy of motion is kinetic energy.
b. Energy of motion is potential energy, and stored energy is kinetic energy.
c. Stored energy is the potential as well as the kinetic energy of the system.
d. Energy of motion is the potential as well as the kinetic energy of the system.

Procedure
1. Work with a partner. Find and record the mass of four small, dense objects per group.
2. Choose a location where the objects can be safely dropped from a height of at least 15 meters. A bridge over water with

a safe pedestrian walkway will work well.
3. Measure the distance the object will fall.
4. Calculate the potential energy of the object before you drop it using PE = mgh = (9.80)mh.
5. Predict the kinetic energy and velocity of the object when it lands using PE = KE and so,

6. One partner drops the object while the other measures the time it takes to fall.
7. Take turns being the dropper and the timer until you have made four measurements.
8. Average your drop multiplied by and calculate the velocity of the object when it landed using v = at = gt = (9.80)t.
9. Compare your results to your prediction.

GRASP CHECK
Galileo’s experiments proved that, contrary to popular belief, heavy objects do not fall faster than light objects. How do
the equations you used support this fact?
a. Heavy objects do not fall faster than the light objects because while conserving the mechanical energy of the system,

the mass term gets cancelled and the velocity is independent of the mass. In real life, the variation in the velocity of
the different objects is observed because of the non-zero air resistance.

b. Heavy objects do not fall faster than the light objects because while conserving the mechanical energy of the system,
the mass term does not get cancelled and the velocity is dependent on the mass. In real life, the variation in the
velocity of the different objects is observed because of the non-zero air resistance.

c. Heavy objects do not fall faster than the light objects because while conserving the mechanical energy the system,
the mass term gets cancelled and the velocity is independent of the mass. In real life, the variation in the velocity of
the different objects is observed because of zero air resistance.

d. Heavy objects do not fall faster than the light objects because while conserving the mechanical energy of the system,
the mass term does not get cancelled and the velocity is dependent on the mass. In real life, the variation in the
velocity of the different objects is observed because of zero air resistance.
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9.3 Simple Machines
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe simple and complex machines
• Calculate mechanical advantage and efficiency of simple and complex machines

Section Key Terms

complex machine efficiency output ideal mechanical advantage inclined plane input work

lever mechanical advantage output work pulley screw

simple machine wedge wheel and axle

Simple Machines
Simple machines make work easier, but they do not decrease the amount of work you have to do. Why can’t simple machines
change the amount of work that you do? Recall that in closed systems the total amount of energy is conserved. A machine cannot
increase the amount of energy you put into it. So, why is a simple machine useful? Although it cannot change the amount of
work you do, a simple machine can change the amount of force you must apply to an object, and the distance over which you
apply the force. In most cases, a simple machine is used to reduce the amount of force you must exert to do work. The down side
is that you must exert the force over a greater distance, because the product of force and distance, fd, (which equals work) does
not change.

Let’s examine how this works in practice. In Figure 9.7(a), the worker uses a type of lever to exert a small force over a large
distance, while the pry bar pulls up on the nail with a large force over a small distance. Figure 9.7(b) shows the how a lever works
mathematically. The effort force, applied at Fe, lifts the load (the resistance force) which is pushing down at Fr. The triangular
pivot is called the fulcrum; the part of the lever between the fulcrum and Fe is the effort arm, Le; and the part to the left is the
resistance arm, Lr. The mechanical advantage is a number that tells us how many times a simple machine multiplies the effort
force. The ideal mechanical advantage, IMA, is the mechanical advantage of a perfect machine with no loss of useful work
caused by friction between moving parts. The equation for IMA is shown in Figure 9.7(b).

Figure 9.7 (a) A pry bar is a type of lever. (b) The ideal mechanical advantage equals the length of the effort arm divided by the length of the

resistance arm of a lever.

In general, the IMA = the resistance force, Fr, divided by the effort force, Fe. IMA also equals the distance over which the effort is
applied, de, divided by the distance the load travels, dr.

Getting back to conservation of energy, for any simple machine, the work put into the machine, Wi, equals the work the
machine puts out, Wo. Combining this with the information in the paragraphs above, we can write
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The equations show how a simple machine can output the same amount of work while reducing the amount of effort force by
increasing the distance over which the effort force is applied.

WATCH PHYSICS

Introduction to Mechanical Advantage
This video shows how to calculate the IMA of a lever by three different methods: (1) from effort force and resistance force; (2)
from the lengths of the lever arms, and; (3) from the distance over which the force is applied and the distance the load moves.

Click to view content (https://www.youtube.com/embed/pfzJ-z5Ij48)

GRASP CHECK
Two children of different weights are riding a seesaw. How do they position themselves with respect to the pivot point (the
fulcrum) so that they are balanced?
a. The heavier child sits closer to the fulcrum.
b. The heavier child sits farther from the fulcrum.
c. Both children sit at equal distance from the fulcrum.
d. Since both have different weights, they will never be in balance.

Some levers exert a large force to a short effort arm. This results in a smaller force acting over a greater distance at the end of the
resistance arm. Examples of this type of lever are baseball bats, hammers, and golf clubs. In another type of lever, the fulcrum is
at the end of the lever and the load is in the middle, as in the design of a wheelbarrow.

The simple machine shown in Figure 9.8 is called a wheel and axle. It is actually a form of lever. The difference is that the effort
arm can rotate in a complete circle around the fulcrum, which is the center of the axle. Force applied to the outside of the wheel
causes a greater force to be applied to the rope that is wrapped around the axle. As shown in the figure, the ideal mechanical
advantage is calculated by dividing the radius of the wheel by the radius of the axle. Any crank-operated device is an example of
a wheel and axle.

Figure 9.8 Force applied to a wheel exerts a force on its axle.

An inclined plane and a wedge are two forms of the same simple machine. A wedge is simply two inclined planes back to back.
Figure 9.9 shows the simple formulas for calculating the IMAs of these machines. All sloping, paved surfaces for walking or
driving are inclined planes. Knives and axe heads are examples of wedges.
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Figure 9.9 An inclined plane is shown on the left, and a wedge is shown on the right.

The screw shown in Figure 9.10 is actually a lever attached to a circular inclined plane. Wood screws (of course) are also examples
of screws. The lever part of these screws is a screw driver. In the formula for IMA, the distance between screw threads is called
pitch and has the symbol P.

Figure 9.10 The screw shown here is used to lift very heavy objects, like the corner of a car or a house a short distance.

Figure 9.11 shows three different pulley systems. Of all simple machines, mechanical advantage is easiest to calculate for pulleys.
Simply count the number of ropes supporting the load. That is the IMA. Once again we have to exert force over a longer distance
to multiply force. To raise a load 1 meter with a pulley system you have to pull N meters of rope. Pulley systems are often used to
raise flags and window blinds and are part of the mechanism of construction cranes.

Figure 9.11 Three pulley systems are shown here.
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WATCH PHYSICS

Mechanical Advantage of Inclined Planes and Pulleys
The first part of this video shows how to calculate the IMA of pulley systems. The last part shows how to calculate the IMA of an
inclined plane.

Click to view content (https://www.khanacademy.org/embed_video?v=vSsK7Rfa3yA)

GRASP CHECK
How could you use a pulley system to lift a light load to great height?
a. Reduce the radius of the pulley.
b. Increase the number of pulleys.
c. Decrease the number of ropes supporting the load.
d. Increase the number of ropes supporting the load.

A complex machine is a combination of two or more simple machines. The wire cutters in Figure 9.12 combine two levers and
two wedges. Bicycles include wheel and axles, levers, screws, and pulleys. Cars and other vehicles are combinations of many
machines.

Figure 9.12 Wire cutters are a common complex machine.

Calculating Mechanical Advantage and Efficiency of Simple Machines
In general, the IMA = the resistance force, Fr, divided by the effort force, Fe. IMA also equals the distance over which the effort is
applied, de, divided by the distance the load travels, dr.

Refer back to the discussions of each simple machine for the specific equations for the IMA for each type of machine.

No simple or complex machines have the actual mechanical advantages calculated by the IMA equations. In real life, some of the
applied work always ends up as wasted heat due to friction between moving parts. Both the input work (Wi) and output work
(Wo) are the result of a force, F, acting over a distance, d.

The efficiency output of a machine is simply the output work divided by the input work, and is usually multiplied by 100 so that
it is expressed as a percent.

Look back at the pictures of the simple machines and think about which would have the highest efficiency. Efficiency is related
to friction, and friction depends on the smoothness of surfaces and on the area of the surfaces in contact. How would
lubrication affect the efficiency of a simple machine?

WORKED EXAMPLE

Efficiency of a Lever
The input force of 11 N acting on the effort arm of a lever moves 0.4 m, which lifts a 40 N weight resting on the resistance arm a
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distance of 0.1 m. What is the efficiency of the machine?
Strategy
State the equation for efficiency of a simple machine, and calculate Wo and Wi. Both work values

are the product Fd.

Solution
= (11)(0.4) = 4.4 J and = (40)(0.1) = 4.0 J, then

Discussion
Efficiency in real machines will always be less than 100 percent because of work that is converted to unavailable heat by friction
and air resistance. Wo and Wi can always be calculated as a force multiplied by a distance, although these quantities are not
always as obvious as they are in the case of a lever.

Practice Problems
10. What is the IMA of an inclined plane that is long and high?

a.
b.
c.
d.

11. If a pulley system can lift a 200N load with an effort force of 52 N and has an efficiency of almost 100 percent, how many
ropes are supporting the load?
a. 1 rope is required because the actual mechanical advantage is 0.26.
b. 1 rope is required because the actual mechanical advantage is 3.80.
c. 4 ropes are required because the actual mechanical advantage is 0.26.
d. 4 ropes are required because the actual mechanical advantage is 3.80.

Check Your Understanding
12. True or false—The efficiency of a simple machine is always less than 100 percent because some small fraction of the input

work is always converted to heat energy due to friction.
a. True
b. False

13. The circular handle of a faucet is attached to a rod that opens and closes a valve when the handle is turned. If the rod has a
diameter of 1 cm and the IMA of the machine is 6, what is the radius of the handle?
A. 0.08 cm
B. 0.17 cm
C. 3.0 cm
D. 6.0 cm
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KEY TERMS
complex machine a machine that combines two or more

simple machines
efficiency output work divided by input work
energy the ability to do work
gravitational potential energy energy acquired by doing

work against gravity
ideal mechanical advantage the mechanical advantage of

an idealized machine that loses no energy to friction
inclined plane a simple machine consisting of a slope
input work effort force multiplied by the distance over

which it is applied
joule the metric unit for work and energy; equal to 1

newton meter (N∙m)
kinetic energy energy of motion
law of conservation of energy states that energy is neither

created nor destroyed
lever a simple machine consisting of a rigid arm that pivots

on a fulcrum
mechanical advantage the number of times the input force

is multiplied
mechanical energy kinetic or potential energy

output work output force multiplied by the distance over
which it acts

potential energy stored energy
power the rate at which work is done
pulley a simple machine consisting of a rope that passes

over one or more grooved wheels
screw a simple machine consisting of a spiral inclined

plane
simple machine a machine that makes work easier by

changing the amount or direction of force required to
move an object

watt the metric unit of power; equivalent to joules per
second

wedge a simple machine consisting of two back-to-back
inclined planes

wheel and axle a simple machine consisting of a rod fixed
to the center of a wheel

work force multiplied by distance
work–energy theorem states that the net work done on a

system equals the change in kinetic energy

SECTION SUMMARY
9.1 Work, Power, and the
Work–Energy Theorem

• Doing work on a system or object changes its energy.
• The work–energy theorem states that an amount of

work that changes the velocity of an object is equal to
the change in kinetic energy of that object.The
work–energy theorem states that an amount of work
that changes the velocity of an object is equal to the
change in kinetic energy of that object.

• Power is the rate at which work is done.

9.2 Mechanical Energy and
Conservation of Energy

• Mechanical energy may be either kinetic (energy of

motion) or potential (stored energy).
• Doing work on an object or system changes its energy.
• Total energy in a closed, isolated system is constant.

9.3 Simple Machines
• The six types of simple machines make work easier by

changing the fd term so that force is reduced at the
expense of increased distance.

• The ratio of output force to input force is a machine’s
mechanical advantage.

• Combinations of two or more simple machines are
called complex machines.

• The ratio of output work to input work is a machine’s
efficiency.

KEY EQUATIONS
9.1 Work, Power, and the
Work–Energy Theorem

equation for work

force

work equivalencies

kinetic energy

work–energy
theorem

power
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9.2 Mechanical Energy and
Conservation of Energy

conservation of energy

9.3 Simple Machines

ideal mechanical
advantage (general)

ideal mechanical
advantage (lever)

ideal mechanical
advantage (wheel and
axle)

ideal mechanical
advantage (inclined
plane)

ideal mechanical
advantage (wedge)

ideal mechanical
advantage (pulley)

ideal mechanical
advantage (screw)

input work

output work

efficiency output

CHAPTER REVIEW
Concept Items
9.1 Work, Power, and the Work–Energy
Theorem
1. Is it possible for the sum of kinetic energy and potential

energy of an object to change without work having been
done on the object? Explain.
a. No, because the work-energy theorem states that

work done on an object is equal to the change in
kinetic energy, and change in KE requires a change
in velocity. It is assumed that mass is constant.

b. No, because the work-energy theorem states that
work done on an object is equal to the sum of kinetic
energy, and the change in KE requires a change in
displacement. It is assumed that mass is constant.

c. Yes, because the work-energy theorem states that
work done on an object is equal to the change in
kinetic energy, and change in KE requires a change
in velocity. It is assumed that mass is constant.

d. Yes, because the work-energy theorem states that
work done on an object is equal to the sum of kinetic
energy, and the change in KE requires a change in
displacement. It is assumed that mass is constant.

2. Define work for one-dimensional motion.
a. Work is defined as the ratio of the force over the

distance.
b. Work is defined as the sum of the force and the

distance.
c. Work is defined as the square of the force over the

distance.
d. Work is defined as the product of the force and the

distance.

3. A book with a mass of 0.30 kg falls 2 m from a shelf to the
floor. This event is described by the work–energy

theorem: Explain why this

is enough information to calculate the speed with which
the book hits the floor.
a. The mass of the book, m, and distance, d, are stated.

F is the weight of the book mg . v1 is the initial
velocity and v2 is the final velocity. The final velocity
is the only unknown quantity.

b. The mass of the book, m, and distance, d, are stated.
F is the weight of the book mg . v1 is the final velocity
and v2 is the initial velocity. The final velocity is the
only unknown quantity.

c. The mass of the book, m, and distance, d, are stated.
F is the weight of the book mg . v1 is the initial
velocity and v2 is the final velocity. The final velocity
and the initial velocities are the only unknown
quantities.

d. The mass of the book, m, and distance, d, are stated.
F is the weight of the book mg . v1 is the final velocity
and v2 is the initial velocity. The final velocity and the
initial velocities are the only unknown quantities.
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9.2 Mechanical Energy and Conservation of
Energy
4. Describe the changes in KE and PE of a person jumping

up and down on a trampoline.
a. While going up, the person’s KE would change to

PE. While coming down, the person’s PE would
change to KE.

b. While going up, the person’s PE would change to
KE. While coming down, the person’s KE would
change to PE.

c. While going up, the person’s KE would not change,
but while coming down, the person’s PE would
change to KE.

d. While going up, the person’s PE would change to
KE, but while coming down, the person’s KE would
not change.

5. You know the height from which an object is dropped.
Which equation could you use to calculate the velocity as
the object hits the ground?
a.

b.
c.
d.

6. The starting line of a cross country foot race is at the
bottom of a hill. Which form(s) of mechanical energy of
the runners will change when the starting gun is fired?
a. Kinetic energy only
b. Potential energy only
c. Both kinetic and potential energy
d. Neither kinetic nor potential energy

9.3 Simple Machines
7. How does a simple machine make work easier?

a. It reduces the input force and the output force.
b. It reduces the input force and increases the output

force.
c. It increases the input force and reduces the output

force.
d. It increases the input force and the output force.

8. Which type of simple machine is a knife?
a. A ramp
b. A wedge
c. A pulley
d. A screw

Critical Thinking Items
9.1 Work, Power, and the Work–Energy
Theorem
9. Which activity requires a person to exert force on an

object that causes the object to move but does not change
the kinetic or potential energy of the object?
a. Moving an object to a greater height with

acceleration
b. Moving an object to a greater height without

acceleration
c. Carrying an object with acceleration at the same

height
d. Carrying an object without acceleration at the same

height

10. Which statement explains how it is possible to carry
books to school without changing the kinetic or
potential energy of the books or doing any work?
a. By moving the book without acceleration and

keeping the height of the book constant
b. By moving the book with acceleration and keeping

the height of the book constant
c. By moving the book without acceleration and

changing the height of the book
d. By moving the book with acceleration and changing

the height of the book

9.2 Mechanical Energy and Conservation of
Energy
11. True or false—A cyclist coasts down one hill and up

another hill until she comes to a stop. The point at which
the bicycle stops is lower than the point at which it
started coasting because part of the original potential
energy has been converted to a quantity of heat and this
makes the tires of the bicycle warm.
a. True
b. False

9.3 Simple Machines
12. We think of levers being used to decrease effort force.

Which of the following describes a lever that requires a
large effort force which causes a smaller force to act over
a large distance and explains how it works?
a. Anything that is swung by a handle, such as a

hammer or racket. Force is applied near the
fulcrum over a short distance, which makes the
other end move rapidly over a long distance.

b. Anything that is swung by a handle, such as a
hammer or racket. Force is applied far from the
fulcrum over a large distance, which makes the
other end move rapidly over a long distance.

c. A lever used to lift a heavy stone. Force is applied
near the fulcrum over a short distance, which
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makes the other end lift a heavy object easily.
d. A lever used to lift a heavy stone. Force is applied

far from the fulcrum over a large distance, which
makes the other end lift a heavy object easily

13. A baseball bat is a lever. Which of the following explains
how a baseball bat differs from a lever like a pry bar?
a. In a baseball bat, effort force is smaller and is

applied over a large distance, while the resistance
force is smaller and is applied over a long distance.

b. In a baseball bat, effort force is smaller and is
applied over a large distance, while the resistance
force is smaller and is applied over a short distance.

c. In a baseball bat, effort force is larger and is applied
over a short distance, while the resistance force is
smaller and is applied over a long distance.

d. In a baseball bat, effort force is larger and is applied
over a short distance, while the resistance force is
smaller and is applied over a short distance.

Problems
9.1 Work, Power, and the Work–Energy
Theorem
14. A baseball player exerts a force of on a ball for a

distance of as he throws it. If the ball has a mass
of , what is its velocity as it leaves his hand?
a.
b.
c.
d.

15. A boy pushes his little sister on a sled. The sled
accelerates from 0 to 3.2 m/s . If the combined mass of
his sister and the sled is 40.0 kg and 18 W of power were
generated, how long did the boy push the sled?
a. 205 s
b. 128 s
c. 23 s
d. 11 s

9.2 Mechanical Energy and Conservation of
Energy
16. What is the kinetic energy of a bullet traveling

at a velocity of ?
a.
b.
c.
d.

17. A marble rolling across a flat, hard surface at rolls
up a ramp. Assuming that and no energy is
lost to friction, what will be the vertical height of the
marble when it comes to a stop before rolling back
down? Ignore effects due to the rotational kinetic
energy.
a.
b.
c.
d.

18. The potential energy stored in a compressed spring is

, where k is the force constant and x is the

distance the spring is compressed from the equilibrium
position. Four experimental setups described below can
be used to determine the force constant of a spring.
Which one(s) require measurement of the fewest
number of variables to determine k? Assume the
acceleration due to gravity is known.

I. An object is propelled vertically by a compressed
spring.

II. An object is propelled horizontally on a frictionless
surface by a compressed spring.

III. An object is statically suspended from a spring.
IV. An object suspended from a spring is set into

oscillatory motion.

a. I only
b. III only
c. I and II only
d. III and IV only

9.3 Simple Machines
19. A man is using a wedge to split a block of wood by

hitting the wedge with a hammer. This drives the wedge
into the wood creating a crack in the wood. When he
hits the wedge with a force of 400 N it travels 4 cm into
the wood. This caused the wedge to exert a force of 1,400
N sideways increasing the width of the crack by 1 cm .
What is the efficiency of the wedge?
a. 0.875 percent
b. 0.14
c. 0.751
d. 87.5 percent

20. An electrician grips the handles of a wire cutter, like the
one shown, 10 cm from the pivot and places a wire
between the jaws 2 cm from the pivot. If the cutter
blades are 2 cm wide and 0.3 cm thick, what is the
overall IMA of this complex machine?
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a. 1.34
b. 1.53
c. 33.3
d. 33.5

Performance Task
9.3 Simple Machines
21. Conservation of Energy and Energy Transfer; Cause and

Effect; and S&EP, Planning and Carrying Out
Investigations
Plan an investigation to measure the mechanical
advantage of simple machines and compare to the IMA
of the machine. Also measure the efficiency of each
machine studied. Design an investigation to make these
measurements for these simple machines: lever,
inclined plane, wheel and axle and a pulley system. In
addition to these machines, include a spring scale, a
tape measure, and a weight with a loop on top that can
be attached to the hook on the spring scale. A spring
scale is shown in the image.

A spring scale measures weight, not mass.

LEVER: Beginning with the lever, explain how you would
measure input force, output force, effort arm, and
resistance arm. Also explain how you would find the
distance the load travels and the distance over which the
effort force is applied. Explain how you would use this
data to determine IMA and efficiency.
INCLINED PLANE: Make measurements to determine
IMA and efficiency of an inclined plane. Explain how
you would use the data to calculate these values. Which
property do you already know? Note that there are no
effort and resistance arm measurements, but there are
height and length measurements.
WHEEL AND AXLE: Again, you will need two force
measurements and four distance measurements.
Explain how you would use these to calculate IMA and
efficiency.
SCREW: You will need two force measurements, two
distance traveled measurements, and two length
measurements. You may describe a screw like the one
shown in Figure 9.10 or you could use a screw and screw
driver. (Measurements would be easier for the former).
Explain how you would use these to calculate IMA and
efficiency.
PULLEY SYSTEM: Explain how you would determine the
IMA and efficiency of the four-pulley system shown in
Figure 9.11. Why do you only need two distance
measurements for this machine?
Design a table that compares the efficiency of the five
simple machines. Make predictions as to the most and
least efficient machines.

TEST PREP
Multiple Choice
9.1 Work, Power, and the Work–Energy
Theorem
22. Which expression represents power?

a.
b.

c.
d.

23. The work–energy theorem states that the change in the
kinetic energy of an object is equal to what?

a. The work done on the object
b. The force applied to the object
c. The loss of the object’s potential energy
d. The object’s total mechanical energy minus its

kinetic energy

24. A runner at the start of a race generates 250 W of power
as he accelerates to 5 m/s . If the runner has a mass of 60
kg, how long did it take him to reach that speed?
a. 0.33 s
b. 0.83 s
c. 1.2 s
d. 3.0 s
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25. A car’s engine generates 100,000 W of power as it exerts
a force of 10,000 N. How long does it take the car to
travel 100 m?
a. 0.001 s
b. 0.01 s
c. 10 s
d. 1,000 s

9.2 Mechanical Energy and Conservation of
Energy
26. Why is this expression for kinetic energy incorrect?

.
a. The constant is missing.
b. The term should not be squared.
c. The expression should be divided by .
d. The energy lost to friction has not been subtracted.

27. What is the kinetic energy of a object moving at
?

a.
b.
c.
d.

28. Which statement best describes the PE-KE
transformations for a javelin, starting from the instant
the javelin leaves the thrower's hand until it hits the
ground.
a. Initial PE is transformed to KE until the javelin

reaches the high point of its arc. On the way back
down, KE is transformed into PE. At every point in
the flight, mechanical energy is being transformed
into heat energy.

b. Initial KE is transformed to PE until the javelin
reaches the high point of its arc. On the way back
down, PE is transformed into KE. At every point in
the flight, mechanical energy is being transformed
into heat energy.

c. Initial PE is transformed to KE until the javelin
reaches the high point of its arc. On the way back
down, there is no transformation of mechanical
energy. At every point in the flight, mechanical
energy is being transformed into heat energy.

d. Initial KE is transformed to PE until the javelin
reaches the high point of its arc. On the way back
down, there is no transformation of mechanical
energy. At every point in the flight, mechanical
energy is being transformed into heat energy.

29. At the beginning of a roller coaster ride, the roller
coaster car has an initial energy mostly in the form of
PE. Which statement explains why the fastest speeds of
the car will be at the lowest points in the ride?
a. At the bottom of the slope kinetic energy is at its

maximum value and potential energy is at its
minimum value.

b. At the bottom of the slope potential energy is at its
maximum value and kinetic energy is at its
minimum value.

c. At the bottom of the slope both kinetic and
potential energy reach their maximum values

d. At the bottom of the slope both kinetic and
potential energy reach their minimum values.

9.3 Simple Machines
30. A large radius divided by a small radius is the expression

used to calculate the IMA of what?
a. A screw
b. A pulley
c. A wheel and axle
d. An inclined plane.

31. What is the IMA of a wedge that is long and
thick?
a.
b.
c.
d.

32. Which statement correctly describes the simple
machines, like the crank in the image, that make up an
Archimedes screw and the forces it applies?

a. The crank is a wedge in which the IMA is the length
of the tube divided by the radius of the tube. The
applied force is the effort force and the weight of
the water is the resistance force.

b. The crank is an inclined plane in which the IMA is
the length of the tube divided by the radius of the
tube. The applied force is the effort force and the
weight of the water is the resistance force.

c. The crank is a wheel and axle. The effort force of the
crank becomes the resistance force of the screw.

d. The crank is a wheel and axle. The resistance force
of the crank becomes the effort force of the screw.

33. Refer to the pulley system on right in the image. Assume this
pulley system is an ideal machine.
How hard would you have to pull on the rope to lift a 120 N
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load?
How many meters of rope would you have to pull out of the
system to lift the load 1 m?

a. 480 N
4 m

b. 480 N
m

c. 30 N
4 m

d. 30 N
m

Short Answer
9.1 Work, Power, and the Work–Energy
Theorem
34. Describe two ways in which doing work on an object can

increase its mechanical energy.
a. Raising an object to a higher elevation does work as

it increases its PE; increasing the speed of an object
does work as it increases its KE.

b. Raising an object to a higher elevation does work as
it increases its KE; increasing the speed of an object
does work as it increases its PE.

c. Raising an object to a higher elevation does work as
it increases its PE; decreasing the speed of an
object does work as it increases its KE.

d. Raising an object to a higher elevation does work as
it increases its KE; decreasing the speed of an
object does work as it increases its PE.

35. True or false—While riding a bicycle up a gentle hill, it is
fairly easy to increase your potential energy, but to
increase your kinetic energy would make you feel
exhausted.
a. True
b. False

36. Which statement best explains why running on a track
with constant speed at 3 m/s is not work, but climbing a
mountain at 1 m/s is work?
a. At constant speed, change in the kinetic energy is

zero but climbing a mountain produces change in
the potential energy.

b. At constant speed, change in the potential energy is
zero, but climbing a mountain produces change in
the kinetic energy.

c. At constant speed, change in the kinetic energy is
finite, but climbing a mountain produces no

change in the potential energy.
d. At constant speed, change in the potential energy is

finite, but climbing a mountain produces no
change in the kinetic energy.

37. You start at the top of a hill on a bicycle and coast to the
bottom without applying the brakes. By the time you
reach the bottom of the hill, work has been done on you
and your bicycle, according to the equation:

If is the mass of you and your
bike, what are and ?
a. is your speed at the top of the hill, and is your

speed at the bottom.
b. is your speed at the bottom of the hill, and is

your speed at the top.
c. is your displacement at the top of the hill, and

is your displacement at the bottom.
d. is your displacement at the bottom of the hill,

and is your displacement at the top.

9.2 Mechanical Energy and Conservation of
Energy
38. True or false—The formula for gravitational potential

energy can be used to explain why joules, J, are
equivalent to kg × mg2 / s2 . Show your work.
a. True
b. False

39. Which statement best explains why accelerating a car
from to quadruples its kinetic energy?
a. Because kinetic energy is directly proportional to

the square of the velocity.
b. Because kinetic energy is inversely proportional to

the square of the velocity.
c. Because kinetic energy is directly proportional to

the fourth power of the velocity.
d. Because kinetic energy is inversely proportional to
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the fourth power of the velocity.

40. A coin falling through a vacuum loses no energy to
friction, and yet, after it hits the ground, it has lost all
its potential and kinetic energy. Which statement best
explains why the law of conservation of energy is still
valid in this case?
a. When the coin hits the ground, the ground gains

potential energy that quickly changes to thermal
energy.

b. When the coin hits the ground, the ground gains
kinetic energy that quickly changes to thermal
energy.

c. When the coin hits the ground, the ground gains
thermal energy that quickly changes to kinetic
energy.

d. When the coin hits the ground, the ground gains
thermal energy that quickly changes to potential
energy.

41. True or false—A marble rolls down a slope from height
h1 and up another slope to height h2, where (h2 < h1). The
difference mg(h1 – h2) is equal to the heat lost due to the
friction.
a. True
b. False

9.3 Simple Machines
42. Why would you expect the lever shown in the top image to

have a greater efficiency than the inclined plane shown in the
bottom image?

a. The resistance arm is shorter in case of the inclined

plane.
b. The effort arm is shorter in case of the inclined plane.
c. The area of contact is greater in case of the inclined

plane.

43. Why is the wheel on a wheelbarrow not a simple
machine in the same sense as the simple machine in the
image?

a. The wheel on the wheelbarrow has no fulcrum.
b. The center of the axle is not the fulcrum for the

wheels of a wheelbarrow.
c. The wheelbarrow differs in the way in which load is

attached to the axle.
d. The wheelbarrow has less resistance force than a

wheel and axle design.

44. A worker pulls down on one end of the rope of a pulley
system with a force of 75 N to raise a hay bale tied to the
other end of the rope. If she pulls the rope down 2.0 m
and the bale raises 1.0 m, what else would you have to
know to calculate the efficiency of the pulley system?
a. the weight of the worker
b. the weight of the hay bale
c. the radius of the pulley
d. the height of the pulley from ground

45. True or false—A boy pushed a box with a weight of 300
N up a ramp. He said that, because the ramp was 1.0 m
high and 3.0 m long, he must have been pushing with
force of exactly 100 N.
a. True
b. False

Extended Response
9.1 Work, Power, and the Work–Energy
Theorem
46. Work can be negative as well as positive because an

object or system can do work on its surroundings as well
as have work done on it. Which of the following

statements describes:
a situation in which an object does work on its
surroundings by decreasing its velocity and
a situation in which an object can do work on its
surroundings by decreasing its altitude?
a. A gasoline engine burns less fuel at a slower speed.

Solar cells capture sunlight to generate electricity.
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b. A hybrid car charges its batteries as it decelerates.
Falling water turns a turbine to generate electricity.

c. Airplane flaps use air resistance to slow down for
landing.
Rising steam turns a turbine to generate electricity.

d. An electric train requires less electrical energy as it
decelerates.
A parachute captures air to slow a skydiver’s fall.

47. A boy is pulling a girl in a child’s wagon at a constant
speed. He begins to pull harder, which increases the
speed of the wagon. Which of the following describes
two ways you could calculate the change in energy of the
wagon and girl if you had all the information you
needed?
a. Calculate work done from the force and the

velocity.
Calculate work done from the change in the
potential energy of the system.

b. Calculate work done from the force and the
displacement.
Calculate work done from the change in the
potential energy of the system.

c. Calculate work done from the force and the
velocity.
Calculate work done from the change in the kinetic
energy of the system.

d. Calculate work done from the force and the
displacement.
Calculate work done from the change in the kinetic
energy of the system.

9.2 Mechanical Energy and Conservation of
Energy
48. Acceleration due to gravity on the moon is 1.6 m/s2 or

about 16% of the value of g on Earth.
If an astronaut on the moon threw a moon rock to a
height of 7.8 m, what would be its velocity as it struck
the moon’s surface?
How would the fact that the moon has no atmosphere
affect the velocity of the falling moon rock? Explain your
answer.
a. The velocity of the rock as it hits the ground would

be 5.0 m/s. Due to the lack of air friction, there
would be complete transformation of the potential
energy into the kinetic energy as the rock hits the
moon’s surface.

b. The velocity of the rock as it hits the ground would
be 5.0 m/s. Due to the lack of air friction, there
would be incomplete transformation of the
potential energy into the kinetic energy as the rock
hits the moon’s surface.

c. The velocity of the rock as it hits the ground would

be 12 m/s. Due to the lack of air friction, there
would be complete transformation of the potential
energy into the kinetic energy as the rock hits the
moon’s surface.

d. The velocity of the rock as it hits the ground would
be 12 m/s. Due to the lack of air friction, there
would be incomplete transformation of the
potential energy into the kinetic energy as the rock
hits the moon’s surface.

49. A boulder rolls from the top of a mountain, travels
across a valley below, and rolls part way up the ridge on
the opposite side. Describe all the energy
transformations taking place during these events and
identify when they happen.
a. As the boulder rolls down the mountainside, KE is

converted to PE. As the boulder rolls up the
opposite slope, PE is converted to KE. The boulder
rolls only partway up the ridge because some of the
PE has been converted to thermal energy due to
friction.

b. As the boulder rolls down the mountainside, KE is
converted to PE. As the boulder rolls up the
opposite slope, KE is converted to PE. The boulder
rolls only partway up the ridge because some of the
PE has been converted to thermal energy due to
friction.

c. As the boulder rolls down the mountainside, PE is
converted to KE. As the boulder rolls up the
opposite slope, PE is converted to KE. The boulder
rolls only partway up the ridge because some of the
PE has been converted to thermal energy due to
friction.

d. As the boulder rolls down the mountainside, PE is
converted to KE. As the boulder rolls up the
opposite slope, KE is converted to PE. The boulder
rolls only partway up the ridge because some of the
PE has been converted to thermal energy due to
friction.

9.3 Simple Machines
50. To dig a hole, one holds the handles together and thrusts

the blades of a posthole digger, like the one in the image,
into the ground. Next, the handles are pulled apart, which
squeezes the dirt between them, making it possible to
remove the dirt from the hole. This complex machine is
composed of two pairs of two different simple machines.
Identify and describe the parts that are simple machines
and explain how you would find the IMA of each type of
simple machine.

a. Each handle and its attached blade is a lever with the
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fulcrum at the hinge. Each blade is a wedge.
The IMA of a lever would be the length of the handle
divided by the length of the blade. The IMA of the
wedges would be the length of the blade divided by its
width.

b. Each handle and its attached to blade is a lever with
the fulcrum at the end. Each blade is a wedge.
The IMA of a lever would be the length of the handle
divided by the length of the blade. The IMA of the
wedges would be the length of the blade divided by its
width.

c. Each handle and its attached blade is a lever with the
fulcrum at the hinge. Each blade is a wedge.
The IMA of a lever would be the length of the handle
multiplied by the length of the blade. The IMA of the
wedges would be the length of the blade multiplied by
its width.

d. Each handle and its attached blade is a lever with the
fulcrum at the end. Each blade is a wedge.
The IMA of a lever would be the length of the handle
multiplied by the length of the blade. The IMA of the
wedges would be the length of the blade multiplied by
its width.

51. A wooden crate is pulled up a ramp that is 1.0 m high
and 6.0 m long. The crate is attached to a rope that is
wound around an axle with a radius of 0.020 m . The
axle is turned by a 0.20 m long handle. What is the
overall IMA of the complex machine?
A. 6
B. 10
C. 16
D. 60
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INTRODUCTION

CHAPTER 10
Special Relativity

10.1 Postulates of Special Relativity

10.2 Consequences of Special Relativity

Have you ever dreamed of traveling to other planets in faraway star systems? The trip might seem possible by
traveling fast enough, but you will read in this chapter why it is not. In 1905, Albert Einstein developed the theory of special
relativity. Einstein developed the theory to help explain inconsistencies between the equations describing electromagnetism
and Newtonian mechanics, and to explain why the ether did not exist. This theory explains the limit on an object’s speed among
other implications.

Relativity is the study of how different observers moving with respect to one another measure the same events. Galileo and
Newton developed the first correct version of classical relativity. Einstein developed the modern theory of relativity. Modern
relativity is divided into two parts. Special relativity deals with observers moving at constant velocity. General relativity deals
with observers moving at constant acceleration. Einstein’s theories of relativity made revolutionary predictions. Most
importantly, his predictions have been verified by experiments.

In this chapter, you learn how experiments and puzzling contradictions in existing theories led to the development of the theory
of special relativity. You will also learn the simple postulates on which the theory was based; a postulate is a statement that is
assumed to be true for the purposes of reasoning in a scientific or mathematic argument.

10.1 Postulates of Special Relativity
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the experiments and scientific problems that led Albert Einstein to develop the special theory of

relativity
• Understand the postulates on which the special theory of relativity was based

Figure 10.1 Special relativity explains why travel to other star systems, such as these in the Orion Nebula, is unlikely
using our current level of technology. (s58y, Flickr)
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Section Key Terms

ether frame of reference inertial reference frame

general relativity postulate relativity

simultaneity special relativity

Scientific Experiments and Problems
Relativity is not new. Way back around the year 1600, Galileo explained that motion is relative. Wherever you happen to be, it
seems like you are at a fixed point and that everything moves with respect to you. Everyone else feels the same way. Motion is
always measured with respect to a fixed point. This is called establishing a frame of reference. But the choice of the point is
arbitrary, and all frames of reference are equally valid. A passenger in a moving car is not moving with respect to the driver, but
they are both moving from the point of view of a person on the sidewalk waiting for a bus. They are moving even faster as seen
by a person in a car coming toward them. It is all relative.

TIPS FOR SUCCESS
A frame of reference is not a complicated concept. It is just something you decide is a fixed point or group of connected
points. It is completely up to you. For example, when you look up at celestial objects in the sky, you choose the earth as your
frame of reference, and the sun, moon, etc., seem to move across the sky.

Light is involved in the discussion of relativity because theories related to electromagnetism are inconsistent with Galileo’s and
Newton’s explanation of relativity. The true nature of light was a hot topic of discussion and controversy in the late 19th century.
At the time, it was not generally believed that light could travel across empty space. It was known to travel as waves, and all other
types of energy that propagated as waves needed to travel though a material medium. It was believed that space was filled with
an invisible medium that light waves traveled through. This imaginary (as it turned out) material was called the ether (also
spelled aether). It was thought that everything moved through this mysterious fluid. In other words, ether was the one fixed
frame of reference. The Michelson–Morley experiment proved it was not.

In 1887, Albert Michelson and Edward Morley designed the interferometer shown in Figure 10.2 to measure the speed of Earth
through the ether. A light beam is split into two perpendicular paths and then recombined. Recombining the waves produces an
inference pattern, with a bright fringe at the locations where the two waves arrive in phase; that is, with the crests of both waves
arriving together and the troughs arriving together. A dark fringe appears where the crest of one wave coincides with a trough
of the other, so that the two cancel. If Earth is traveling through the ether as it orbits the sun, the peaks in one arm would take
longer than in the other to reach the same location. The places where the two waves arrive in phase would change, and the
interference pattern would shift. But, using the interferometer, there was no shift seen! This result led to two conclusions: that
there is no ether and that the speed of light is the same regardless of the relative motion of source and observer. The
Michelson–Morley investigation has been called the most famous failed experiment in history.
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Figure 10.2 This is a diagram of the instrument used in the Michelson–Morley experiment.

To see what Michelson and Morley expected to find when they measured the speed of light in two directions, watch this
animation (http://openstax.org/l/28MMexperiment) . In the video, two people swimming in a lake are represented as an analogy
to light beams leaving Earth as it moves through the ether (if there were any ether). The swimmers swim away from and back to
a platform that is moving through the water. The swimmers swim in different directions with respect to the motion of the
platform. Even though they swim equal distances at the same speed, the motion of the platform causes them to arrive at
different times.

Einstein’s Postulates
The results described above left physicists with some puzzling and unsettling questions such as, why doesn’t light emitted by a
fast-moving object travel faster than light from a street lamp? A radical new theory was needed, and Albert Einstein, shown in
Figure 10.3, was about to become everyone’s favorite genius. Einstein began with two simple postulates based on the two things
we have discussed so far in this chapter.

1. The laws of physics are the same in all inertial reference frames.
2. The speed of light is the same in all inertial reference frames and is not affected by the speed of its source.

Figure 10.3 Albert Einstein (1879–1955) developed modern relativity and also made fundamental contributions to the foundations of

quantum mechanics. (The Library of Congress)

The speed of light is given the symbol c and is equal to exactly 299,792,458 m/s. This is the speed of light in vacuum; that is, in the
absence of air. For most purposes, we round this number off to The term inertial reference frame simply
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refers to a frame of reference where all objects follow Newton’s first law of motion: Objects at rest remain at rest, and objects in
motion remain in motion at a constant velocity in a straight line, unless acted upon by an external force. The inside of a car
moving along a road at constant velocity and the inside of a stationary house are inertial reference frames.

WATCH PHYSICS

The Speed of Light
This lecture on light summarizes the most important facts about the speed of light. If you are interested, you can watch the
whole video, but the parts relevant to this chapter are found between 3:25 and 5:10, which you find by running your cursor along
the bottom of the video.

Click to view content (https://www.youtube.com/embed/rLNM8zI4Q_M)

GRASP CHECK
An airliner traveling at 200 m/s emits light from the front of the plane. Which statement describes the speed of the light?
a. It travels at a speed of c + 200 m/s.
b. It travels at a speed of c – 200 m/s.
c. It travels at a speed c, like all light.
d. It travels at a speed slightly less than c.

Snap Lab

Measure the Speed of Light
In this experiment, you will measure the speed of light using a microwave oven and a slice of bread. The waves generated by
a microwave oven are not part of the visible spectrum, but they are still electromagnetic radiation, so they travel at the speed
of light. If we know the wavelength, λ, and frequency, f, of a wave, we can calculate its speed, v, using the equation v = λf.
You can measure the wavelength. You will find the frequency on a label on the back of a microwave oven. The wave in a
microwave is a standing wave with areas of high and low intensity. The high intensity sections are one-half wavelength
apart.

• High temperature: Very hot temperatures are encountered in this lab. These can cause burns.

• a microwave oven
• one slice of plain white bread
• a centimeter ruler
• a calculator

1. Work with a partner.
2. Turn off the revolving feature of the microwave oven or remove the wheels under the microwave dish that make it turn.

It is important that the dish does not turn.
3. Place the slice of bread on the dish, set the microwave on high, close the door, run the microwave for about 15 seconds.
4. A row of brown or black marks should appear on the bread. Stop the microwave as soon as they appear. Measure the

distance between two adjacent burn marks and multiply the result by 2. This is the wavelength.
5. The frequency of the waves is written on the back of the microwave. Look for something like “2,450 MHz.” Hz is the unit

hertz, which means per second. The M represents mega, which stands for million, so multiply the number by 106.
6. Express the wavelength in meters and multiply it times the frequency. If you did everything correctly, you will get a

number very close to the speed of light. Do not eat the bread. It is a general laboratory safety rule never to eat anything
in the lab.

GRASP CHECK
How does your measured value of the speed of light compare to the accepted value (% error)?
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Einstein’s postulates were carefully chosen, and they both seemed very likely to be true. Einstein proceeded despite realizing
that these two ideas taken together and applied to extreme conditions led to results that contradict Newtonian mechanics. He
just took the ball and ran with it.

In the traditional view, velocities are additive. If you are running at 3 m/s and you throw a ball forward at a speed of 10 m/s, the
ball should have a net speed of 13 m/s. However, according to relativity theory, the speed of a moving light source is not added to
the speed of the emitted light.

In addition, Einstein’s theory shows that if you were moving forward relative to Earth at nearly c (the speed of light) and could
throw a ball forward at c, an observer at rest on the earth would not see the ball moving at nearly twice the speed of light. The
observer would see it moving at a speed that is still less than c. This result conforms to both of Einstein’s postulates: The speed of
light has a fixed maximum and neither reference frame is privileged.

Consider how we measure elapsed time. If we use a stopwatch, for example, how do we know when to start and stop the watch?
One method is to use the arrival of light from the event, such as observing a light turn green to start a drag race. The timing will
be more accurate if some sort of electronic detection is used, avoiding human reaction times and other complications.

Now suppose we use this method to measure the time interval between two flashes of light produced by flash lamps on a moving
train. (See Figure 10.4)

a. The measured value of speed will be equal to c.
b. The measured value of speed will be slightly less than c.
c. The measured value of speed will be slightly greater than c.
d. The measured value of speed will depend on the frequency of the microwave.
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Figure 10.4 Light arriving to observer A as seen by two different observers.

A woman (observer A) is seated in the center of a rail car, with two flash lamps at opposite sides equidistant from her. Multiple
light rays that are emitted from the flash lamps move towards observer A, as shown with arrows. A velocity vector arrow for the
rail car is shown towards the right. A man (observer B) standing on the platform is facing the woman and also observes the
flashes of light.

Observer A moves with the lamps on the rail car as the rail car moves towards the right of observer B. Observer B receives the
light flashes simultaneously, and sees the bulbs as both having flashed at the same time. However, he sees observer A receive the
flash from the right first. Because the pulse from the right reaches her first, in her frame of reference she sees the bulbs as not
having flashed simultaneously. Here, a relative velocity between observers affects whether two events at well-separated
locations are observed to be simultaneous. Simultaneity, or whether different events occur at the same instant, depends on the
frame of reference of the observer. Remember that velocity equals distance divided by time, so t = d/v. If velocity appears to be
different, then duration of time appears to be different.

This illustrates the power of clear thinking. We might have guessed incorrectly that, if light is emitted simultaneously, then two
observers halfway between the sources would see the flashes simultaneously. But careful analysis shows this not to be the case.
Einstein was brilliant at this type of thought experiment (in German, Gedankenexperiment). He very carefully considered how
an observation is made and disregarded what might seem obvious. The validity of thought experiments, of course, is
determined by actual observation. The genius of Einstein is evidenced by the fact that experiments have repeatedly confirmed
his theory of relativity. No experiments after that of Michelson and Morley were able to detect any ether medium. We will
describe later how experiments also confirmed other predictions of special relativity, such as the distance between two objects
and the time interval of two events being different for two observers moving with respect to each other.

In summary: Two events are defined to be simultaneous if an observer measures them as occurring at the same time (such as by
receiving light from the events). Two events are not necessarily simultaneous to all observers.
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The discrepancies between Newtonian mechanics and relativity theory illustrate an important point about how science
advances. Einstein’s theory did not replace Newton’s but rather extended it. It is not unusual that a new theory must be
developed to account for new information. In most cases, the new theory is built on the foundation of older theory. It is rare that
old theories are completely replaced.

In this chapter, you will learn about the theory of special relativity, but, as mentioned in the introduction, Einstein developed
two relativity theories: special and general. Table 10.1 summarizes the differences between the two theories.

Special Relativity General Relativity

Published in 1905 Final form published in 1916

A theory of space-time A theory of gravity

Applies to observers moving at constant
speed

Applies to observers that are accelerating

Most useful in the field of nuclear physics Most useful in the field of astrophysics

Accepted quickly and put to practical use by
nuclear physicists and quantum chemists

Largely ignored until 1960 when new mathematical techniques made the
theory more accessible and astronomers found some important applications

Also note that the theory of general relativity includes the theory of special relativity.

Table 10.1 Comparing Special Relativity and General Relativity

WORKED EXAMPLE

Calculating the Time it Takes Light to Travel a Given Distance
The sun is 1.50 × 108 km from Earth. How long does it take light to travel from the sun to Earth in minutes and seconds?
Strategy
Identify knowns.

Identify unknowns.

Time

Find the equation that relates knowns and unknowns.

Be sure to use consistent units.

Solution

Discussion
The answer is written as 5.00 × 102 rather than 500 in order to show that there are three significant figures. When astronomers
witness an event on the sun, such as a sunspot, it actually happened minutes earlier. Compare 8 light minutes to the distance to
stars, which are light years away. Any events on other stars happened years ago.

10.1

10.2
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Practice Problems
1. Light travels through 1.00 m of water in 4.42×10-9 s. What is the speed of light in water?

a. 4.42×10-9 m/s
b. 4.42×109 m/s
c. 2.26×108 m/s
d. 226×108 m/s

2. An astronaut on the moon receives a message from mission control on Earth. The signal is sent by a form of electromagnetic
radiation and takes 1.28 s to travel the distance between Earth and the moon. What is the distance from Earth to the moon?
a. 2.34×105 km
b. 2.34×108 km
c. 3.84×105 km
d. 3.84×108 km

Check Your Understanding
3. Explain what is meant by a frame of reference.

a. A frame of reference is a graph plotted between distance and time.
b. A frame of reference is a graph plotted between speed and time.
c. A frame of reference is the velocity of an object through empty space without regard to its surroundings.
d. A frame of reference is an arbitrarily fixed point with respect to which motion of other points is measured.

4. Two people swim away from a raft that is floating downstream. One swims upstream and returns, and the other swims
across the current and back. If this scenario represents the Michelson–Morley experiment, what do (i) the water, (ii) the
swimmers, and (iii) the raft represent?
a. the ether rays of light Earth
b. rays of light the ether Earth
c. the ether Earth rays of light
d. Earth rays of light the ether

5. If Michelson and Morley had observed the interference pattern shift in their interferometer, what would that have indicated?
a. The speed of light is the same in all frames of reference.
b. The speed of light depends on the motion relative to the ether.
c. The speed of light changes upon reflection from a surface.
d. The speed of light in vacuum is less than 3.00×108 m/s.

6. If you designate a point as being fixed and use that point to measure the motion of surrounding objects, what is the point
called?
a. An origin
b. A frame of reference
c. A moving frame
d. A coordinate system

10.2 Consequences of Special Relativity
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the relativistic effects seen in time dilation, length contraction, and conservation of relativistic

momentum
• Explain and perform calculations involving mass-energy equivalence

Section Key Terms

binding energy length contraction mass defect time dilation

312 Chapter 10 • Special Relativity

Access for free at openstax.org.



proper length relativistic relativistic momentum

relativistic energy relativistic factor rest mass

Relativistic Effects on Time, Distance, and Momentum
Consideration of the measurement of elapsed time and simultaneity leads to an important relativistic effect. Time dilation is
the phenomenon of time passing more slowly for an observer who is moving relative to another observer.

For example, suppose an astronaut measures the time it takes for light to travel from the light source, cross her ship, bounce off
a mirror, and return. (See Figure 10.5.) How does the elapsed time the astronaut measures compare with the elapsed time
measured for the same event by a person on the earth? Asking this question (another thought experiment) produces a profound
result. We find that the elapsed time for a process depends on who is measuring it. In this case, the time measured by the
astronaut is smaller than the time measured by the earth bound observer. The passage of time is different for the two observers
because the distance the light travels in the astronaut’s frame is smaller than in the earth bound frame. Light travels at the same
speed in each frame, and so it will take longer to travel the greater distance in the earth bound frame.

Figure 10.5 (a) An astronaut measures the time for light to cross her ship using an electronic timer. Light travels a distance in the

astronaut’s frame. (b) A person on the earth sees the light follow the longer path and take a longer time

The relationship between Δt and Δto is given by

where is the relativistic factor given by

and v and c are the speeds of the moving observer and light, respectively.
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TIPS FOR SUCCESS
Try putting some values for v into the expression for the relativistic factor ( ). Observe at which speeds this factor will make
a difference and when is so close to 1 that it can be ignored. Try 225 m/s, the speed of an airliner; 2.98 × 104 m/s, the speed
of Earth in its orbit; and 2.990 × 108 m/s, the speed of a particle in an accelerator.

Notice that when the velocity v is small compared to the speed of light c, then v/c becomes small, and becomes close to 1. When
this happens, time measurements are the same in both frames of reference. Relativistic effects, meaning those that have to do
with special relativity, usually become significant when speeds become comparable to the speed of light. This is seen to be the
case for time dilation.

You may have seen science fiction movies in which space travelers return to Earth after a long trip to find that the planet and
everyone on it has aged much more than they have. This type of scenario is a based on a thought experiment, known as the twin
paradox, which imagines a pair of twins, one of whom goes on a trip into space while the other stays home. When the space
traveler returns, she finds her twin has aged much more than she. This happens because the traveling twin has been in two
frames of reference, one leaving Earth and one returning.

Time dilation has been confirmed by comparing the time recorded by an atomic clock sent into orbit to the time recorded by a
clock that remained on Earth. GPS satellites must also be adjusted to compensate for time dilation in order to give accurate
positioning.

Have you ever driven on a road, like that shown in Figure 10.6, that seems like it goes on forever? If you look ahead, you might
say you have about 10 km left to go. Another traveler might say the road ahead looks like it is about 15 km long. If you both
measured the road, however, you would agree. Traveling at everyday speeds, the distance you both measure would be the same.
You will read in this section, however, that this is not true at relativistic speeds. Close to the speed of light, distances measured
are not the same when measured by different observers moving with respect to one other.

Figure 10.6 People might describe distances differently, but at relativistic speeds, the distances really are different. (Corey Leopold, Flickr)

One thing all observers agree upon is their relative speed. When one observer is traveling away from another, they both see the
other receding at the same speed, regardless of whose frame of reference is chosen. Remember that speed equals distance
divided by time: v = d/t. If the observers experience a difference in elapsed time, they must also observe a difference in distance
traversed. This is because the ratio d/t must be the same for both observers.

The shortening of distance experienced by an observer moving with respect to the points whose distance apart is measured is
called length contraction. Proper length, L0, is the distance between two points measured in the reference frame where the
observer and the points are at rest. The observer in motion with respect to the points measures L. These two lengths are related
by the equation

Because is the same expression used in the time dilation equation above, the equation becomes
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To see how length contraction is seen by a moving observer, go to this simulation (http://openstax.org/l/28simultaneity) . Here
you can also see that simultaneity, time dilation, and length contraction are interrelated phenomena.

This link is to a simulation that illustrates the relativity of simultaneous events.

In classical physics, momentum is a simple product of mass and velocity. When special relativity is taken into account, objects
that have mass have a speed limit. What effect do you think mass and velocity have on the momentum of objects moving at
relativistic speeds; i.e., speeds close to the speed of light?

Momentum is one of the most important concepts in physics. The broadest form of Newton’s second law is stated in terms of
momentum. Momentum is conserved in classical mechanics whenever the net external force on a system is zero. This makes
momentum conservation a fundamental tool for analyzing collisions. We will see that momentum has the same importance in
modern physics. Relativistic momentum is conserved, and much of what we know about subatomic structure comes from the
analysis of collisions of accelerator-produced relativistic particles.

One of the postulates of special relativity states that the laws of physics are the same in all inertial frames. Does the law of
conservation of momentum survive this requirement at high velocities? The answer is yes, provided that the momentum is
defined as follows.

Relativistic momentum, p, is classical momentum multiplied by the relativistic factor

where is the rest mass of the object (that is, the mass measured at rest, without any factor involved), is its velocity relative
to an observer, and as before, is the relativistic factor. We use the mass of the object as measured at rest because we cannot
determine its mass while it is moving.

Note that we use for velocity here to distinguish it from relative velocity between observers. Only one observer is being
considered here. With defined in this way, is conserved whenever the net external force is zero, just as in classical physics.
Again we see that the relativistic quantity becomes virtually the same as the classical at low velocities. That is, relativistic
momentum becomes the classical at low velocities, because is very nearly equal to 1 at low velocities.

Relativistic momentum has the same intuitive feel as classical momentum. It is greatest for large masses moving at high
velocities. Because of the factor however, relativistic momentum behaves differently from classical momentum by
approaching infinity as approaches (See Figure 10.7.) This is another indication that an object with mass cannot reach the
speed of light. If it did, its momentum would become infinite, which is an unreasonable value.

Figure 10.7 Relativistic momentum approaches infinity as the velocity of an object approaches the speed of light.

Relativistic momentum is defined in such a way that the conservation of momentum will hold in all inertial frames. Whenever
the net external force on a system is zero, relativistic momentum is conserved, just as is the case for classical momentum. This

10.3

10.2 • Consequences of Special Relativity 315

http://openstax.org/l/28simultaneity


has been verified in numerous experiments.

Mass-Energy Equivalence
Let us summarize the calculation of relativistic effects on objects moving at speeds near the speed of light. In each case we will
need to calculate the relativistic factor, given by

where v and c are as defined earlier. We use u as the velocity of a particle or an object in one frame of reference, and v for the
velocity of one frame of reference with respect to another.

Time Dilation
Elapsed time on a moving object, as seen by a stationary observer is given by where is the time observed
on the moving object when it is taken to be the frame or reference.

Length Contraction
Length measured by a person at rest with respect to a moving object, L, is given by

where L0 is the length measured on the moving object.

Relativistic Momentum
Momentum, p, of an object of mass, m, traveling at relativistic speeds is given by where u is velocity of a moving
object as seen by a stationary observer.

Relativistic Energy
The original source of all the energy we use is the conversion of mass into energy. Most of this energy is generated by nuclear
reactions in the sun and radiated to Earth in the form of electromagnetic radiation, where it is then transformed into all the
forms with which we are familiar. The remaining energy from nuclear reactions is produced in nuclear power plants and in
Earth’s interior. In each of these cases, the source of the energy is the conversion of a small amount of mass into a large amount
of energy. These sources are shown in Figure 10.8.

Figure 10.8 The sun (a) and the Susquehanna Steam Electric Station (b) both convert mass into energy. ((a) NASA/Goddard Space Flight

Center, Scientific Visualization Studio; (b) U.S. government)

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Einstein showed that the law of
conservation of energy is valid relativistically, if we define energy to include a relativistic factor. The result of his analysis is that
a particle or object of mass m moving at velocity u has relativistic energy given by

This is the expression for the total energy of an object of mass m at any speed u and includes both kinetic and potential energy.
Look back at the equation for and you will see that it is equal to 1 when u is 0; that is, when an object is at rest. Then the rest
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energy, E0, is simply

This is the correct form of Einstein’s famous equation.

This equation is very useful to nuclear physicists because it can be used to calculate the energy released by a nuclear reaction.
This is done simply by subtracting the mass of the products of such a reaction from the mass of the reactants. The difference is
the m in Here is a simple example:

A positron is a type of antimatter that is just like an electron, except that it has a positive charge. When a positron and an
electron collide, their masses are completely annihilated and converted to energy in the form of gamma rays. Because both
particles have a rest mass of 9.11 × 10–31 kg, we multiply the mc2 term by 2. So the energy of the gamma rays is

where we have the expression for the joule (J) in terms of its SI base units of kg, m, and s. In general, the nuclei of stable isotopes
have less mass then their constituent subatomic particles. The energy equivalent of this difference is called the binding energy
of the nucleus. This energy is released during the formation of the isotope from its constituent particles because the product is
more stable than the reactants. Expressed as mass, it is called the mass defect. For example, a helium nucleus is made of two
neutrons and two protons and has a mass of 4.0003 atomic mass units (u). The sum of the masses of two protons and two
neutrons is 4.0330 u. The mass defect then is 0.0327 u. Converted to kg, the mass defect is 5.0442 × 10–30 kg. Multiplying this
mass times c2 gives a binding energy of 4.540 × 10–12 J. This does not sound like much because it is only one atom. If you were to
make one gram of helium out of neutrons and protons, it would release 683,000,000,000 J. By comparison, burning one gram of
coal releases about 24 J.

BOUNDLESS PHYSICS

The RHIC Collider
Figure 10.9 shows the Brookhaven National Laboratory in Upton, NY. The circular structure houses a particle accelerator called
the RHIC, which stands for Relativistic Heavy Ion Collider. The heavy ions in the name are gold nuclei that have been stripped of
their electrons. Streams of ions are accelerated in several stages before entering the big ring seen in the figure. Here, they are
accelerated to their final speed, which is about 99.7 percent the speed of light. Such high speeds are called relativistic. All the
relativistic phenomena we have been discussing in this chapter are very pronounced in this case. At this speed = 12.9, so that
relativistic time dilates by a factor of about 13, and relativistic length contracts by the same factor.

Figure 10.9 Brookhaven National Laboratory. The circular structure houses the RHIC. (energy.gov, Wikimedia Commons)

Two ion beams circle the 2.4-mile long track around the big ring in opposite directions. The paths can then be made to cross,
thereby causing ions to collide. The collision event is very short-lived but amazingly intense. The temperatures and pressures
produced are greater than those in the hottest suns. At 4 trillion degrees Celsius, this is the hottest material ever created in a

10.4
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laboratory

But what is the point of creating such an extreme event? Under these conditions, the neutrons and protons that make up the
gold nuclei are smashed apart into their components, which are called quarks and gluons. The goal is to recreate the conditions
that theorists believe existed at the very beginning of the universe. It is thought that, at that time, matter was a sort of soup of
quarks and gluons. When things cooled down after the initial bang, these particles condensed to form protons and neutrons.

Some of the results have been surprising and unexpected. It was thought the quark-gluon soup would resemble a gas or plasma.
Instead, it behaves more like a liquid. It has been called a perfect liquid because it has virtually no viscosity, meaning that it has
no resistance to flow.

GRASP CHECK
Calculate the relativistic factor γ, for a particle traveling at 99.7 percent of the speed of light.
a. 0.08
b. 0.71
c. 1.41
d. 12.9

WORKED EXAMPLE

The Speed of Light
One night you are out looking up at the stars and an extraterrestrial spaceship flashes across the sky. The ship is 50 meters long
and is travelling at 95 percent of the speed of light. What would the ship’s length be when measured from your earthbound
frame of reference?
Strategy
List the knowns and unknowns.

Knowns: proper length of the ship, L0 = 50 m; velocity, v, = 0.95c

Unknowns: observed length of the ship accounting for relativistic length contraction, L.

Choose the relevant equation.

Solution

Discussion
Calculations of can usually be simplified in this way when v is expressed as a percentage of c because the c2 terms cancel. Be
sure to also square the decimal representing the percentage before subtracting from 1. Note that the aliens will still see the
length as L0 because they are moving with the frame of reference that is the ship.

Practice Problems
7. Calculate the relativistic factor, γ, for an object traveling at 2.00×108 m/s.

a. 0.74
b. 0.83
c. 1.2
d. 1.34

8. The distance between two points, called the proper length, L0, is 1.00 km. An observer in motion with respect to the frame of
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reference of the two points measures 0.800 km, which is L. What is the relative speed of the frame of reference with respect
to the observer?
a. 1.80×108 m/s
b. 2.34×108 m/s
c. 3.84×108 m/s
d. 5.00×108 m/s

9. Consider the nuclear fission reaction . If a neutron has a rest mass of 1.009u,
has a rest mass of 235.044u, has rest mass of 136.907u, and has a rest mass of 96.937u, what is the value of E in
joules?
a. J
b. J
c. J
d. J

Solution
The correct answer is (b). The mass deficit in the reaction is or 0.191u.
Converting that mass to kg and applying to find the energy equivalent of the mass deficit gives

10. Consider the nuclear fusion reaction . If has a rest mass of 2.014u, has a rest mass of
3.016u, and has a rest mass of 1.008u, what is the value of E in joules?
a. J
b. J
c. J
d. J

Solution
The correct answer is (a). The mass deficit in the reaction is , or 0.004u. Converting that
mass to kg and applying to find the energy equivalent of the mass deficit gives

Check Your Understanding
11. Describe time dilation and state under what conditions it becomes significant.

a. When the speed of one frame of reference past another reaches the speed of light, a time interval between two events at
the same location in one frame appears longer when measured from the second frame.

b. When the speed of one frame of reference past another becomes comparable to the speed of light, a time interval
between two events at the same location in one frame appears longer when measured from the second frame.

c. When the speed of one frame of reference past another reaches the speed of light, a time interval between two events at
the same location in one frame appears shorter when measured from the second frame.

d. When the speed of one frame of reference past another becomes comparable to the speed of light, a time interval
between two events at the same location in one frame appears shorter when measured from the second frame.

12. The equation used to calculate relativistic momentum is p = γ · m · u. Define the terms to the right of the equal sign and
state how m and u are measured.
a. γ is the relativistic factor, m is the rest mass measured when the object is at rest in the frame of reference, and u is the

velocity of the frame.
b. γ is the relativistic factor, m is the rest mass measured when the object is at rest in the frame of reference, and u is the

velocity relative to an observer.

c. γ is the relativistic factor, m is the relativistic mass measured when the object is moving in the frame of

reference, and u is the velocity of the frame.
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d. γ is the relativistic factor, m is the relativistic mass measured when the object is moving in the frame of

reference, and u is the velocity relative to an observer.

13. Describe length contraction and state when it occurs.
a. When the speed of an object becomes the speed of light, its length appears to shorten when viewed by a stationary

observer.
b. When the speed of an object approaches the speed of light, its length appears to shorten when viewed by a stationary

observer.
c. When the speed of an object becomes the speed of light, its length appears to increase when viewed by a stationary

observer.
d. When the speed of an object approaches the speed of light, its length appears to increase when viewed by a stationary

observer.
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KEY TERMS
binding energy the energy equivalent of the difference

between the mass of a nucleus and the masses of its
nucleons

ether scientists once believed there was a medium that
carried light waves; eventually, experiments proved that
ether does not exist

frame of reference the point or collection of points
arbitrarily chosen, which motion is measured in relation
to

general relativity the theory proposed to explain gravity
and acceleration

inertial reference frame a frame of reference where all
objects follow Newton’s first law of motion

length contraction the shortening of an object as seen by
an observer who is moving relative to the frame of
reference of the object

mass defect the difference between the mass of a nucleus
and the masses of its nucleons

postulate a statement that is assumed to be true for the
purposes of reasoning in a scientific or mathematic
argument

proper length the length of an object within its own frame
of reference, as opposed to the length observed by an
observer moving relative to that frame of reference

relativistic having to do with modern relativity, such as the

effects that become significant only when an object is
moving close enough to the speed of light for to be
significantly greater than 1

relativistic energy the total energy of a moving object or
particle which includes both its rest energy
mc2 and its kinetic energy

relativistic factor , where u is the velocity of a

moving object and c is the speed of light
relativistic momentum p = γmu, where is the relativistic

factor, m is rest mass of an object, and u is the velocity
relative to an observer

relativity the explanation of how objects move relative to
one another

rest mass the mass of an object that is motionless with
respect to its frame of reference

simultaneity the property of events that occur at the same
time

special relativity the theory proposed to explain the
consequences of requiring the speed of light and the laws
of physics to be the same in all inertial frames

time dilation the contraction of time as seen by an observer
in a frame of reference that is moving relative to the
observer

SECTION SUMMARY
10.1 Postulates of Special Relativity

• One postulate of special relativity theory is that the laws
of physics are the same in all inertial frames of
reference.

• The other postulate is that the speed of light in a
vacuum is the same in all inertial frames.

• Einstein showed that simultaneity, or lack of it,
depends on the frame of reference of the observer.

10.2 Consequences of Special
Relativity

• Time dilates, length contracts, and momentum
increases as an object approaches the speed of light.

• Energy and mass are interchangeable, according to the
relationship E = mc2. The laws of conservation of mass
and energy are combined into the law of conservation of
mass-energy.

KEY EQUATIONS
10.1 Postulates of Special Relativity

speed of light

constant value for the speed
of light

10.2 Consequences of Special
Relativity

elapsed time

relativistic factor

length contraction

relativistic momentum
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relativistic energy rest energy

CHAPTER REVIEW
Concept Items
10.1 Postulates of Special Relativity
1. Why was it once believed that light must travel through a

medium and could not propagate across empty space?
a. The longitudinal nature of light waves implies this.
b. Light shows the phenomenon of diffraction.
c. The speed of light is the maximum possible speed.
d. All other wave energy needs a medium to travel.

2. Describe the relative motion of Earth and the sun:
1. if Earth is taken as the inertial frame of reference

and
2. if the sun is taken as the inertial frame of reference.

a. 1. Earth is at rest and the sun orbits Earth.
2. The sun is at rest and Earth orbits the sun.

b. 1. The sun is at rest and Earth orbits the sun.
2. Earth is at rest and the sun orbits Earth.

c. 1. The sun is at rest and Earth orbits the sun.
2. The sun is at rest and Earth orbits the sun.

d. 1. Earth is at rest and the sun orbits Earth.
2. Earth is at rest and the sun orbits Earth.

10.2 Consequences of Special Relativity
3. A particle (a free electron) is speeding around the track

in a cyclotron, rapidly gaining speed. How will the
particle’s momentum change as its speed approaches the
speed of light? Explain.
a. The particle’s momentum will rapidly decrease.
b. The particle’s momentum will rapidly increase.
c. The particle’s momentum will remain constant.
d. The particle’s momentum will approach zero.

4. An astronaut goes on a long space voyage at near the
speed of light. When she returns home, how will her age
compare to the age of her twin who stayed on Earth?
a. Both of them will be the same age.
b. This is a paradox and hence the ages cannot be

compared.
c. The age of the twin who traveled will be less than the

age of her twin.
d. The age of the twin who traveled will be greater than

the age of her twin.

5. A comet reaches its greatest speed as it travels near the
sun. True or false— Relativistic effects make the comet’s
tail look longer to an observer on Earth.
a. True
b. False

Critical Thinking Items
10.1 Postulates of Special Relativity
6. Explain how the two postulates of Einstein’s theory of

special relativity, when taken together, could lead to a
situation that seems to contradict the mechanics and
laws of motion as described by Newton.
a. In Newtonian mechanics, velocities are

multiplicative but the speed of a moving light source
cannot be multiplied to the speed of light because,
according to special relativity, the speed of light is
the maximum speed possible.

b. In Newtonian mechanics, velocities are additive but
the speed of a moving light source cannot be added
to the speed of light because the speed of light is the
maximum speed possible.

c. An object that is at rest in one frame of reference
may appear to be in motion in another frame of
reference, while in Newtonian mechanics such a
situation is not possible.

d. The postulates of Einstein’s theory of special
relativity do not contradict any situation that
Newtonian mechanics explains.

7. It takes light to travel from the sun to the
planet Venus. How far is Venus from the sun?
a.
b.
c.
d.

8. In 2003, Earth and Mars were the closest they had been in
50,000 years. The two planets were aligned so that Earth
was between Mars and the sun. At that time it took light
from the sun 500 s to reach Earth and 687 s to get to
Mars. What was the distance from Mars to Earth?
a. 5.6×107 km
b. 5.6×1010 km
c. 6.2×106 km
d. 6.2×1012 km

9. Describe two ways in which light differs from all other
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forms of wave energy.
a. 1. Light travels as a longitudinal wave.

2. Light travels through a medium that fills up the
empty space in the universe.

b. 1. Light travels as a transverse wave.
2. Light travels through a medium that fills up the

empty space in the universe.

c. 1. Light travels at the maximum possible speed in
the universe.

2. Light travels through a medium that fills up the
empty space in the universe.

d. 1. Light travels at the maximum possible speed in
the universe.

2. Light does not require any material medium to
travel.

10. Use the postulates of the special relativity theory to
explain why the speed of light emitted from a fast-
moving light source cannot exceed 3.00×108 m/s.
a. The speed of light is maximum in the frame of

reference of the moving object.
b. The speed of light is minimum in the frame of

reference of the moving object.
c. The speed of light is the same in all frames of

reference, including in the rest frame of its source.
d. Light always travels in a vacuum with a speed less

than 3.00×108 m/s, regardless of the speed of the

source.

10.2 Consequences of Special Relativity
11. Halley’s Comet comes near Earth every 75 years as it

travels around its 22 billion km orbit at a speed of up to
700, 000 m/s. If it were possible to put a clock on the
comet and read it each time the comet passed, which
part of special relativity theory could be tested? What
would be the expected result? Explain.
a. It would test time dilation. The clock would appear

to be slightly slower.
b. It would test time dilation. The clock would appear

to be slightly faster.
c. It would test length contraction. The length of the

orbit would appear to be shortened from Earth’s
frame of reference.

d. It would test length contraction. The length of the
orbit would appear to be shortened from the
comet’s frame of reference.

12. The nucleus of the isotope fluorine-18 (18 F) has mass
defect of 2.44×10-28 kg. What is the binding energy of
18F?
a. 2.2×10-11 J
b. 7.3×10-20 J
c. 2.2×10-20 J
d. 2.4×10-28 J

Problems
10.2 Consequences of Special Relativity
13. Deuterium (2 H) is an isotope of hydrogen that has one

proton and one neutron in its nucleus. The binding
energy of deuterium is 3.56×10-13 J. What is the mass
defect of deuterium?
a. 3.20×10-4 kg
b. 1.68×10-6 kg
c. 1.19×10-21 kg
d. 3.96×10-30 kg

14. The sun orbits the center of the galaxy at a speed of
2.3×105 m/s. The diameter of the sun is 1.391684×109 m.
An observer is in a frame of reference that is stationary
with respect to the center of the galaxy. True or
false—The sun is moving fast enough for the observer to
notice length contraction of the sun’s diameter.
a. True
b. False

15. Consider the nuclear fission reaction

. If a neutron
has a rest mass of 1.009u, has a rest mass of
235.044u, has rest mass of 143.923u, and
has a rest mass of 88.918u, what is the value of E in
joules?
a. J
b. J
c. J
d. J

16. Consider the nuclear fusion reaction
. If has a rest mass of

2.014u, has a rest mass of 3.016u, has a rest
mass of 4.003u, and a neutron has a rest mass of 1.009u,
what is the value of E in joules?
a. J
b. J
c. J
d. J
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Performance Task
10.2 Consequences of Special Relativity
17. People are fascinated by the possibility of traveling

across the universe to discover intelligent life on other
planets. To do this, we would have to travel enormous
distances. Suppose we could somehow travel at up to 90
percent of the speed of light. The closest star is Alpha
Centauri, which is 4.37 light years away. (A light year is
the distance light travels in one year.)

a. How long, from the point of view of people on
Earth, would it take a space ship to travel to Alpha
Centauri and back at 0.9c?

b. How much would the astronauts on the spaceship
have aged by the time they got back to Earth?

c. Discuss the problems related to travel to stars that
are 20 or 30 light years away. Assume travel speeds
near the speed of light.

TEST PREP
Multiple Choice
10.1 Postulates of Special Relativity
18. What was the purpose of the Michelson–Morley

experiment?
a. To determine the exact speed of light
b. To analyze the electromagnetic spectrum
c. To establish that Earth is the true frame of

reference
d. To learn how the ether affected the propagation of

light

19. What is the speed of light in a vacuum to three
significant figures?
a.
b.
c.
d.

20. How far does light travel in ?
a.
b.
c.
d.

21. Describe what is meant by the sentence, “Simultaneity is
not absolute.”
a. Events may appear simultaneous in all frames of

reference.
b. Events may not appear simultaneous in all frames

of reference.
c. The speed of light is not the same in all frames of

reference.
d. The laws of physics may be different in different

inertial frames of reference.

22. In 2003, Earth and Mars were aligned so that Earth was
between Mars and the sun. Earth and Mars were 5.6×107

km from each other, which was the closest they had

been in 50,000 years. People looking up saw Mars as a
very bright red light on the horizon. If Mars was
2.06×108 km from the sun, how long did the reflected
light people saw take to travel from the sun to Earth?
a. 14 min and 33 s
b. 12 min and 15 s
c. 11 min and 27 s
d. 3 min and 7 s

10.2 Consequences of Special Relativity

23. What does this expression represent:

a. time dilation
b. relativistic factor
c. relativistic energy
d. length contraction

24. What is the rest energy, E0, of an object with a mass of
1.00 g ?
a. 3.00×105 J
b. 3.00×1011 J
c. 9.00×1013 J
d. 9.00×1016 J

25. The fuel rods in a nuclear reactor must be replaced from
time to time because so much of the radioactive
material has reacted that they can no longer produce
energy. How would the mass of the spent fuel rods
compare to their mass when they were new? Explain
your answer.
a. The mass of the spent fuel rods would decrease.
b. The mass of the spent fuel rods would increase.
c. The mass of the spent fuel rods would remain the

same.
d. The mass of the spent fuel rods would become close

to zero.
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Short Answer
10.1 Postulates of Special Relativity
26. What is the postulate having to do with the speed of

light on which the theory of special relativity is based?
a. The speed of light remains the same in all inertial

frames of reference.
b. The speed of light depends on the speed of the

source emitting the light.
c. The speed of light changes with change in medium

through which it travels.
d. The speed of light does not change with change in

medium through which it travels.

27. What is the postulate having to do with reference
frames on which the theory of special relativity is based?
a. The frame of reference chosen is arbitrary as long

as it is inertial.
b. The frame of reference is chosen to have constant

nonzero acceleration.
c. The frame of reference is chosen in such a way that

the object under observation is at rest.
d. The frame of reference is chosen in such a way that

the object under observation is moving with a
constant speed.

28. If you look out the window of a moving car at houses
going past, you sense that you are moving. What have
you chosen as your frame of reference?
a. the car
b. the sun
c. a house

29. Why did Michelson and Morley orient light beams at
right angles to each other?
a. To observe the particle nature of light
b. To observe the effect of the passing ether on the

speed of light
c. To obtain a diffraction pattern by combination of

light
d. To obtain a constant path difference for

interference of light

10.2 Consequences of Special Relativity
30. What is the relationship between the binding energy

and the mass defect of an atomic nucleus?
a. The binding energy is the energy equivalent of the

mass defect, as given by E0 = mc.
b. The binding energy is the energy equivalent of the

mass defect, as given by E0 = mc2.
c. The binding energy is the energy equivalent of the

mass defect, as given by
d. The binding energy is the energy equivalent of the

mass defect, as given by

31. True or false—It is possible to just use the relationships
F = ma and E = Fd to show that both sides of the
equation E0 = mc2 have the same units.
a. True
b. False

32. Explain why the special theory of relativity caused the
law of conservation of energy to be modified.
a. The law of conservation of energy is not valid in

relativistic mechanics.
b. The law of conservation of energy has to be

modified because of time dilation.
c. The law of conservation of energy has to be

modified because of length contraction.
d. The law of conservation of energy has to be

modified because of mass-energy equivalence.

33. The sun loses about 4 × 109 kg of mass every second.
Explain in terms of special relativity why this is
happening.
a. The sun loses mass because of its high temperature.
b. The sun loses mass because it is continuously

releasing energy.
c. The Sun loses mass because the diameter of the sun

is contracted.
d. The sun loses mass because the speed of the sun is

very high and close to the speed of light.

Extended Response
10.1 Postulates of Special Relativity
34. Explain how Einstein’s conclusion that nothing can

travel faster than the speed of light contradicts an older
concept about the speed of an object propelled from
another, already moving, object.
a. The older concept is that speeds are subtractive. For

example, if a person throws a ball while running,
the speed of the ball relative to the ground is the

speed at which the person was running minus the
speed of the throw. A relativistic example is when
light is emitted from car headlights, it moves faster
than the speed of light emitted from a stationary
source.

b. The older concept is that speeds are additive. For
example, if a person throws a ball while running,
the speed of the ball relative to the ground is the
speed at which the person was running plus the
speed of the throw. A relativistic example is when
light is emitted from car headlights, it moves no
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faster than the speed of light emitted from a
stationary source. The car's speed does not affect
the speed of light.

c. The older concept is that speeds are multiplicative.
For example, if a person throws a ball while
running, the speed of the ball relative to the ground
is the speed at which the person was running
multiplied by the speed of the throw. A relativistic
example is when light is emitted from car
headlights, it moves no faster than the speed of
light emitted from a stationary source. The car's
speed does not affect the speed of light.

d. The older concept is that speeds are frame
independent. For example, if a person throws a ball
while running, the speed of the ball relative to the
ground has nothing to do with the speed at which
the person was running. A relativistic example is
when light is emitted from car headlights, it moves
no faster than the speed of light emitted from a
stationary source. The car's speed does not affect
the speed of light.

35. A rowboat is drifting downstream. One person swims 20
m toward the shore and back, and another, leaving at
the same time, swims upstream 20 m and back to the
boat. The swimmer who swam toward the shore gets
back first. Explain how this outcome is similar to the
outcome expected in the Michelson–Morley experiment.
a. The rowboat represents Earth, the swimmers are

beams of light, and the water is acting as the ether.
Light going against the current of the ether would
get back later because, by then, Earth would have
moved on.

b. The rowboat represents the beam of light, the
swimmers are the ether, and water is acting as
Earth. Light going against the current of the ether
would get back later because, by then, Earth would
have moved on.

c. The rowboat represents the ether, the swimmers
are ray of light, and the water is acting as the earth.
Light going against the current of the ether would
get back later because, by then, Earth would have
moved on.

d. The rowboat represents the Earth, the swimmers

are the ether, and the water is acting as the rays of
light. Light going against the current of the ether
would get back later because, by then, Earth would
have moved on.

10.2 Consequences of Special Relativity
36. A helium-4 nucleus is made up of two neutrons and two

protons. The binding energy of helium-4 is 4.53×10-12 J.
What is the difference in the mass of this helium
nucleus and the sum of the masses of two neutrons and
two protons? Which weighs more, the nucleus or its
constituents?
a. 1.51×10-20 kg; the constituents weigh more
b. 5.03×10-29 kg; the constituents weigh more
c. 1.51×10-29 kg; the nucleus weighs more
d. 5.03×10-29 kg; the nucleus weighs more

37. Use the equation for length contraction to explain the
relationship between the length of an object perceived
by a stationary observer who sees the object as moving,
and the proper length of the object as measured in the
frame of reference where it is at rest.
a. As the speed v of an object moving with respect to a

stationary observer approaches c, the length
perceived by the observer approaches zero. For
other speeds, the length perceived is always less
than the proper length.

b. As the speed v of an object moving with respect to a
stationary observer approaches c, the length
perceived by the observer approaches zero. For
other speeds, the length perceived is always greater
than the proper length.

c. As the speed v of an object moving with respect to a
stationary observer approaches c, the length
perceived by the observer approaches infinity. For
other speeds, the length perceived is always less
than the proper length.

d. As the speed v of an object moving with respect to a
stationary observer approaches c, the length
perceived by the observer approaches infinity. For
other speeds, the length perceived is always greater
than the proper length.
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INTRODUCTION

CHAPTER 11
Thermal Energy, Heat, and Work

11.1 Temperature and Thermal Energy

11.2 Heat, Specific Heat, and Heat Transfer

11.3 Phase Change and Latent Heat

Heat is something familiar to all of us. We feel the warmth of the summer sun, the hot vapor rising up out of
a cup of hot cocoa, and the cooling effect of our sweat. When we feel warmth, it means that heat is transferring energy to our
bodies; when we feel cold, that means heat is transferring energy away from our bodies. Heat transfer is the movement of
thermal energy from one place or material to another, and is caused by temperature differences. For example, much of our
weather is caused by Earth evening out the temperature across the planet through wind and violent storms, which are driven by
heat transferring energy away from the equator towards the cold poles. In this chapter, we’ll explore the precise meaning of heat,
how it relates to temperature as well as to other forms of energy, and its connection to work.

11.1 Temperature and Thermal Energy
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain that temperature is a measure of internal kinetic energy
• Interconvert temperatures between Celsius, Kelvin, and Fahrenheit scales

Figure 11.1 The welder’s gloves and helmet protect the welder from the electric arc, which transfers enough
thermal energy to melt the rod, spray sparks, and emit high-energy electromagnetic radiation that can burn the
retina of an unprotected eye. The thermal energy can be felt on exposed skin a few meters away, and its light can be
seen for kilometers (Kevin S. O’Brien, U.S. Navy)

Chapter Outline



Section Key Terms

absolute zero Celsius scale degree Celsius thermal energy

degree Fahrenheit Fahrenheit scale heat

kelvin (K) Kelvin scale temperature

Temperature
What is temperature? It’s one of those concepts so ingrained in our everyday lives that, although we know what it means
intuitively, it can be hard to define. It is tempting to say that temperature measures heat, but this is not strictly true. Heat is the
transfer of energy due to a temperature difference. Temperature is defined in terms of the instrument we use to tell us how hot
or cold an object is, based on a mechanism and scale invented by people. Temperature is literally defined as what we measure on
a thermometer.

Heat is often confused with temperature. For example, we may say that the heat was unbearable, when we actually mean that
the temperature was high. This is because we are sensitive to the flow of energy by heat, rather than the temperature. Since heat,
like work, transfers energy, it has the SI unit of joule (J).

Atoms and molecules are constantly in motion, bouncing off one another in random directions. Recall that kinetic energy is the
energy of motion, and that it increases in proportion to velocity squared. Without going into mathematical detail, we can say
that thermal energy—the energy associated with heat—is the average kinetic energy of the particles (molecules or atoms) in a
substance. Faster moving molecules have greater kinetic energies, and so the substance has greater thermal energy, and thus a
higher temperature. The total internal energy of a system is the sum of the kinetic and potential energies of its atoms and
molecules. Thermal energy is one of the subcategories of internal energy, as is chemical energy.

To measure temperature, some scale must be used as a standard of measurement. The three most commonly used temperature
scales are the Fahrenheit, Celsius, and Kelvin scales. Both the Fahrenheit scale and Celsius scale are relative temperature scales,
meaning that they are made around a reference point. For example, the Celsius scale uses the freezing point of water as its
reference point; all measurements are either lower than the freezing point of water by a given number of degrees (and have a
negative sign), or higher than the freezing point of water by a given number of degrees (and have a positive sign). The boiling
point of water is 100 for the Celsius scale, and its unit is the degree Celsius ).

On the Fahrenheit scale, the freezing point of water is at 32 , and the boiling point is at 212 . The unit of temperature on
this scale is the degree Fahrenheit ). Note that the difference in degrees between the freezing and boiling points is greater
for the Fahrenheit scale than for the Celsius scale. Therefore, a temperature difference of one degree Celsius is greater than a
temperature difference of one degree Fahrenheit. Since 100 Celsius degrees span the same range as 180 Fahrenheit degrees, one
degree on the Celsius scale is 1.8 times larger than one degree on the Fahrenheit scale (because ). This
relationship can be used to convert between temperatures in Fahrenheit and Celsius (see Figure 11.2).
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Figure 11.2 Relationships between the Fahrenheit, Celsius, and Kelvin temperature scales, rounded to the nearest degree. The relative

sizes of the scales are also shown.

The Kelvin scale is the temperature scale that is commonly used in science because it is an absolute temperature scale. This
means that the theoretically lowest-possible temperature is assigned the value of zero. Zero degrees on the Kelvin scale is known
as absolute zero; it is theoretically the point at which there is no molecular motion to produce thermal energy. On the original
Kelvin scale first created by Lord Kelvin, all temperatures have positive values, making it useful for scientific work. The official
temperature unit on this scale is the kelvin, which is abbreviated as K. The freezing point of water is 273.15 K, and the boiling
point of water is 373.15 K.

Although absolute zero is possible in theory, it cannot be reached in practice. The lowest temperature ever created and measured
during a laboratory experiment was K, at Helsinki University of Technology in Finland. In comparison, the coldest
recorded temperature for a place on Earth’s surface was 183 K (–89 °C ), at Vostok, Antarctica, and the coldest known place
(outside the lab) in the universe is the Boomerang Nebula, with a temperature of 1 K. Luckily, most of us humans will never have
to experience such extremes.

The average normal body temperature is 98.6 (37.0 ), but people have been known to survive with body temperatures
ranging from 75 to 111 (24 to 44 ).

WATCH PHYSICS

Comparing Celsius and Fahrenheit Temperature Scales
This video shows how the Fahrenheit and Celsius temperature scales compare to one another.

Click to view content (https://www.openstax.org/l/02celfahtemp)

GRASP CHECK
Even without the number labels on the thermometer, you could tell which side is marked Fahrenheit and which is Celsius by
how the degree marks are spaced. Why?
a. The separation between two consecutive divisions on the Fahrenheit scale is greater than a similar separation on the

Celsius scale, because each degree Fahrenheit is equal to degrees Celsius.
b. The separation between two consecutive divisions on the Fahrenheit scale is smaller than the similar separation on the

Celsius scale, because each degree Celsius is equal to degrees Fahrenheit.
c. The separation between two consecutive divisions on the Fahrenheit scale is greater than a similar separation on the

Celsius scale, because each degree Fahrenheit is equal to degrees Celsius.
d. The separation between two consecutive divisions on the Fahrenheit scale is smaller than a similar separation on the

Celsius scale, because each degree Celsius is equal to degrees Fahrenheit.
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Converting Between Celsius, Kelvin, and Fahrenheit Scales
While the Fahrenheit scale is still the most commonly used scale in the United States, the majority of the world uses Celsius, and
scientists prefer Kelvin. It’s often necessary to convert between these scales. For instance, if the TV meteorologist gave the local
weather report in kelvins, there would likely be some confused viewers! Table 11.1 gives the equations for conversion between the
three temperature scales.

To Convert From… Use This Equation

Celsius to Fahrenheit

Fahrenheit to Celsius

Celsius to Kelvin

Kelvin to Celsius

Fahrenheit to Kelvin

Kelvin to Fahrenheit

Table 11.1 Temperature Conversions

WORKED EXAMPLE

Room temperature is generally defined to be 25 (a) What is room temperature in (b) What is it in K?

STRATEGY
To answer these questions, all we need to do is choose the correct conversion equations and plug in the known values.

Solution for (a)
1. Choose the right equation. To convert from to , use the equation

2. Plug the known value into the equation and solve.

Solution for (b)
1. Choose the right equation. To convert from to K, use the equation

2. Plug the known value into the equation and solve.

Discussion
Living in the United States, you are likely to have more of a sense of what the temperature feels like if it’s described as 77 than
as 25 (or 298 K, for that matter).

11.1

11.2

11.3

11.4

330 Chapter 11 • Thermal Energy, Heat, and Work

Access for free at openstax.org.



WORKED EXAMPLE

Converting Between Temperature Scales: The Reaumur Scale
The Reaumur scale is a temperature scale that was used widely in Europe in the 18th and 19th centuries. On the Reaumur
temperature scale, the freezing point of water is 0 and the boiling temperature is 80 If “room temperature” is 25 on
the Celsius scale, what is it on the Reaumur scale?
STRATEGY
To answer this question, we must compare the Reaumur scale to the Celsius scale. The difference between the freezing point and
boiling point of water on the Reaumur scale is 80 . On the Celsius scale, it is 100 . Therefore, 100 . Both
scales start at 0 for freezing, so we can create a simple formula to convert between temperatures on the two scales.

Solution
1. Derive a formula to convert from one scale to the other.

2. Plug the known value into the equation and solve.

Discussion
As this example shows, relative temperature scales are somewhat arbitrary. If you wanted, you could create your own
temperature scale!

Practice Problems
1. What is 12.0 °C in kelvins?

a. 112.0 K
b. 273.2 K
c. 12.0 K
d. 285.2 K

2. What is 32.0 °C in degrees Fahrenheit?
a. 57.6 °F
b. 25.6 °F
c. 305.2 °F
d. 89.6 °F

TIPS FOR SUCCESS
Sometimes it is not so easy to guess the temperature of the air accurately. Why is this? Factors such as humidity and wind
speed affect how hot or cold we feel. Wind removes thermal energy from our bodies at a faster rate than usual, making us
feel colder than we otherwise would; on a cold day, you may have heard the TV weather person refer to the wind chill.
On humid summer days, people tend to feel hotter because sweat doesn’t evaporate from the skin as efficiently as it does on
dry days, when the evaporation of sweat cools us off.

Check Your Understanding
3. What is thermal energy?

a. The thermal energy is the average potential energy of the particles in a system.
b. The thermal energy is the total sum of the potential energies of the particles in a system.
c. The thermal energy is the average kinetic energy of the particles due to the interaction among the particles in a system.
d. The thermal energy is the average kinetic energy of the particles in a system.

4. What is used to measure temperature?

11.5

11.6
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a. a galvanometer
b. a manometer
c. a thermometer
d. a voltmeter

11.2 Heat, Specific Heat, and Heat Transfer
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain heat, heat capacity, and specific heat
• Distinguish between conduction, convection, and radiation
• Solve problems involving specific heat and heat transfer

Section Key Terms

conduction convection heat capacity radiation specific heat

Heat Transfer, Specific Heat, and Heat Capacity
We learned in the previous section that temperature is proportional to the average kinetic energy of atoms and molecules in a
substance, and that the average internal kinetic energy of a substance is higher when the substance’s temperature is higher.

If two objects at different temperatures are brought in contact with each other, energy is transferred from the hotter object (that
is, the object with the greater temperature) to the colder (lower temperature) object, until both objects are at the same
temperature. There is no net heat transfer once the temperatures are equal because the amount of heat transferred from one
object to the other is the same as the amount of heat returned. One of the major effects of heat transfer is temperature change:
Heating increases the temperature while cooling decreases it. Experiments show that the heat transferred to or from a
substance depends on three factors—the change in the substance’s temperature, the mass of the substance, and certain physical
properties related to the phase of the substance.

The equation for heat transfer Q is

where m is the mass of the substance and ΔT is the change in its temperature, in units of Celsius or Kelvin. The symbol c stands
for specific heat, and depends on the material and phase. The specific heat is the amount of heat necessary to change the
temperature of 1.00 kg of mass by 1.00 ºC. The specific heat c is a property of the substance; its SI unit is J/(kg K) or J/(kg ).
The temperature change ( ) is the same in units of kelvins and degrees Celsius (but not degrees Fahrenheit). Specific heat is
closely related to the concept of heat capacity. Heat capacity is the amount of heat necessary to change the temperature of a
substance by 1.00 . In equation form, heat capacity C is , where m is mass and c is specific heat. Note that heat
capacity is the same as specific heat, but without any dependence on mass. Consequently, two objects made up of the same
material but with different masses will have different heat capacities. This is because the heat capacity is a property of an object,
but specific heat is a property of any object made of the same material.

Values of specific heat must be looked up in tables, because there is no simple way to calculate them. Table 11.2 gives the values
of specific heat for a few substances as a handy reference. We see from this table that the specific heat of water is five times that
of glass, which means that it takes five times as much heat to raise the temperature of 1 kg of water than to raise the temperature
of 1 kg of glass by the same number of degrees.

Substances Specific Heat (c)

Solids J/(kg )

Aluminum 900

Table 11.2 Specific Heats of Various Substances.

11.7
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Substances Specific Heat (c)

Asbestos 800

Concrete, granite (average) 840

Copper 387

Glass 840

Gold 129

Human body (average) 3500

Ice (average) 2090

Iron, steel 452

Lead 128

Silver 235

Wood 1700

Liquids

Benzene 1740

Ethanol 2450

Glycerin 2410

Mercury 139

Water 4186

Gases (at 1 atm constant pressure)

Air (dry) 1015

Ammonia 2190

Carbon dioxide 833

Nitrogen 1040

Oxygen 913

Steam 2020

Table 11.2 Specific Heats of Various Substances.
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Conduction, Convection, and Radiation
Whenever there is a temperature difference, heat transfer occurs. Heat transfer may happen rapidly, such as through a cooking
pan, or slowly, such as through the walls of an insulated cooler.

There are three different heat transfer methods: conduction, convection, and radiation. At times, all three may happen
simultaneously. See Figure 11.3.

Snap Lab

Temperature Change of Land and Water
What heats faster, land or water? You will answer this question by taking measurements to study differences in specific heat
capacity.

• Open flame—Tie back all loose hair and clothing before igniting an open flame. Follow all of your teacher's instructions
on how to ignite the flame. Never leave an open flame unattended. Know the location of fire safety equipment in the
laboratory.

• Sand or soil
• Water
• Oven or heat lamp
• Two small jars
• Two thermometers

Instructions

Procedure
1. Place equal masses of dry sand (or soil) and water at the same temperature into two small jars. (The average density of

soil or sand is about 1.6 times that of water, so you can get equal masses by using 50 percent more water by volume.)
2. Heat both substances (using an oven or a heat lamp) for the same amount of time.
3. Record the final temperatures of the two masses.
4. Now bring both jars to the same temperature by heating for a longer period of time.
5. Remove the jars from the heat source and measure their temperature every 5 minutes for about 30 minutes.

GRASP CHECK
Did it take longer to heat the water or the sand/soil to the same temperature? Which sample took longer to cool? What
does this experiment tell us about how the specific heat of water compared to the specific heat of land?
a. The sand/soil will take longer to heat as well as to cool. This tells us that the specific heat of land is greater than that

of water.
b. The sand/soil will take longer to heat as well as to cool. This tells us that the specific heat of water is greater than

that of land.
c. The water will take longer to heat as well as to cool. This tells us that the specific heat of land is greater than that of

water.
d. The water will take longer to heat as well as to cool. This tells us that the specific heat of water is greater than that of

land.

334 Chapter 11 • Thermal Energy, Heat, and Work

Access for free at openstax.org.



Figure 11.3 In a fireplace, heat transfer occurs by all three methods: conduction, convection, and radiation. Radiation is responsible for

most of the heat transferred into the room. Heat transfer also occurs through conduction into the room, but at a much slower rate. Heat

transfer by convection also occurs through cold air entering the room around windows and hot air leaving the room by rising up the

chimney.

Conduction is heat transfer through direct physical contact. Heat transferred between the electric burner of a stove and the
bottom of a pan is transferred by conduction. Sometimes, we try to control the conduction of heat to make ourselves more
comfortable. Since the rate of heat transfer is different for different materials, we choose fabrics, such as a thick wool sweater,
that slow down the transfer of heat away from our bodies in winter.

As you walk barefoot across the living room carpet, your feet feel relatively comfortable…until you step onto the kitchen’s tile
floor. Since the carpet and tile floor are both at the same temperature, why does one feel colder than the other? This is explained
by different rates of heat transfer: The tile material removes heat from your skin at a greater rate than the carpeting, which
makes it feel colder.

Some materials simply conduct thermal energy faster than others. In general, metals (like copper, aluminum, gold, and silver)
are good heat conductors, whereas materials like wood, plastic, and rubber are poor heat conductors.

Figure 11.4 shows particles (either atoms or molecules) in two bodies at different temperatures. The (average) kinetic energy of a
particle in the hot body is higher than in the colder body. If two particles collide, energy transfers from the particle with greater
kinetic energy to the particle with less kinetic energy. When two bodies are in contact, many particle collisions occur, resulting
in a net flux of heat from the higher-temperature body to the lower-temperature body. The heat flux depends on the
temperature difference . Therefore, you will get a more severe burn from boiling water than from hot tap
water.

Figure 11.4 The particles in two bodies at different temperatures have different average kinetic energies. Collisions occurring at the contact

surface tend to transfer energy from high-temperature regions to low-temperature regions. In this illustration, a particle in the lower-

temperature region (right side) has low kinetic energy before collision, but its kinetic energy increases after colliding with the contact
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surface. In contrast, a particle in the higher-temperature region (left side) has more kinetic energy before collision, but its energy decreases

after colliding with the contact surface.

Convection is heat transfer by the movement of a fluid. This type of heat transfer happens, for example, in a pot boiling on the
stove, or in thunderstorms, where hot air rises up to the base of the clouds.

TIPS FOR SUCCESS
In everyday language, the term fluid is usually taken to mean liquid. For example, when you are sick and the doctor tells you
to “push fluids,” that only means to drink more beverages—not to breath more air. However, in physics, fluid means a liquid
or a gas. Fluids move differently than solid material, and even have their own branch of physics, known as fluid dynamics,
that studies how they move.

As the temperature of fluids increase, they expand and become less dense. For example, Figure 11.4 could represent the wall of a
balloon with different temperature gases inside the balloon than outside in the environment. The hotter and thus faster moving
gas particles inside the balloon strike the surface with more force than the cooler air outside, causing the balloon to expand. This
decrease in density relative to its environment creates buoyancy (the tendency to rise). Convection is driven by buoyancy—hot
air rises because it is less dense than the surrounding air.

Sometimes, we control the temperature of our homes or ourselves by controlling air movement. Sealing leaks around doors with
weather stripping keeps out the cold wind in winter. The house in Figure 11.5 and the pot of water on the stove in Figure 11.6 are
both examples of convection and buoyancy by human design. Ocean currents and large-scale atmospheric circulation transfer
energy from one part of the globe to another, and are examples of natural convection.

Figure 11.5 Air heated by the so-called gravity furnace expands and rises, forming a convective loop that transfers energy to other parts of

the room. As the air is cooled at the ceiling and outside walls, it contracts, eventually becoming denser than room air and sinking to the

floor. A properly designed heating system like this one, which uses natural convection, can be quite efficient in uniformly heating a home.

Figure 11.6 Convection plays an important role in heat transfer inside this pot of water. Once conducted to the inside fluid, heat transfer to

other parts of the pot is mostly by convection. The hotter water expands, decreases in density, and rises to transfer heat to other regions of

the water, while colder water sinks to the bottom. This process repeats as long as there is water in the pot.

Radiation is a form of heat transfer that occurs when electromagnetic radiation is emitted or absorbed. Electromagnetic
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radiation includes radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays, all
of which have different wavelengths and amounts of energy (shorter wavelengths have higher frequency and more energy).

You can feel the heat transfer from a fire and from the sun. Similarly, you can sometimes tell that the oven is hot without
touching its door or looking inside—it may just warm you as you walk by. Another example is thermal radiation from the human
body; people are constantly emitting infrared radiation, which is not visible to the human eye, but is felt as heat.

Radiation is the only method of heat transfer where no medium is required, meaning that the heat doesn’t need to come into
direct contact with or be transported by any matter. The space between Earth and the sun is largely empty, without any
possibility of heat transfer by convection or conduction. Instead, heat is transferred by radiation, and Earth is warmed as it
absorbs electromagnetic radiation emitted by the sun.

Figure 11.7 Most of the heat transfer from this fire to the observers is through infrared radiation. The visible light transfers relatively little

thermal energy. Since skin is very sensitive to infrared radiation, you can sense the presence of a fire without looking at it directly. (Daniel X.

O’Neil)

All objects absorb and emit electromagnetic radiation (see Figure 11.7). The rate of heat transfer by radiation depends mainly on
the color of the object. Black is the most effective absorber and radiator, and white is the least effective. People living in hot
climates generally avoid wearing black clothing, for instance. Similarly, black asphalt in a parking lot will be hotter than
adjacent patches of grass on a summer day, because black absorbs better than green. The reverse is also true—black radiates
better than green. On a clear summer night, the black asphalt will be colder than the green patch of grass, because black radiates
energy faster than green. In contrast, white is a poor absorber and also a poor radiator. A white object reflects nearly all
radiation, like a mirror.

Virtual Physics

Energy Forms and Changes
Click to view content (http://www.openstax.org/l/28energyForms)
In this animation, you will explore heat transfer with different materials. Experiment with heating and cooling the iron,
brick, and water. This is done by dragging and dropping the object onto the pedestal and then holding the lever either to
Heat or Cool. Drag a thermometer beside each object to measure its temperature—you can watch how quickly it heats or
cools in real time.

Now let’s try transferring heat between objects. Heat the brick and then place it in the cool water. Now heat the brick again,
but then place it on top of the iron. What do you notice?

Selecting the fast forward option lets you speed up the heat transfers, to save time.

GRASP CHECK
Compare how quickly the different materials are heated or cooled. Based on these results, what material do you think
has the greatest specific heat? Why? Which has the smallest specific heat? Can you think of a real-world situation where
you would want to use an object with large specific heat?
a. Water will take the longest, and iron will take the shortest time to heat, as well as to cool. Objects with greater

specific heat would be desirable for insulation. For instance, woolen clothes with large specific heat would prevent
heat loss from the body.
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Solving Heat Transfer Problems

WORKED EXAMPLE

Calculating the Required Heat: Heating Water in an Aluminum Pan
A 0.500 kg aluminum pan on a stove is used to heat 0.250 L of water from 20.0 to 80.0 . (a) How much heat is required?
What percentage of the heat is used to raise the temperature of (b) the pan and (c) the water?
STRATEGY
The pan and the water are always at the same temperature. When you put the pan on the stove, the temperature of the water and
the pan is increased by the same amount. We use the equation for heat transfer for the given temperature change and masses of
water and aluminum. The specific heat values for water and aluminum are given in the previous table.

Solution to (a)
Because the water is in thermal contact with the aluminum, the pan and the water are at the same temperature.

1. Calculate the temperature difference.

2. Calculate the mass of water using the relationship between density, mass, and volume. Density is mass per unit volume, or
. Rearranging this equation, solve for the mass of water.

3. Calculate the heat transferred to the water. Use the specific heat of water in the previous table.

4. Calculate the heat transferred to the aluminum. Use the specific heat for aluminum in the previous table.

5. Find the total transferred heat.

Solution to (b)
The percentage of heat going into heating the pan is

Solution to (c)
The percentage of heat going into heating the water is

Discussion
In this example, most of the total heat transferred is used to heat the water, even though the pan has twice as much mass. This is

b. Water will take the shortest, and iron will take the longest time to heat, as well as to cool. Objects with greater
specific heat would be desirable for insulation. For instance, woolen clothes with large specific heat would prevent
heat loss from the body.

c. Brick will take shortest and iron will take longest time to heat up as well as to cool down. Objects with greater
specific heat would be desirable for insulation. For instance, woolen clothes with large specific heat would prevent
heat loss from the body.

d. Water will take shortest and brick will take longest time to heat up as well as to cool down. Objects with greater
specific heat would be desirable for insulation. For instance, woolen clothes with large specific heat would prevent
heat loss from the body.
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because the specific heat of water is over four times greater than the specific heat of aluminum. Therefore, it takes a bit more
than twice as much heat to achieve the given temperature change for the water than for the aluminum pan.

Water can absorb a tremendous amount of energy with very little resulting temperature change. This property of water allows
for life on Earth because it stabilizes temperatures. Other planets are less habitable because wild temperature swings make for a
harsh environment. You may have noticed that climates closer to large bodies of water, such as oceans, are milder than climates
landlocked in the middle of a large continent. This is due to the climate-moderating effect of water’s large heat capacity—water
stores large amounts of heat during hot weather and releases heat gradually when it’s cold outside.

WORKED EXAMPLE

Calculating Temperature Increase: Truck Brakes Overheat on Downhill Runs
When a truck headed downhill brakes, the brakes must do work to convert the gravitational potential energy of the truck to
internal energy of the brakes. This conversion prevents the gravitational potential energy from being converted into kinetic
energy of the truck, and keeps the truck from speeding up and losing control. The increased internal energy of the brakes raises
their temperature. When the hill is especially steep, the temperature increase may happen too quickly and cause the brakes to
overheat.
Calculate the temperature increase of 100 kg of brake material with an average specific heat of 800 J/kg from a 10,000 kg
truck descending 75.0 m (in vertical displacement) at a constant speed.

STRATEGY
We first calculate the gravitational potential energy (Mgh) of the truck, and then find the temperature increase produced in the
brakes.

Solution
1. Calculate the change in gravitational potential energy as the truck goes downhill.

2. Calculate the temperature change from the heat transferred by rearranging the equation to solve for

where m is the mass of the brake material (not the entire truck). Insert the values Q = 7.35×106 J (since the heat transfer is
equal to the change in gravitational potential energy), m 100 kg, and c 800 J/kg to find

Discussion
This temperature is close to the boiling point of water. If the truck had been traveling for some time, then just before the
descent, the brake temperature would likely be higher than the ambient temperature. The temperature increase in the descent
would likely raise the temperature of the brake material above the boiling point of water, which would be hard on the brakes.
This is why truck drivers sometimes use a different technique for called “engine braking” to avoid burning their brakes during
steep descents. Engine braking is using the slowing forces of an engine in low gear rather than brakes to slow down.
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Practice Problems
5. How much heat does it take to raise the temperature of 10.0 kg of water by 1.0 °C ?

a. 84 J
b. 42 J
c. 84 kJ
d. 42 kJ

6. Calculate the change in temperature of 1.0 kg of water that is initially at room temperature if 3.0 kJ of heat is added.
a. 358 °C
b. 716 °C
c. 0.36 °C
d. 0.72 °C

Check Your Understanding
7. What causes heat transfer?

a. The mass difference between two objects causes heat transfer.
b. The density difference between two objects causes heat transfer.
c. The temperature difference between two systems causes heat transfer.
d. The pressure difference between two objects causes heat transfer.

8. When two bodies of different temperatures are in contact, what is the overall direction of heat transfer?
a. The overall direction of heat transfer is from the higher-temperature object to the lower-temperature object.
b. The overall direction of heat transfer is from the lower-temperature object to the higher-temperature object.
c. The direction of heat transfer is first from the lower-temperature object to the higher-temperature object, then back

again to the lower-temperature object, and so-forth, until the objects are in thermal equilibrium.
d. The direction of heat transfer is first from the higher-temperature object to the lower-temperature object, then back

again to the higher-temperature object, and so-forth, until the objects are in thermal equilibrium.

9. What are the different methods of heat transfer?
a. conduction, radiation, and reflection
b. conduction, reflection, and convection
c. convection, radiation, and reflection
d. conduction, radiation, and convection

10. True or false—Conduction and convection cannot happen simultaneously
a. True
b. False

11.3 Phase Change and Latent Heat
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain changes in heat during changes of state, and describe latent heats of fusion and vaporization
• Solve problems involving thermal energy changes when heating and cooling substances with phase changes

Section Key Terms

condensation freezing latent heat sublimation

latent heat of fusion latent heat of vaporization melting vaporization

phase change phase diagram plasma
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Phase Changes
So far, we have learned that adding thermal energy by heat increases the temperature of a substance. But surprisingly, there are
situations where adding energy does not change the temperature of a substance at all! Instead, the additional thermal energy
acts to loosen bonds between molecules or atoms and causes a phase change. Because this energy enters or leaves a system
during a phase change without causing a temperature change in the system, it is known as latent heat (latent means hidden).

The three phases of matter that you frequently encounter are solid, liquid and gas (see Figure 11.8). Solid has the least energetic
state; atoms in solids are in close contact, with forces between them that allow the particles to vibrate but not change position
with neighboring particles. (These forces can be thought of as springs that can be stretched or compressed, but not easily
broken.)

Liquid has a more energetic state, in which particles can slide smoothly past one another and change neighbors, although they
are still held together by their mutual attraction.

Gas has a more energetic state than liquid, in which particles are broken free of their bonds. Particles in gases are separated by
distances that are large compared with the size of the particles.

The most energetic state of all is plasma. Although you may not have heard much about plasma, it is actually the most common
state of matter in the universe—stars are made up of plasma, as is lightning. The plasma state is reached by heating a gas to the
point where particles are pulled apart, separating the electrons from the rest of the particle. This produces an ionized gas that is
a combination of the negatively charged free electrons and positively charged ions, known as plasma.

Figure 11.8 (a) Particles in a solid always have the same neighbors, held close by forces represented here by springs. These particles are

essentially in contact with one another. A rock is an example of a solid. This rock retains its shape because of the forces holding its atoms or

molecules together. (b) Particles in a liquid are also in close contact but can slide over one another. Forces between them strongly resist

attempts to push them closer together and also hold them in close contact. Water is an example of a liquid. Water can flow, but it also

remains in an open container because of the forces between its molecules. (c) Particles in a gas are separated by distances that are

considerably larger than the size of the particles themselves, and they move about freely. A gas must be held in a closed container to

prevent it from moving out into its surroundings. (d) The atmosphere is ionized in the extreme heat of a lightning strike.

During a phase change, matter changes from one phase to another, either through the addition of energy by heat and the
transition to a more energetic state, or from the removal of energy by heat and the transition to a less energetic state.

Phase changes to a more energetic state include the following:

• Melting—Solid to liquid
• Vaporization—Liquid to gas (included boiling and evaporation)
• Sublimation—Solid to gas

Phase changes to a less energetic state are as follows:

• Condensation—Gas to liquid
• Freezing—Liquid to solid

Energy is required to melt a solid because the bonds between the particles in the solid must be broken. Since the energy involved
in a phase changes is used to break bonds, there is no increase in the kinetic energies of the particles, and therefore no rise in
temperature. Similarly, energy is needed to vaporize a liquid to overcome the attractive forces between particles in the liquid.
There is no temperature change until a phase change is completed. The temperature of a cup of soda and ice that is initially at 0

stays at 0 until all of the ice has melted. In the reverse of these processes—freezing and condensation—energy is released
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from the latent heat (see Figure 11.9).

Figure 11.9 (a) Energy is required to partially overcome the attractive forces between particles in a solid to form a liquid. That same energy

must be removed for freezing to take place. (b) Particles are separated by large distances when changing from liquid to vapor, requiring

significant energy to overcome molecular attraction. The same energy must be removed for condensation to take place. There is no

temperature change until a phase change is completed. (c) Enough energy is added that the liquid state is skipped over completely as a

substance undergoes sublimation.

The heat, Q, required to change the phase of a sample of mass m is

(for melting/freezing),

(for vaporization/condensation),

where is the latent heat of fusion, and is the latent heat of vaporization. The latent heat of fusion is the amount of heat
needed to cause a phase change between solid and liquid. The latent heat of vaporization is the amount of heat needed to cause a
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phase change between liquid and gas. and are coefficients that vary from substance to substance, depending on the
strength of intermolecular forces, and both have standard units of J/kg. See Table 11.3 for values of and of different
substances.

Substance Melting Point ( ) Lf (kJ/kg) Boiling Point ( ) Lv (kJ/kg)

Helium ‒269.7 5.23 ‒268.9 20.9

Hydrogen ‒259.3 58.6 ‒252.9 452

Nitrogen ‒210.0 25.5 ‒195.8 201

Oxygen ‒218.8 13.8 ‒183.0 213

Ethanol ‒114 104 78.3 854

Ammonia ‒78 332 ‒33.4 1370

Mercury ‒38.9 11.8 357 272

Water 0.00 334 100.0 2256

Sulfur 119 38.1 444.6 326

Lead 327 24.5 1750 871

Antimony 631 165 1440 561

Aluminum 660 380 2520 11400

Silver 961 88.3 2193 2336

Gold 1063 64.5 2660 1578

Copper 1083 134 2595 5069

Uranium 1133 84 3900 1900

Tungsten 3410 184 5900 4810

Table 11.3 Latent Heats of Fusion and Vaporization, along with Melting and Boiling Points

Let’s consider the example of adding heat to ice to examine its transitions through all three phases—solid to liquid to gas. A
phase diagram indicating the temperature changes of water as energy is added is shown in Figure 11.10. The ice starts out at −20

, and its temperature rises linearly, absorbing heat at a constant rate until it reaches 0 Once at this temperature, the ice
gradually melts, absorbing 334 kJ/kg. The temperature remains constant at 0 during this phase change. Once all the ice has
melted, the temperature of the liquid water rises, absorbing heat at a new constant rate. At 100 , the water begins to boil and
the temperature again remains constant while the water absorbs 2256 kJ/kg during this phase change. When all the liquid has
become steam, the temperature rises again at a constant rate.
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Figure 11.10 A graph of temperature versus added energy. The system is constructed so that no vapor forms while ice warms to become

liquid water, and so when vaporization occurs, the vapor remains in the system. The long stretches of constant temperature values at 0

and 100 reflect the large latent heats of melting and vaporization, respectively.

We have seen that vaporization requires heat transfer to a substance from its surroundings. Condensation is the reverse
process, where heat in transferred away from a substance to its surroundings. This release of latent heat increases the
temperature of the surroundings. Energy must be removed from the condensing particles to make a vapor condense. This is why
condensation occurs on cold surfaces: the heat transfers energy away from the warm vapor to the cold surface. The energy is
exactly the same as that required to cause the phase change in the other direction, from liquid to vapor, and so it can be
calculated from . Latent heat is also released into the environment when a liquid freezes, and can be calculated from

.

FUN IN PHYSICS

Making Ice Cream

Figure 11.11 With the proper ingredients, some ice and a couple of plastic bags, you could make your own ice cream in five minutes.

(ElinorD, Wikimedia Commons)

Ice cream is certainly easy enough to buy at the supermarket, but for the hardcore ice cream enthusiast, that may not be
satisfying enough. Going through the process of making your own ice cream lets you invent your own flavors and marvel at the
physics firsthand (Figure 11.11).

The first step to making homemade ice cream is to mix heavy cream, whole milk, sugar, and your flavor of choice; it could be as
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simple as cocoa powder or vanilla extract, or as fancy as pomegranates or pistachios.

The next step is to pour the mixture into a container that is deep enough that you will be able to churn the mixture without it
spilling over, and that is also freezer-safe. After placing it in the freezer, the ice cream has to be stirred vigorously every 45
minutes for four to five hours. This slows the freezing process and prevents the ice cream from turning into a solid block of ice.
Most people prefer a soft creamy texture instead of one giant popsicle.

As it freezes, the cream undergoes a phase change from liquid to solid. By now, we’re experienced enough to know that this
means that the cream must experience a loss of heat. Where does that heat go? Due to the temperature difference between the
freezer and the ice cream mixture, heat transfers thermal energy from the ice cream to the air in the freezer. Once the
temperature in the freezer rises enough, the freezer is cooled by pumping excess heat outside into the kitchen.

A faster way to make ice cream is to chill it by placing the mixture in a plastic bag, surrounded by another plastic bag half full of
ice. (You can also add a teaspoon of salt to the outer bag to lower the temperature of the ice/salt mixture.) Shaking the bag for
five minutes churns the ice cream while cooling it evenly. In this case, the heat transfers energy out of the ice cream mixture and
into the ice during the phase change.

This video (http://www.openstax.org/l/28icecream) gives a demonstration of how to make home-made ice cream using ice and
plastic bags.

GRASP CHECK
Why does the ice bag method work so much faster than the freezer method for making ice cream?
a. Ice has a smaller specific heat than the surrounding air in a freezer. Hence, it absorbs more energy from the ice-cream

mixture.
b. Ice has a smaller specific heat than the surrounding air in a freezer. Hence, it absorbs less energy from the ice-cream

mixture.
c. Ice has a greater specific heat than the surrounding air in a freezer. Hence, it absorbs more energy from the ice-cream

mixture.
d. Ice has a greater specific heat than the surrounding air in a freezer. Hence, it absorbs less energy from the ice-cream

mixture.

Solving Thermal Energy Problems with Phase Changes

WORKED EXAMPLE

Calculating Heat Required for a Phase Change
Calculate a) how much energy is needed to melt 1.000 kg of ice at 0 (freezing point), and b) how much energy is required to
vaporize 1.000 kg of water at 100 (boiling point).
STRATEGY FOR (A)
Using the equation for the heat required for melting, and the value of the latent heat of fusion of water from the previous table,
we can solve for part (a).

Solution to (a)
The energy to melt 1.000 kg of ice is

STRATEGY FOR (B)
To solve part (b), we use the equation for heat required for vaporization, along with the latent heat of vaporization of water from
the previous table.

Solution to (b)
The energy to vaporize 1.000 kg of liquid water is

11.18
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Discussion
The amount of energy need to melt a kilogram of ice (334 kJ) is the same amount of energy needed to raise the temperature of
1.000 kg of liquid water from 0 to 79.8 . This example shows that the energy for a phase change is enormous compared to
energy associated with temperature changes. It also demonstrates that the amount of energy needed for vaporization is even
greater.

WORKED EXAMPLE

Calculating Final Temperature from Phase Change: Cooling Soda with Ice Cubes
Ice cubes are used to chill a soda at 20 and with a mass of . The ice is at 0 and the total mass of the ice
cubes is 0.018 kg. Assume that the soda is kept in a foam container so that heat loss can be ignored, and that the soda has the
same specific heat as water. Find the final temperature when all of the ice has melted.
STRATEGY
The ice cubes are at the melting temperature of 0 . Heat is transferred from the soda to the ice for melting. Melting of ice
occurs in two steps: first, the phase change occurs and solid (ice) transforms into liquid water at the melting temperature; then,
the temperature of this water rises. Melting yields water at 0 , so more heat is transferred from the soda to this water until
they are the same temperature. Since the amount of heat leaving the soda is the same as the amount of heat transferred to the
ice.

The heat transferred to the ice goes partly toward the phase change (melting), and partly toward raising the temperature after
melting. Recall from the last section that the relationship between heat and temperature change is . For the ice, the
temperature change is . The total heat transferred to the ice is therefore

Since the soda doesn’t change phase, but only temperature, the heat given off by the soda is

Since ,

Bringing all terms involving to the left-hand-side of the equation, and all other terms to the right-hand-side, we can solve for
.

Substituting the known quantities

Discussion
This example shows the enormous energies involved during a phase change. The mass of the ice is about 7 percent the mass of
the soda, yet it causes a noticeable change in the soda’s temperature.

TIPS FOR SUCCESS
If the ice were not already at the freezing point, we would also have to factor in how much energy would go into raising its
temperature up to 0 , before the phase change occurs. This would be a realistic scenario, because the temperature of ice is
often below 0 .
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Practice Problems
11. How much energy is needed to melt 2.00 kg of ice at 0 °C ?

a. 334 kJ
b. 336 kJ
c. 167 kJ
d. 668 kJ

12. If of energy is just enough to melt of a substance, what is the substance’s latent heat of fusion?
a.
b.
c.
d.

Check Your Understanding
13. What is latent heat?

a. It is the heat that must transfer energy to or from a system in order to cause a mass change with a slight change in the
temperature of the system.

b. It is the heat that must transfer energy to or from a system in order to cause a mass change without a temperature
change in the system.

c. It is the heat that must transfer energy to or from a system in order to cause a phase change with a slight change in the
temperature of the system.

d. It is the heat that must transfer energy to or from a system in order to cause a phase change without a temperature
change in the system.

14. In which phases of matter are molecules capable of changing their positions?
a. gas, liquid, solid
b. liquid, plasma, solid
c. liquid, gas, plasma
d. plasma, gas, solid
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KEY TERMS
absolute zero lowest possible temperature; the

temperature at which all molecular motion ceases
Celsius scale temperature scale in which the freezing point

of water is 0 and the boiling point of water is 100
at 1 atm of pressure

condensation phase change from gas to liquid
conduction heat transfer through stationary matter by

physical contact
convection heat transfer by the movement of fluid
degree Celsius unit on the Celsius temperature scale
degree Fahrenheit unit on the Fahrenheit temperature

scale
Fahrenheit scale temperature scale in which the freezing

point of water is 32 and the boiling point of water is
212

freezing phase change from liquid to solid
heat transfer of thermal (or internal) energy due to a

temperature difference
heat capacity amount of heat necessary to change the

temperature of a substance by 1.00
Kelvin unit on the Kelvin temperature scale; note that it is

never referred to in terms of “degrees” Kelvin

Kelvin scale temperature scale in which 0 K is the lowest
possible temperature, representing absolute zero

latent heat heat related to the phase change of a substance
rather than a change of temperature

latent heat of fusion amount of heat needed to cause a
phase change between solid and liquid

latent heat of vaporization amount of heat needed to cause
a phase change between liquid and gas

melting phase change from solid to liquid
phase change transition between solid, liquid, or gas states

of a substance
plasma ionized gas that is a combination of the negatively

charged free electrons and positively charged ions
radiation energy transferred by electromagnetic waves
specific heat amount of heat necessary to change the

temperature of 1.00 kg of a substance by 1.00
sublimation phase change from solid to gas
temperature quantity measured by a thermometer
thermal energy average random kinetic energy of a

molecule or an atom
vaporization phase change from liquid to gas

SECTION SUMMARY
11.1 Temperature and Thermal
Energy

• Temperature is the quantity measured by a
thermometer.

• Temperature is related to the average kinetic energy of
atoms and molecules in a system.

• Absolute zero is the temperature at which there is no
molecular motion.

• There are three main temperature scales: Celsius,
Fahrenheit, and Kelvin.

• Temperatures on one scale can be converted into
temperatures on another scale.

11.2 Heat, Specific Heat, and Heat
Transfer

• Heat is thermal (internal) energy transferred due to a
temperature difference.

• The transfer of heat Q that leads to a change in the
temperature of a body with mass m is ,
where c is the specific heat of the material.

• Heat is transferred by three different methods:

conduction, convection, and radiation.
• Heat conduction is the transfer of heat between two

objects in direct contact with each other.
• Convection is heat transfer by the movement of mass.
• Radiation is heat transfer by electromagnetic waves.

11.3 Phase Change and Latent
Heat

• Most substances have four distinct phases: solid, liquid,
gas, and plasma.

• Gas is the most energetic state and solid is the least.
• During a phase change, a substance undergoes

transition to a higher energy state when heat is added,
or to a lower energy state when heat is removed.

• Heat is added to a substance during melting and
vaporization.

• Latent heat is released by a substance during
condensation and freezing.

• Phase changes occur at fixed temperatures called
boiling and freezing (or melting) points for a given
substance.
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KEY EQUATIONS
11.1 Temperature and Thermal
Energy

Celsius to
Fahrenheit
conversion

Fahrenheit to
Celsius conversion

Celsius to Kelvin
conversion

Kelvin to Celsius
conversion

Fahrenheit to Kelvin
conversion

Kelvin to Fahrenheit
conversion

11.2 Heat, Specific Heat, and Heat
Transfer

heat transfer

density

11.3 Phase Change and Latent
Heat

heat transfer for melting/freezing phase
change

heat transfer for vaporization/
condensation phase change

CHAPTER REVIEW
Concept Items
11.1 Temperature and Thermal Energy
1. A glass of water has a temperature of 31 degrees Celsius.

What state of matter is it in?
a. solid
b. liquid
c. gas
d. plasma

2. What is the difference between thermal energy and
internal energy?
a. The thermal energy of the system is the average

kinetic energy of the system’s constituent particles
due to their motion. The total internal energy of the
system is the sum of the kinetic energies and the
potential energies of its constituent particles.

b. The thermal energy of the system is the average
potential energy of the system’s constituent particles
due to their motion. The total internal energy of the
system is the sum of the kinetic energies and the
potential energies of its constituent particles.

c. The thermal energy of the system is the average
kinetic energy of the system’s constituent particles
due to their motion. The total internal energy of the
system is the sum of the kinetic energies of its

constituent particles.
d. The thermal energy of the system is the average

potential energy of the systems’ constituent
particles due to their motion. The total internal
energy of the system is the sum of the kinetic
energies of its constituent particles.

3. What does the Celsius scale use as a reference point?
a. The boiling point of mercury
b. The boiling point of wax
c. The freezing point of water
d. The freezing point of wax

11.2 Heat, Specific Heat, and Heat
Transfer
4. What are the SI units of specific heat?

a.
b.
c.
d.

5. What is radiation?
a. The transfer of energy through emission and

absorption of the electromagnetic waves is known as
radiation.

b. The transfer of energy without any direct physical
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contact between any two substances.
c. The transfer of energy through direct physical

contact between any two substances.
d. The transfer of energy by means of the motion of

fluids at different temperatures and with different
densities.

11.3 Phase Change and Latent Heat
6. Why is there no change in temperature during a phase

change, even if energy is absorbed by the system?
a. The energy is used to break bonds between particles,

and so does not increase the potential energy of the
system’s particles.

b. The energy is used to break bonds between particles,

and so increases the potential energy of the system’s
particles.

c. The energy is used to break bonds between particles,
and so does not increase the kinetic energy of the
system’s particles.

d. The energy is used to break bonds between particles,
and so increases the kinetic energy of the system’s
particles.

7. In which two phases of matter do atoms and molecules
have the most distance between them?
a. gas and solid
b. gas and liquid
c. gas and plasma
d. liquid and plasma

Critical Thinking Items
11.1 Temperature and Thermal Energy
8. The temperature of two equal quantities of water needs

to be raised - the first container by degrees Celsius and
the second by degrees Fahrenheit. Which one would
require more heat?
a. The heat required by the first container is more than

the second because each degree Celsius is equal to
degrees Fahrenheit.

b. The heat required by the first container is less than
the second because each degree Fahrenheit is equal
to degrees Celsius.

c. The heat required by the first container is more than
the second because each degree Celsius is equal to

degrees Fahrenheit.
d. The heat required by the first container is less than

the second because each degree Fahrenheit is equal
to degrees Celsius.

9. What is 100.00 °C in kelvins?
a. 212.00 K
b. 100.00 K
c. 473.15 K
d. 373.15 K

11.2 Heat, Specific Heat, and Heat
Transfer
10. The value of specific heat is the same whether the units

are J/kg⋅K or J/kg⋅ºC. How?
a. Temperature difference is dependent on the chosen

temperature scale.
b. Temperature change is different in units of kelvins

and degrees Celsius.
c. Reading of temperatures in kelvins and degree

Celsius are the same.

d. The temperature change is the same in units of
kelvins and degrees Celsius.

11. If the thermal energy of a perfectly black object is
increased by conduction, will the object remain black in
appearance? Why or why not?
a. No, the energy of the radiation increases as the

temperature increases, and the radiation becomes
visible at certain temperatures.

b. Yes, the energy of the radiation decreases as the
temperature increases, and the radiation remains
invisible at those energies.

c. No, the energy of the radiation decreases as the
temperature increases, until the frequencies of the
radiation are the same as those of visible light.

d. Yes, as the temperature increases, and the energy is
transferred from the object by other mechanisms
besides radiation, so that the energy of the
radiation does not increase.

12. What is the specific heat of a substance that requires
5.00 kJ of heat to raise the temperature of 3.00 kg by
5.00 °F?
a. 3.33×103 J/kg ⋅° C
b. 6.00×103 J/kg ⋅° C
c. 3.33×102 J/kg ⋅ ° C
d. 6.00×102 J/kg ⋅ ° C

11.3 Phase Change and Latent Heat
13. Assume 1.0 kg of ice at 0 °C starts to melt. It absorbs 300

kJ of energy by heat. What is the temperature of the
water afterwards?
a. 10 °C
b. 20 °C
c. 5 °C
d. 0 °C
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Problems
11.1 Temperature and Thermal Energy
14. What is 35.0 °F in kelvins?

a. 1.67 K
b. 35.0 K
c. -271.5 K
d. 274.8 K

15. Design a temperature scale where the freezing point of
water is 0 degrees and its boiling point is 70 degrees.
What would be the room temperature on this scale?
a. If room temperature is 25.0 °C, the temperature on

the new scale will be 17.5 °.
b. If room temperature is 25.0 °C, the temperature on

the new scale will be 25.0°.
c. If the room temperature is 25.0 °C, the temperature

on the new scale will be 35.7°.
d. If the room temperature is 25.0 °C, the temperature

on the new scale will be 50.0°.

11.2 Heat, Specific Heat, and Heat
Transfer
16. A certain quantity of water is given 4.0 kJ of heat. This

raises its temperature by 30.0 °F. What is the mass of the
water in grams?
a. 5.7 g
b. 570 g

c. 5700 g
d. 57 g

17. 5290 J of heat is given to 0.500 kg water at 15.00 °C.
What will its final temperature be?
a. 15.25° C
b. 12.47 ° C
c. 40.3° C
d. 17.53° C

11.3 Phase Change and Latent Heat
18. How much energy would it take to heat 1.00 kg of ice at

0 °C to water at 15.0 °C?
a. 271 kJ
b. 334 kJ
c. 62.8 kJ
d. 397 kJ

19. Ice cubes are used to chill a soda with a mass msoda =
0.300 kg at 15.0 °C. The ice is at 0 °C, and the total mass
of the ice cubes is 0.020 kg. Assume that the soda is kept
in a foam container so that heat loss can be ignored, and
that the soda has the same specific heat as water. Find
the final temperature when all ice has melted.
a. 19.02 °C
b. 90.3 °C
c. 0.11 °C
d. 9.03 °C

Performance Task
11.3 Phase Change and Latent Heat
20. You have been tasked with designing a baking pan that

will bake batter the fastest. There are four materials
available for you to test.

• Four pans of similar design, consisting of
aluminum, iron (steel), copper, and glass

• Oven or similar heating source
• Device for measuring high temperatures
• Balance for measuring mass

Instructions

Procedure
1. Design a safe experiment to test the specific heat of

each material (i.e., no extreme temperatures

should be used)
2. Write down the materials needed for your

experiment and the procedure you will follow.
Make sure that you include every detail, so that the
experiment can be repeated by others.

3. Carry out the experiment and record any data
collected.

4. Review your results and make a recommendation
as to which metal should be used for the pan.

a. What physical quantities do you need to
measure to determine the specific heats for the
different materials?

b. How does the glass differ from the metals in
terms of thermal properties?

c. What are your sources of error?

TEST PREP
Multiple Choice
11.1 Temperature and Thermal Energy
21. The temperature difference of is the same as

a. degree Celsius
b. degree Fahrenheit
c. degrees Celsius
d. degrees Fahrenheit
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22. What is the preferred temperature scale used in
scientific laboratories?
a. celsius
b. fahrenheit
c. kelvin
d. rankine

11.2 Heat, Specific Heat, and Heat
Transfer
23. Which phase of water has the largest specific heat?

a. solid
b. liquid
c. gas

24. What kind of heat transfer requires no medium?
a. conduction
b. convection
c. reflection
d. radiation

25. Which of these substances has the greatest specific
heat?
a. copper
b. mercury
c. aluminum
d. wood

26. Give an example of heat transfer through convection.
a. The energy emitted from the filament of an electric

bulb
b. The energy coming from the sun
c. A pan on a hot burner
d. Water boiling in a pot

11.3 Phase Change and Latent Heat
27. What are the SI units of latent heat?

a.
b.
c.
d.

28. Which substance has the largest latent heat of fusion?
a. gold
b. water
c. mercury
d. tungsten

29. In which phase changes does matter undergo a
transition to a more energetic state?
a. freezing and vaporization
b. melting and sublimation
c. melting and vaporization
d. melting and freezing

30. A room has a window made from thin glass. The room is
colder than the air outside. There is some condensation
on the glass window. On which side of the glass would
the condensation most likely be found?
a. Condensation is on the outside of the glass when

the cool, dry air outside the room comes in contact
with the cold pane of glass.

b. Condensation is on the outside of the glass when
the warm, moist air outside the room comes in
contact with the cold pane of glass.

c. Condensation is on the inside of the glass when the
cool, dry air inside the room comes in contact with
the cold pane of glass.

d. Condensation is on the inside of the glass when the
warm, moist air inside the room comes in contact
with the cold pane of glass.

Short Answer
11.1 Temperature and Thermal Energy
31. What is absolute zero on the Fahrenheit scale?

a. 0 °F
b. 32 °F
c. -273.15 °F
d. -459.67 °F

32. What is absolute zero on the Celsius scale?
a. 0 °C
b. 273.15 °C
c. -459.67 °C
d. -273.15 °C

33. A planet’s atmospheric pressure is such that water there
boils at a lower temperature than it does at sea level on

Earth. If a Celsius scale is derived on this planet, will it
be the same as that on Earth?
a. The Celsius scale derived on the planet will be the

same as that on Earth, because the Celsius scale is
independent of the freezing and boiling points of
water.

b. The Celsius scale derived on that planet will not be
the same as that on Earth, because the Celsius scale
is dependent and derived by using the freezing and
boiling points of water.

c. The Celsius scale derived on the planet will be the
same as that on Earth, because the Celsius scale is
an absolute temperature scale based on molecular
motion, which is independent of pressure.

d. The Celsius scale derived on the planet will not be
the same as that on Earth, but the Fahrenheit scale
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will be the same, because its reference
temperatures are not based on the freezing and
boiling points of water.

34. What is the difference between the freezing point and
boiling point of water on the Reaumur scale?
a. The boiling point of water is 80° on the Reaumur

scale.
b. Reaumur scale is less than 120°.
c. 100°
d. 80°

11.2 Heat, Specific Heat, and Heat
Transfer
35. In the specific heat equation what does c stand for?

a. Total heat
b. Specific heat
c. Specific temperature
d. Specific mass

36. Specific heat may be measured in J/kg · K, J/kg · °C.
What other units can it be measured in?
a. kg/kcal · °C
b. kcal · °C/kg
c. kg · °C/kcal
d. kcal/kg · °C

37. What is buoyancy?
a. Buoyancy is a downward force exerted by a solid

that opposes the weight of an object.
b. Buoyancy is a downward force exerted by a fluid

that opposes the weight of an immersed object.
c. Buoyancy is an upward force exerted by a solid that

opposes the weight an object.
d. Buoyancy is an upward force exerted by a fluid that

opposes the weight of an immersed object.

38. Give an example of convection found in nature.
a. heat transfer through metallic rod
b. heat transfer from the sun to Earth
c. heat transfer through ocean currents
d. heat emitted by a light bulb into its environment

39. Calculate the temperature change in a substance with
specific heat 735 J/kg · °C when 14 kJ of heat is given to a
3.0-kg sample of that substance.
a. 57 °C

b. 63 °C
c. 1.8×10-2 °C
d. 6.3 °C

40. Aluminum has a specific heat of 900 J/kg·ºC. How much
energy would it take to change the temperature of 2 kg
aluminum by 3 ºC?
a. 1.3 kJ
b. 0.60 kJ
c. 54 kJ
d. 5.4 kJ

11.3 Phase Change and Latent Heat
41. Upon what does the required amount of heat removed to

freeze a sample of a substance depend?
a. The mass of the substance and its latent heat of

vaporization
b. The mass of the substance and its latent heat of

fusion
c. The mass of the substance and its latent heat of

sublimation
d. The mass of the substance only

42. What do latent heats, Lf and Lv, depend on?
a. Lf and Lv depend on the forces between the

particles in the substance.
b. Lf and Lv depend on the mass of the substance.
c. Lf and Lv depend on the volume of the substance.
d. Lf and Lv depend on the temperature of the

substance.

43. How much energy is required to melt 7.00 kg a block of
aluminum that is at its melting point? (Latent heat of
fusion of aluminum is 380 kJ/kg.)
a. 54.3 kJ
b. 2.66 kJ
c. 0.0184 kJ
d. 2.66×103 kJ

44. A 3.00 kg sample of a substance is at its boiling point. If
5,360 kJ of energy are enough to boil away the entire
substance, what is its latent heat of vaporization?
a. 2,685 kJ/kg
b. 3,580 kJ/kg
c. 895 kJ/kg
d. 1,790 kJ/kg

Extended Response
11.1 Temperature and Thermal Energy
45. What is the meaning of absolute zero?

a. It is the temperature at which the internal energy
of the system is maximum, because the speed of its

constituent particles increases to maximum at this
point.

b. It is the temperature at which the internal energy
of the system is maximum, because the speed of its
constituent particles decreases to zero at this
point.
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c. It is the temperature at which the internal energy
of the system approaches zero, because the speed
of its constituent particles increases to a maximum
at this point.

d. It is that temperature at which the internal energy
of the system approaches zero, because the speed
of its constituent particles decreases to zero at this
point.

46. Why does it feel hotter on more humid days, even
though there is no difference in temperature?
a. On hot, dry days, the evaporation of the sweat from

the skin cools the body, whereas on humid days the
concentration of water in the atmosphere is lower,
which reduces the evaporation rate from the skin’s
surface.

b. On hot, dry days, the evaporation of the sweat from
the skin cools the body, whereas on humid days the
concentration of water in the atmosphere is higher,
which reduces the evaporation rate from the skin’s
surface.

c. On hot, dry days, the evaporation of the sweat from
the skin cools the body, whereas on humid days the
concentration of water in the atmosphere is lower,
which increases the evaporation rate from the
skin’s surface.

d. On hot, dry days, the evaporation of the sweat from
the skin cools the body, whereas on humid days the
concentration of water in the atmosphere is higher,
which increases the evaporation rate from the
skin’s surface.

11.2 Heat, Specific Heat, and Heat
Transfer
47. A hot piece of metal needs to be cooled. If you were to

put the metal in ice or in cold water, such that the ice did
not melt and the temperature of either changed by the
same amount, which would reduce the metal’s
temperature more? Why?
a. Water would reduce the metal’s temperature more,

because water has a greater specific heat than ice.
b. Water would reduce the metal’s temperature more,

because water has a smaller specific heat than ice.
c. Ice would reduce the metal’s temperature more,

because ice has a smaller specific heat than water.

d. Ice would reduce the metal’s temperature more,
because ice has a greater specific heat than water.

48. On a summer night, why does a black object seem colder
than a white one?
a. The black object radiates energy faster than the

white one, and hence reaches a lower temperature
in less time.

b. The black object radiates energy slower than the
white one, and hence reaches a lower temperature
in less time.

c. The black object absorbs energy faster than the
white one, and hence reaches a lower temperature
in less time.

d. The black object absorbs energy slower than the
white one, and hence reaches a lower temperature
in less time.

49. Calculate the difference in heat required to raise the
temperatures of 1.00 kg of gold and 1.00 kg of
aluminum by 1.00 °C. (The specific heat of aluminum
equals 900 J/kg · °C; the specific heat of gold equals 129 J/
kg · °C.)
a. 771 J
b. 129 J
c. 90 J
d. 900 J

11.3 Phase Change and Latent Heat
50. True or false—You have an ice cube floating in a glass of

water with a thin thread resting across the cube. If you
cover the ice cube and thread with a layer of salt, they
will stick together, so that you are able to lift the ice-
cube when you pick up the thread.
a. True
b. False

51. Suppose the energy required to freeze 0.250 kg of water
were added to the same mass of water at an initial
temperature of 1.0 °C. What would be the final
temperature of the water?
a. -69.8 °C
b. 79.8 °C
c. -78.8 °C
d. 80.8 °C
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INTRODUCTION

CHAPTER 12
Thermodynamics

12.1 Zeroth Law of Thermodynamics: Thermal Equilibrium

12.2 First law of Thermodynamics: Thermal Energy and Work

12.3 Second Law of Thermodynamics: Entropy

12.4 Applications of Thermodynamics: Heat Engines, Heat Pumps, and Refrigerators

Energy can be transferred to or from a system, either through a temperature difference between it and
another system (i.e., by heat) or by exerting a force through a distance (work). In these ways, energy can be converted into other
forms of energy in other systems. For example, a car engine burns fuel for heat transfer into a gas. Work is done by the gas as it
exerts a force through a distance by pushing a piston outward. This work converts the energy into a variety of other forms—into
an increase in the car’s kinetic or gravitational potential energy; into electrical energy to run the spark plugs, radio, and lights;
and back into stored energy in the car’s battery. But most of the thermal energy transferred by heat from the fuel burning in the
engine does not do work on the gas. Instead, much of this energy is released into the surroundings at lower temperature (i.e.,
lost through heat), which is quite inefficient. Car engines are only about 25 to 30 percent efficient. This inefficiency leads to
increased fuel costs, so there is great interest in improving fuel efficiency. However, it is common knowledge that modern
gasoline engines cannot be made much more efficient. The same is true about the conversion to electrical energy in large power
stations, whether they are coal, oil, natural gas, or nuclear powered. Why is this the case?

The answer lies in the nature of heat. Basic physical laws govern how heat transfer for doing work takes place and limit the

Figure 12.1 A steam engine uses energy transfer by heat to do work. (Modification of work by Gerald Friedrich,
Pixabay)

Chapter Outline



maximum possible efficiency of the process. This chapter will explore these laws as well their applications to everyday machines.
These topics are part of thermodynamics—the study of heat and its relationship to doing work.

12.1 Zeroth Law of Thermodynamics: Thermal Equilibrium
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain the zeroth law of thermodynamics

Section Key Terms

thermal equilibrium zeroth law of thermodynamics

We learned in the previous chapter that when two objects (or systems) are in contact with one another, heat will transfer thermal
energy from the object at higher temperature to the one at lower temperature until they both reach the same temperature. The
objects are then in thermal equilibrium, and no further temperature changes will occur if they are isolated from other systems.
The systems interact and change because their temperatures are different, and the changes stop once their temperatures are the
same. Thermal equilibrium is established when two bodies are in thermal contact with each other—meaning heat transfer (i.e.,
the transfer of energy by heat) can occur between them. If two systems cannot freely exchange energy, they will not reach
thermal equilibrium. (It is fortunate that empty space stands between Earth and the sun, because a state of thermal equilibrium
with the sun would be too toasty for life on this planet!)

If two systems, A and B, are in thermal equilibrium with each another, and B is in thermal equilibrium with a third system, C,
then A is also in thermal equilibrium with C. This statement may seem obvious, because all three have the same temperature,
but it is basic to thermodynamics. It is called the zeroth law of thermodynamics.

TIPS FOR SUCCESS
The zeroth law of thermodynamics is very similar to the transitive property of equality in mathematics: If a = b and b =
c, then a = c.

You may be wondering at this point, why the wacky name? Shouldn’t this be called the first law of thermodynamics rather than
the zeroth? The explanation is that this law was discovered after the first and second laws of thermodynamics but is so
fundamental that scientists decided it should logically come first.

As an example of the zeroth law in action, consider newborn babies in neonatal intensive-care units in hospitals. Prematurely
born or sick newborns are placed in special incubators. These babies have very little covering while in the incubators, so to an
observer, they look as though they may not be warm enough. However, inside the incubator, the temperature of the air, the cot,
and the baby are all the same—that is, they are in thermal equilibrium. The ambient temperature is just high enough to keep the
baby safe and comfortable.

WORK IN PHYSICS

Thermodynamics Engineer
Thermodynamics engineers apply the principles of thermodynamics to mechanical systems so as to create or test products that
rely on the interactions between heat, work, pressure, temperature, and volume. This type of work typically takes place in the
aerospace industry, chemical manufacturing companies, industrial manufacturing plants, power plants (Figure 12.2), engine
manufacturers, or electronics companies.
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Figure 12.2 An engineer makes a site visit to the Baghdad South power plant.

The need for energy creates quite a bit of demand for thermodynamics engineers, because both traditional energy companies
and alternative (green) energy startups rely on interactions between heat and work and so require the expertise of
thermodynamics engineers. Traditional energy companies use mainly nuclear energy and energy from burning fossil fuels, such
as coal. Alternative energy is finding new ways to harness renewable and, often, more readily available energy sources, such as
solar, water, wind, and bio-energy.

A thermodynamics engineer in the energy industry can find the most efficient way to turn the burning of a biofuel or fossil fuel
into energy, store that energy for times when it’s needed most, or figure out how to best deliver that energy from where it’s
produced to where it’s used: in homes, factories, and businesses. Additionally, he or she might also design pollution-control
equipment to remove harmful pollutants from the smoke produced as a by-product of burning fuel. For example, a
thermodynamics engineer may develop a way to remove mercury from burning coal in a coal-fired power plant.

Thermodynamics engineering is an expanding field, where employment opportunities are expected to grow by as much as 27
percent between 2012 and 2022, according to the U.S. Bureau of Labor Statistics. To become a thermodynamics engineer, you
must have a college degree in chemical engineering, mechanical engineering, environmental engineering, aerospace
engineering, civil engineering, or biological engineering (depending on which type of career you wish to pursue), with
coursework in physics and physical chemistry that focuses on thermodynamics.

GRASP CHECK
What would be an example of something a thermodynamics engineer would do in the aeronautics industry?
a. Test the fuel efficiency of a jet engine
b. Test the functioning of landing gear
c. Test the functioning of a lift control device
d. Test the autopilot functions

Check Your Understanding
1. What is thermal equilibrium?

a. When two objects in contact with each other are at the same pressure, they are said to be in thermal equilibrium.
b. When two objects in contact with each other are at different temperatures, they are said to be in thermal equilibrium.
c. When two objects in contact with each other are at the same temperature, they are said to be in thermal equilibrium.
d. When two objects not in contact with each other are at the same pressure, they are said to be in thermal equilibrium.

2. What is the zeroth law of thermodynamics?
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a. Energy can neither be created nor destroyed in a chemical reaction.
b. If two systems, A and B, are in thermal equilibrium with each another, and B is in thermal equilibrium with a third

system, C, then A is also in thermal equilibrium with C.
c. Entropy of any isolated system not in thermal equilibrium always increases.
d. Entropy of a system approaches a constant value as temperature approaches absolute zero.

12.2 First law of Thermodynamics: Thermal Energy and Work
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe how pressure, volume, and temperature relate to one another and to work, based on the ideal gas

law
• Describe pressure–volume work
• Describe the first law of thermodynamics verbally and mathematically
• Solve problems involving the first law of thermodynamics

Section Key Terms

Boltzmann constant first law of thermodynamics ideal gas law internal energy pressure

Pressure, Volume, Temperature, and the Ideal Gas Law
Before covering the first law of thermodynamics, it is first important to understand the relationship between pressure, volume,
and temperature. Pressure, P, is defined as

where F is a force applied to an area, A, that is perpendicular to the force.

Depending on the area over which it is exerted, a given force can have a significantly different effect, as shown in Figure 12.3.

Figure 12.3 (a) Although the person being poked with the finger might be irritated, the force has little lasting effect. (b) In contrast, the

same force applied to an area the size of the sharp end of a needle is great enough to break the skin.

The SI unit for pressure is the pascal, where

Pressure is defined for all states of matter but is particularly important when discussing fluids (such as air). You have probably
heard the word pressure being used in relation to blood (high or low blood pressure) and in relation to the weather (high- and
low-pressure weather systems). These are only two of many examples of pressures in fluids.

The relationship between the pressure, volume, and temperature for an ideal gas is given by the ideal gas law. A gas is
considered ideal at low pressure and fairly high temperature, and forces between its component particles can be ignored. The
ideal gas law states that

where P is the pressure of a gas, V is the volume it occupies, N is the number of particles (atoms or molecules) in the gas, and T is

12.1

12.2
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its absolute temperature. The constant k is called the Boltzmann constant and has the value For the
purposes of this chapter, we will not go into calculations using the ideal gas law. Instead, it is important for us to notice from the
equation that the following are true for a given mass of gas:

• When volume is constant, pressure is directly proportional to temperature.
• When temperature is constant, pressure is inversely proportional to volume.
• When pressure is constant, volume is directly proportional to temperature.

This last point describes thermal expansion—the change in size or volume of a given mass with temperature. What is the
underlying cause of thermal expansion? An increase in temperature means that there’s an increase in the kinetic energy of the
individual atoms. Gases are especially affected by thermal expansion, although liquids expand to a lesser extent with similar
increases in temperature, and even solids have minor expansions at higher temperatures. This is why railroad tracks and bridges
have expansion joints that allow them to freely expand and contract with temperature changes.

To get some idea of how pressure, temperature, and volume of a gas are related to one another, consider what happens when
you pump air into a deflated tire. The tire’s volume first increases in direct proportion to the amount of air injected, without
much increase in the tire pressure. Once the tire has expanded to nearly its full size, the walls limit volume expansion. If you
continue to pump air into tire (which now has a nearly constant volume), the pressure increases with increasing temperature
(see Figure 12.4).

Figure 12.4 (a) When air is pumped into a deflated tire, its volume first increases without much increase in pressure. (b) When the tire is

filled to a certain point, the tire walls resist further expansion, and the pressure increases as more air is added. (c) Once the tire is inflated

fully, its pressure increases with temperature.

Pressure–Volume Work
Pressure–volume work is the work that is done by the compression or expansion of a fluid. Whenever there is a change in
volume and external pressure remains constant, pressure–volume work is taking place. During a compression, a decrease in
volume increases the internal pressure of a system as work is done on the system. During an expansion (Figure 12.5), an increase
in volume decreases the internal pressure of a system as the system does work.
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Figure 12.5 An expansion of a gas requires energy transfer to keep the pressure constant. Because pressure is constant, the work done is

.

Recall that the formula for work is We can rearrange the definition of pressure, to get an expression for force
in terms of pressure.

Substituting this expression for force into the definition of work, we get

Because area multiplied by displacement is the change in volume, , the mathematical expression for
pressure–volume work is

Just as we say that work is force acting over a distance, for fluids, we can say that work is the pressure acting through the change
in volume. For pressure–volume work, pressure is analogous to force, and volume is analogous to distance in the traditional
definition of work.

WATCH PHYSICS

Work from Expansion
This video describes work from expansion (or pressure–volume work). Sal combines the equations and

to get .

Click to view content (https://www.openstax.org/l/28expansionWork)

GRASP CHECK
If the volume of a system increases while pressure remains constant, is the value of work done by the system W positive or
negative? Will this increase or decrease the internal energy of the system?
a. Positive; internal energy will decrease
b. Positive; internal energy will increase
c. Negative; internal energy will decrease
d. Negative; internal energy will increase

The First Law of Thermodynamics
Heat (Q) and work (W) are the two ways to add or remove energy from a system. The processes are very different. Heat is driven

12.3

12.4

12.5
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by temperature differences, while work involves a force exerted through a distance. Nevertheless, heat and work can produce
identical results. For example, both can cause a temperature increase. Heat transfers energy into a system, such as when the sun
warms the air in a bicycle tire and increases the air’s temperature. Similarly, work can be done on the system, as when the
bicyclist pumps air into the tire. Once the temperature increase has occurred, it is impossible to tell whether it was caused by
heat or work. Heat and work are both energy in transit—neither is stored as such in a system. However, both can change the
internal energy, U, of a system.

Internal energy is the sum of the kinetic and potential energies of a system’s atoms and molecules. It can be divided into many
subcategories, such as thermal and chemical energy, and depends only on the state of a system (that is, P, V, and T), not on how
the energy enters or leaves the system.

In order to understand the relationship between heat, work, and internal energy, we use the first law of thermodynamics. The
first law of thermodynamics applies the conservation of energy principle to systems where heat and work are the methods of
transferring energy into and out of the systems. It can also be used to describe how energy transferred by heat is converted and
transferred again by work.

TIPS FOR SUCCESS
Recall that the principle of conservation of energy states that energy cannot be created or destroyed, but it can be altered
from one form to another.

The first law of thermodynamics states that the change in internal energy of a closed system equals the net heat transfer into the
system minus the net work done by the system. In equation form, the first law of thermodynamics is

Here, is the change in internal energy, U, of the system. As shown in Figure 12.6, Q is the net heat transferred into the
system—that is, Q is the sum of all heat transfers into and out of the system. W is the net work done by the system—that is, W is
the sum of all work done on or by the system. By convention, if Q is positive, then there is a net heat transfer into the system; if
W is positive, then there is net work done by the system. So positive Q adds energy to the system by heat, and positive W takes
energy from the system by work. Note that if heat transfers more energy into the system than that which is done by work, the
difference is stored as internal energy.

Figure 12.6 The first law of thermodynamics is the conservation of energy principle stated for a system, where heat and work are the

methods of transferring energy to and from a system. Q represents the net heat transfer—it is the sum of all transfers of energy by heat into

and out of the system. Q is positive for net heat transfer into the system. is the work done by the system, and is the work done on

the system. W is the total work done on or by the system. W is positive when more work is done by the system than on it. The change in the

internal energy of the system, , is related to heat and work by the first law of thermodynamics:

It follows also that negative Q indicates that energy is transferred away from the system by heat and so decreases the system’s
internal energy, whereas negative W is work done on the system, which increases the internal energy.

WATCH PHYSICS

First Law of Thermodynamics/Internal Energy
This video explains the first law of thermodynamics, conservation of energy, and internal energy. It goes over an example of
energy transforming between kinetic energy, potential energy, and heat transfer due to air resistance.

Click to view content (https://www.openstax.org/l/28FirstThermo)
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GRASP CHECK
Consider the example of tossing a ball when there’s air resistance. As air resistance increases, what would you expect to
happen to the final velocity and final kinetic energy of the ball? Why?
a. Both will decrease. Energy is transferred to the air by heat due to air resistance.
b. Both will increase. Energy is transferred from the air to the ball due to air resistance.
c. Final velocity will increase, but final kinetic energy will decrease. Energy is transferred by heat to the air from the ball

through air resistance.
d. Final velocity will decrease, but final kinetic energy will increase. Energy is transferred by heat from the air to the ball

through air resistance.

WATCH PHYSICS

More on Internal Energy
This video goes into further detail, explaining internal energy and how to use the equation Note that Sal uses
the equation , where W is the work done on the system, whereas we use W to represent work done by the
system.

Click to view content (https://www.openstax.org/l/28IntrnEnergy)

GRASP CHECK
If are taken away by heat from the system, and the system does of work, what is the change in internal energy of the
system?
a.
b.
c.
d.

LINKS TO PHYSICS

Biology: Biological Thermodynamics
We often think about thermodynamics as being useful for inventing or testing machinery, such as engines or steam turbines.
However, thermodynamics also applies to living systems, such as our own bodies. This forms the basis of the biological
thermodynamics (Figure 12.7).

Figure 12.7 (a) The first law of thermodynamics applies to metabolism. Heat transferred out of the body (Q) and work done by the body (W)

remove internal energy, whereas food intake replaces it. (Food intake may be considered work done on the body.) (b) Plants convert part of
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the radiant energy in sunlight into stored chemical energy, a process called photosynthesis.

Life itself depends on the biological transfer of energy. Through photosynthesis, plants absorb solar energy from the sun and use
this energy to convert carbon dioxide and water into glucose and oxygen. Photosynthesis takes in one form of
energy—light—and converts it into another form—chemical potential energy (glucose and other carbohydrates).

Human metabolism is the conversion of food into energy given off by heat, work done by the body’s cells, and stored fat.
Metabolism is an interesting example of the first law of thermodynamics in action. Eating increases the internal energy of the
body by adding chemical potential energy; this is an unromantic view of a good burrito.

The body metabolizes all the food we consume. Basically, metabolism is an oxidation process in which the chemical potential
energy of food is released. This implies that food input is in the form of work. Exercise helps you lose weight, because it provides
energy transfer from your body by both heat and work and raises your metabolic rate even when you are at rest.

Biological thermodynamics also involves the study of transductions between cells and living organisms. Transduction is a
process where genetic material—DNA—is transferred from one cell to another. This often occurs during a viral infection (e.g.,
influenza) and is how the virus spreads, namely, by transferring its genetic material to an increasing number of previously
healthy cells. Once enough cells become infected, you begin to feel the effects of the virus (flu symptoms—muscle weakness,
coughing, and congestion).

Energy is transferred along with the genetic material and so obeys the first law of thermodynamics. Energy is transferred—not
created or destroyed—in the process. When work is done on a cell or heat transfers energy to a cell, the cell’s internal energy
increases. When a cell does work or loses heat, its internal energy decreases. If the amount of work done by a cell is the same as
the amount of energy transferred in by heat, or the amount of work performed on a cell matches the amount of energy
transferred out by heat, there will be no net change in internal energy.

GRASP CHECK
Based on what you know about heat transfer and the first law of thermodynamics, do you need to eat more or less to
maintain a constant weight in colder weather? Explain why.
a. more; as more energy is lost by the body in colder weather, the need to eat increases so as to maintain a constant weight
b. more; eating more food means accumulating more fat, which will insulate the body from colder weather and will reduce

the energy loss
c. less; as less energy is lost by the body in colder weather, the need to eat decreases so as to maintain a constant weight
d. less; eating less food means accumulating less fat, so less energy will be required to burn the fat, and, as a result, weight

will remain constant

Solving Problems Involving the First Law of Thermodynamics

WORKED EXAMPLE

Calculating Change in Internal Energy
Suppose 40.00 J of energy is transferred by heat to a system, while the system does 10.00 J of work. Later, heat transfers 25.00 J
out of the system, while 4.00 J is done by work on the system. What is the net change in the system’s internal energy?
STRATEGY
You must first calculate the net heat and net work. Then, using the first law of thermodynamics, find the
change in internal energy.

Solution
The net heat is the transfer into the system by heat minus the transfer out of the system by heat, or

The total work is the work done by the system minus the work done on the system, or
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The change in internal energy is given by the first law of thermodynamics.

Discussion
A different way to solve this problem is to find the change in internal energy for each of the two steps separately and then add
the two changes to get the total change in internal energy. This approach would look as follows:

For 40.00 J of heat in and 10.00 J of work out, the change in internal energy is

For 25.00 J of heat out and 4.00 J of work in, the change in internal energy is

The total change is

No matter whether you look at the overall process or break it into steps, the change in internal energy is the same.

WORKED EXAMPLE

Calculating Change in Internal Energy: The Same Change in U is Produced by Two Different
Processes
What is the change in the internal energy of a system when a total of 150.00 J is transferred by heat from the system and 159.00 J
is done by work on the system?
STRATEGY
The net heat and work are already given, so simply use these values in the equation

Solution
Here, the net heat and total work are given directly as so that
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Discussion

Figure 12.8 Two different processes produce the same change in a system. (a) A total of 15.00 J of heat transfer occurs into the system,

while work takes out a total of 6.00 J. The change in internal energy is ΔU = Q – W = 9.00 J. (b) Heat transfer removes 150.00 J from the

system while work puts 159.00 J into it, producing an increase of 9.00 J in internal energy. If the system starts out in the same state in (a)

and (b), it will end up in the same final state in either case—its final state is related to internal energy, not how that energy was acquired.

A very different process in this second worked example produces the same 9.00 J change in internal energy as in the first worked
example. Note that the change in the system in both parts is related to and not to the individual Q’s or W’s involved. The
system ends up in the same state in both problems. Note that, as usual, in Figure 12.8 above, is work done by the system,
and is work done on the system.

Practice Problems
3. What is the pressure-volume work done by a system if a pressure of causes a change in volume of ?

a.
b.
c.
d.

4. What is the net heat out of the system when is transferred by heat into the system and is transferred out of it?
a.
b.
c.
d.
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Check Your Understanding
5. What is pressure?

a. Pressure is force divided by length.
b. Pressure is force divided by area.
c. Pressure is force divided by volume.
d. Pressure is force divided by mass.

6. What is the SI unit for pressure?
a. pascal, or N/m3

b. coulomb
c. newton
d. pascal, or N/m2

7. What is pressure-volume work?
a. It is the work that is done by the compression or expansion of a fluid.
b. It is the work that is done by a force on an object to produce a certain displacement.
c. It is the work that is done by the surface molecules of a fluid.
d. It is the work that is done by the high-energy molecules of a fluid.

8. When is pressure-volume work said to be done ON a system?
a. When there is an increase in both volume and internal pressure.
b. When there is a decrease in both volume and internal pressure.
c. When there is a decrease in volume and an increase in internal pressure.
d. When there is an increase in volume and a decrease in internal pressure.

9. What are the ways to add energy to or remove energy from a system?
a. Transferring energy by heat is the only way to add energy to or remove energy from a system.
b. Doing compression work is the only way to add energy to or remove energy from a system.
c. Doing expansion work is the only way to add energy to or remove energy from a system.
d. Transferring energy by heat or by doing work are the ways to add energy to or remove energy from a system.

10. What is internal energy?
a. It is the sum of the kinetic energies of a system’s atoms and molecules.
b. It is the sum of the potential energies of a system’s atoms and molecules.
c. It is the sum of the kinetic and potential energies of a system’s atoms and molecules.
d. It is the difference between the magnitudes of the kinetic and potential energies of a system’s atoms and molecules.

12.3 Second Law of Thermodynamics: Entropy
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe entropy
• Describe the second law of thermodynamics
• Solve problems involving the second law of thermodynamics

Section Key Terms

entropy second law of thermodynamics

Entropy
Recall from the chapter introduction that it is not even theoretically possible for engines to be 100 percent efficient. This
phenomenon is explained by the second law of thermodynamics, which relies on a concept known as entropy. Entropy is a
measure of the disorder of a system. Entropy also describes how much energy is not available to do work. The more disordered a
system and higher the entropy, the less of a system's energy is available to do work.
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Although all forms of energy can be used to do work, it is not possible to use the entire available energy for work. Consequently,
not all energy transferred by heat can be converted into work, and some of it is lost in the form of waste heat—that is, heat that
does not go toward doing work. The unavailability of energy is important in thermodynamics; in fact, the field originated from
efforts to convert heat to work, as is done by engines.

The equation for the change in entropy, , is

where Q is the heat that transfers energy during a process, and T is the absolute temperature at which the process takes place.

Q is positive for energy transferred into the system by heat and negative for energy transferred out of the system by heat. In SI,
entropy is expressed in units of joules per kelvin (J/K). If temperature changes during the process, then it is usually a good
approximation (for small changes in temperature) to take T to be the average temperature in order to avoid trickier math
(calculus).

TIPS FOR SUCCESS
Absolute temperature is the temperature measured in Kelvins. The Kelvin scale is an absolute temperature scale that is
measured in terms of the number of degrees above absolute zero. All temperatures are therefore positive. Using
temperatures from another, nonabsolute scale, such as Fahrenheit or Celsius, will give the wrong answer.

Second Law of Thermodynamics
Have you ever played the card game 52 pickup? If so, you have been on the receiving end of a practical joke and, in the process,
learned a valuable lesson about the nature of the universe as described by the second law of thermodynamics. In the game of 52
pickup, the prankster tosses an entire deck of playing cards onto the floor, and you get to pick them up. In the process of picking
up the cards, you may have noticed that the amount of work required to restore the cards to an orderly state in the deck is much
greater than the amount of work required to toss the cards and create the disorder.

The second law of thermodynamics states that the total entropy of a system either increases or remains constant in any
spontaneous process; it never decreases. An important implication of this law is that heat transfers energy spontaneously from
higher- to lower-temperature objects, but never spontaneously in the reverse direction. This is because entropy increases for
heat transfer of energy from hot to cold (Figure 12.9). Because the change in entropy is Q/T, there is a larger change in at
lower temperatures (smaller T). The decrease in entropy of the hot (larger T) object is therefore less than the increase in entropy
of the cold (smaller T) object, producing an overall increase in entropy for the system.

Figure 12.9 The ice in this drink is slowly melting. Eventually, the components of the liquid will reach thermal equilibrium, as predicted by

the second law of thermodynamics—that is, after heat transfers energy from the warmer liquid to the colder ice. (Jon Sullivan, PDPhoto.org)

Another way of thinking about this is that it is impossible for any process to have, as its sole result, heat transferring energy
from a cooler to a hotter object. Heat cannot transfer energy spontaneously from colder to hotter, because the entropy of the
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overall system would decrease.

Suppose we mix equal masses of water that are originally at two different temperatures, say and . The result
will be water at an intermediate temperature of . Three outcomes have resulted: entropy has increased, some energy
has become unavailable to do work, and the system has become less orderly. Let us think about each of these results.

First, why has entropy increased? Mixing the two bodies of water has the same effect as the heat transfer of energy from the
higher-temperature substance to the lower-temperature substance. The mixing decreases the entropy of the hotter water but
increases the entropy of the colder water by a greater amount, producing an overall increase in entropy.

Second, once the two masses of water are mixed, there is no more temperature difference left to drive energy transfer by heat
and therefore to do work. The energy is still in the water, but it is now unavailable to do work.

Third, the mixture is less orderly, or to use another term, less structured. Rather than having two masses at different
temperatures and with different distributions of molecular speeds, we now have a single mass with a broad distribution of
molecular speeds, the average of which yields an intermediate temperature.

These three results—entropy, unavailability of energy, and disorder—not only are related but are, in fact, essentially equivalent.
Heat transfer of energy from hot to cold is related to the tendency in nature for systems to become disordered and for less
energy to be available for use as work.

Based on this law, what cannot happen? A cold object in contact with a hot one never spontaneously transfers energy by heat to
the hot object, getting colder while the hot object gets hotter. Nor does a hot, stationary automobile ever spontaneously cool off
and start moving.

Another example is the expansion of a puff of gas introduced into one corner of a vacuum chamber. The gas expands to fill the
chamber, but it never regroups on its own in the corner. The random motion of the gas molecules could take them all back to the
corner, but this is never observed to happen (Figure 12.10).
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Figure 12.10 Examples of one-way processes in nature. (a) Heat transfer occurs spontaneously from hot to cold, but not from cold to hot.

(b) The brakes of this car convert its kinetic energy to increase their internal energy (temperature), and heat transfers this energy to the

environment. The reverse process is impossible. (c) The burst of gas released into this vacuum chamber quickly expands to uniformly fill

every part of the chamber. The random motions of the gas molecules will prevent them from returning altogether to the corner.

We've explained that heat never transfers energy spontaneously from a colder to a hotter object. The key word here is
spontaneously. If we do work on a system, it is possible to transfer energy by heat from a colder to hotter object. We'll learn
more about this in the next section, covering refrigerators as one of the applications of the laws of thermodynamics.

Sometimes people misunderstand the second law of thermodynamics, thinking that based on this law, it is impossible for
entropy to decrease at any particular location. But, it actually is possible for the entropy of one part of the universe to decrease,
as long as the total change in entropy of the universe increases. In equation form, we can write this as

Based on this equation, we see that can be negative as long as is positive and greater in magnitude.

How is it possible for the entropy of a system to decrease? Energy transfer is necessary. If you pick up marbles that are scattered
about the room and put them into a cup, your work has decreased the entropy of that system. If you gather iron ore from the
ground and convert it into steel and build a bridge, your work has decreased the entropy of that system. Energy coming from the
sun can decrease the entropy of local systems on Earth—that is, is negative. But the overall entropy of the rest of the
universe increases by a greater amount—that is, is positive and greater in magnitude. In the case of the iron ore,
although you made the system of the bridge and steel more structured, you did so at the expense of the universe. Altogether, the
entropy of the universe is increased by the disorder created by digging up the ore and converting it to steel. Therefore,
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and the second law of thermodynamics is not violated.

Every time a plant stores some solar energy in the form of chemical potential energy, or an updraft of warm air lifts a soaring
bird, Earth experiences local decreases in entropy as it uses part of the energy transfer from the sun into deep space to do work.
There is a large total increase in entropy resulting from this massive energy transfer. A small part of this energy transfer by heat
is stored in structured systems on Earth, resulting in much smaller, local decreases in entropy.

Solving Problems Involving the Second Law of Thermodynamics
Entropy is related not only to the unavailability of energy to do work; it is also a measure of disorder. For example, in the case of
a melting block of ice, a highly structured and orderly system of water molecules changes into a disorderly liquid, in which
molecules have no fixed positions (Figure 12.11). There is a large increase in entropy for this process, as we'll see in the following
worked example.

Figure 12.11 These ice floes melt during the Arctic summer. Some of them refreeze in the winter, but the second law of thermodynamics

predicts that it would be extremely unlikely for the water molecules contained in these particular floes to reform in the distinctive alligator-

like shape they possessed when this picture was taken in the summer of 2009. (Patrick Kelley, U.S. Coast Guard, U.S. Geological Survey)

WORKED EXAMPLE

Entropy Associated with Disorder
Find the increase in entropy of 1.00 kg of ice that is originally at and melts to form water at .
STRATEGY
The change in entropy can be calculated from the definition of once we find the energy, Q, needed to melt the ice.

Solution
The change in entropy is defined as

Here, Q is the heat necessary to melt 1.00 kg of ice and is given by

where m is the mass and is the latent heat of fusion. for water, so

Because Q is the amount of energy heat adds to the ice, its value is positive, and T is the melting temperature of ice,
So the change in entropy is
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Discussion

Figure 12.12 When ice melts, it becomes more disordered and less structured. The systematic arrangement of molecules in a crystal

structure is replaced by a more random and less orderly movement of molecules without fixed locations or orientations. Its entropy

increases because heat transfer occurs into it. Entropy is a measure of disorder.

The change in entropy is positive, because heat transfers energy into the ice to cause the phase change. This is a significant
increase in entropy, because it takes place at a relatively low temperature. It is accompanied by an increase in the disorder of the
water molecules.

Practice Problems
11. If are added by heat to water at , what is the change in entropy?

a.
b.
c.
d.

12. What is the increase in entropy when of ice at melt to form water at ?
a.
b.
c.
d.

Check Your Understanding
13. What is entropy?

a. Entropy is a measure of the potential energy of a system.
b. Entropy is a measure of the net work done by a system.
c. Entropy is a measure of the disorder of a system.
d. Entropy is a measure of the heat transfer of energy into a system.

14. Which forms of energy can be used to do work?
a. Only work is able to do work.
b. Only heat is able to do work.
c. Only internal energy is able to do work.
d. Heat, work, and internal energy are all able to do work.

15. What is the statement for the second law of thermodynamics?
a. All the spontaneous processes result in decreased total entropy of a system.
b. All the spontaneous processes result in increased total entropy of a system.
c. All the spontaneous processes result in decreased or constant total entropy of a system.
d. All the spontaneous processes result in increased or constant total entropy of a system.

16. For heat transferring energy from a high to a low temperature, what usually happens to the entropy of the whole system?
a. It decreases.
b. It must remain constant.
c. The entropy of the system cannot be predicted without specific values for the temperatures.
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d. It increases.

12.4 Applications of Thermodynamics: Heat Engines, Heat
Pumps, and Refrigerators
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain how heat engines, heat pumps, and refrigerators work in terms of the laws of thermodynamics
• Describe thermal efficiency
• Solve problems involving thermal efficiency

Section Key Terms

cyclical process heat engine heat pump

thermal efficiency

Heat Engines, Heat Pumps, and Refrigerators
In this section, we’ll explore how heat engines, heat pumps, and refrigerators operate in terms of the laws of thermodynamics.

One of the most important things we can do with heat is to use it to do work for us. A heat engine does exactly this—it makes
use of the properties of thermodynamics to transform heat into work. Gasoline and diesel engines, jet engines, and steam
turbines that generate electricity are all examples of heat engines.

Figure 12.13 illustrates one of the ways in which heat transfers energy to do work. Fuel combustion releases chemical energy that
heat transfers throughout the gas in a cylinder. This increases the gas temperature, which in turn increases the pressure of the
gas and, therefore, the force it exerts on a movable piston. The gas does work on the outside world, as this force moves the piston
through some distance. Thus, heat transfer of energy to the gas in the cylinder results in work being done.
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Figure 12.13 (a) Heat transfer to the gas in a cylinder increases the internal energy of the gas, creating higher pressure and temperature.

(b) The force exerted on the movable cylinder does work as the gas expands. Gas pressure and temperature decrease during expansion,

indicating that the gas’s internal energy has decreased as it does work. (c) Heat transfer of energy to the environment further reduces

pressure in the gas, so that the piston can more easily return to its starting position.

To repeat this process, the piston needs to be returned to its starting point. Heat now transfers energy from the gas to the
surroundings, so that the gas’s pressure decreases, and a force is exerted by the surroundings to push the piston back through
some distance.

A cyclical process brings a system, such as the gas in a cylinder, back to its original state at the end of every cycle. All heat
engines use cyclical processes.

Heat engines do work by using part of the energy transferred by heat from some source. As shown in Figure 12.14, heat transfers
energy, , from the high-temperature object (or hot reservoir), whereas heat transfers unused energy, , into the low-
temperature object (or cold reservoir), and the work done by the engine is W. In physics, a reservoir is defined as an infinitely
large mass that can take in or put out an unlimited amount of heat, depending upon the needs of the system. The temperature
of the hot reservoir is and the temperature of the cold reservoir is .
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Figure 12.14 (a) Heat transfers energy spontaneously from a hot object to a cold one, as is consistent with the second law of

thermodynamics. (b) A heat engine, represented here by a circle, uses part of the energy transferred by heat to do work. The hot and cold

objects are called the hot and cold reservoirs. Qh is the heat out of the hot reservoir, W is the work output, and Qc is the unused heat into

the cold reservoir.

As noted, a cyclical process brings the system back to its original condition at the end of every cycle. Such a system’s internal
energy, U, is the same at the beginning and end of every cycle—that is, . The first law of thermodynamics states that

where Q is the net heat transfer during the cycle, and W is the net work done by the system. The net heat
transfer is the energy transferred in by heat from the hot reservoir minus the amount that is transferred out to the cold reservoir
( ). Because there is no change in internal energy for a complete cycle ( ), we have

so that

Therefore, the net work done by the system equals the net heat into the system, or

for a cyclical process.

Because the hot reservoir is heated externally, which is an energy-intensive process, it is important that the work be done as
efficiently as possible. In fact, we want W to equal , and for there to be no heat to the environment (that is, ).
Unfortunately, this is impossible. According to the second law of thermodynamics, heat engines cannot have perfect conversion
of heat into work. Recall that entropy is a measure of the disorder of a system, which is also how much energy is unavailable to
do work. The second law of thermodynamics requires that the total entropy of a system either increases or remains constant in
any process. Therefore, there is a minimum amount of that cannot be used for work. The amount of heat rejected to the cold
reservoir, depends upon the efficiency of the heat engine. The smaller the increase in entropy, , the smaller the value of

, and the more heat energy is available to do work.

Heat pumps, air conditioners, and refrigerators utilize heat transfer of energy from low to high temperatures, which is the
opposite of what heat engines do. Heat transfers energy from a cold reservoir and delivers energy into a hot one. This
requires work input, W, which produces a transfer of energy by heat. Therefore, the total heat transfer to the hot reservoir is

The purpose of a heat pump is to transfer energy by heat to a warm environment, such as a home in the winter. The great
advantage of using a heat pump to keep your home warm rather than just burning fuel in a fireplace or furnace is that a heat
pump supplies . Heat comes from the outside air, even at a temperature below freezing, to the indoor space.
You only pay for W, and you get an additional heat transfer of from the outside at no cost. In many cases, at least twice as
much energy is transferred to the heated space as is used to run the heat pump. When you burn fuel to keep warm, you pay for
all of it. The disadvantage to a heat pump is that the work input (required by the second law of thermodynamics) is sometimes
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more expensive than simply burning fuel, especially if the work is provided by electrical energy.

The basic components of a heat pump are shown in Figure 12.15. A working fluid, such as a refrigerant, is used. In the outdoor
coils (the evaporator), heat enters the working fluid from the cold outdoor air, turning it into a gas.

Figure 12.15 A simple heat pump has four basic components: (1) an evaporator, (2) a compressor, (3) a condenser, and (4) an expansion

valve. In the heating mode, heat transfers to the working fluid in the evaporator (1) from the colder, outdoor air, turning it into a gas. The

electrically driven compressor (2) increases the temperature and pressure of the gas and forces it into the condenser coils (3) inside the

heated space. Because the temperature of the gas is higher than the temperature in the room, heat transfers energy from the gas to the

room as the gas condenses into a liquid. The working fluid is then cooled as it flows back through an expansion valve (4) to the outdoor

evaporator coils.

The electrically driven compressor (work input W) raises the temperature and pressure of the gas and forces it into the
condenser coils that are inside the heated space. Because the temperature of the gas is higher than the temperature inside the
room, heat transfers energy to the room, and the gas condenses into a liquid. The liquid then flows back through an expansion
(pressure-reducing) valve. The liquid, having been cooled through expansion, returns to the outdoor evaporator coils to resume
the cycle.

The quality of a heat pump is judged by how much energy is transferred by heat into the warm space ( ) compared with how
much input work (W) is required.

Figure 12.16 Heat pumps, air conditioners, and refrigerators are heat engines operated backward. Almost every home contains a

refrigerator. Most people don’t realize that they are also sharing their homes with a heat pump.

Air conditioners and refrigerators are designed to cool substances by transferring energy by heat out of a cool environment
to a warmer one, where heat is given up. In the case of a refrigerator, heat is moved out of the inside of the fridge into the
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surrounding room. For an air conditioner, heat is transferred outdoors from inside a home. Heat pumps are also often used in a
reverse setting to cool rooms in the summer.

As with heat pumps, work input is required for heat transfer of energy from cold to hot. The quality of air conditioners and
refrigerators is judged by how much energy is removed by heat from a cold environment, compared with how much work,
W, is required. So, what is considered the energy benefit in a heat pump, is considered waste heat in a refrigerator.

Thermal Efficiency
In the conversion of energy into work, we are always faced with the problem of getting less out than we put in. The problem is
that, in all processes, there is some heat that transfers energy to the environment—and usually a very significant amount at
that. A way to quantify how efficiently a machine runs is through a quantity called thermal efficiency.

We define thermal efficiency, Eff, to be the ratio of useful energy output to the energy input (or, in other words, the ratio of what
we get to what we spend). The efficiency of a heat engine is the output of net work, W, divided by heat-transferred energy, ,
into the engine; that is

An efficiency of 1, or 100 percent, would be possible only if there were no heat to the environment ( ).

TIPS FOR SUCCESS
All values of heat ( and ) are positive; there is no such thing as negative heat. The direction of heat is indicated by a
plus or minus sign. For example, is out of the system, so it is preceded by a minus sign in the equation for net heat.

Solving Thermal Efficiency Problems

WORKED EXAMPLE

Daily Work Done by a Coal-Fired Power Station and Its Efficiency
A coal-fired power station is a huge heat engine. It uses heat to transfer energy from burning coal to do work to turn turbines,
which are used then to generate electricity. In a single day, a large coal power station transfers by heat from
burning coal and transfers by heat into the environment. (a) What is the work done by the power station? (b)
What is the efficiency of the power station?
STRATEGY
We can use to find the work output, W, assuming a cyclical process is used in the power station. In this process,
water is boiled under pressure to form high-temperature steam, which is used to run steam turbine-generators and then
condensed back to water to start the cycle again.

Solution
Work output is given by

Substituting the given values,

STRATEGY
The efficiency can be calculated with , because is given, and work, W, was calculated in the first part of this

example.

Solution
Efficiency is given by
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The work, W, is found to be , and is given ( ), so the efficiency is

Discussion
The efficiency found is close to the usual value of 42 percent for coal-burning power stations. It means that fully 59.2 percent of
the energy is transferred by heat to the environment, which usually results in warming lakes, rivers, or the ocean near the power
station and is implicated in a warming planet generally. While the laws of thermodynamics limit the efficiency of such
plants—including plants fired by nuclear fuel, oil, and natural gas—the energy transferred by heat to the environment could be,
and sometimes is, used for heating homes or for industrial processes.

Practice Problems
17. A heat engine is given by heat and releases by heat to the environment. What is the amount of work done by the

system?
a.
b.
c.
d.

18. A heat engine takes in 6.0 kJ from heat and produces waste heat of 4.8 kJ. What is its efficiency?
a. 25 percent
b. 2.50 percent
c. 2.00 percent
d. 20 percent

Check Your Understanding
19. What is a heat engine?

a. A heat engine converts mechanical energy into thermal energy.
b. A heat engine converts thermal energy into mechanical energy.
c. A heat engine converts thermal energy into electrical energy.
d. A heat engine converts electrical energy into thermal energy.

20. Give an example of a heat engine.
a. A generator
b. A battery
c. A water pump
d. A car engine

21. What is thermal efficiency?
a. Thermal efficiency is the ratio of work input to the energy input.
b. Thermal efficiency is the ratio of work output to the energy input.
c. Thermal efficiency is the ratio of work input to the energy output.
d. Thermal efficiency is the ratio of work output to the energy output.

22. What is the mathematical expression for thermal efficiency?

a.

b.

c.

d.
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KEY TERMS
Boltzmann constant constant with the value k = 1.38×10−23

J/K, which is used in the ideal gas law
cyclical process process in which a system is brought back

to its original state at the end of every cycle
entropy measurement of a system's disorder and how

much energy is not available to do work in a system
first law of thermodynamics states that the change in

internal energy of a system equals the net energy transfer
by heat into the system minus the net work done by the
system

heat engine machine that uses energy transfer by heat to
do work

heat pump machine that generates the heat transfer of
energy from cold to hot

ideal gas law physical law that relates the pressure and
volume of a gas to the number of gas molecules or atoms,
or number of moles of gas, and the absolute temperature

of the gas
internal energy sum of the kinetic and potential energies

of a system’s constituent particles (atoms or molecules)
pressure force per unit area perpendicular to the force,

over which the force acts
second law of thermodynamics states that the total

entropy of a system either increases or remains constant
in any spontaneous process; it never decreases

thermal efficiency ratio of useful energy output to the
energy input

thermal equilibrium condition in which heat no longer
transfers energy between two objects that are in contact;
the two objects have the same temperature

zeroth law of thermodynamics states that if two objects
are in thermal equilibrium, and a third object is in
thermal equilibrium with one of those objects, it is also in
thermal equilibrium with the other object

SECTION SUMMARY
12.1 Zeroth Law of
Thermodynamics: Thermal
Equilibrium

• Systems are in thermal equilibrium when they have the
same temperature.

• Thermal equilibrium occurs when two bodies are in
contact with each other and can freely exchange energy.

• The zeroth law of thermodynamics states that when two
systems, A and B, are in thermal equilibrium with each
other, and B is in thermal equilibrium with a third
system, C, then A is also in thermal equilibrium with C.

12.2 First law of Thermodynamics:
Thermal Energy and Work

• Pressure is the force per unit area over which the force
is applied perpendicular to the area.

• Thermal expansion is the increase, or decrease, of the
size (length, area, or volume) of a body due to a change
in temperature.

• The ideal gas law relates the pressure and volume of a
gas to the number of gas particles (atoms or molecules)
and the absolute temperature of the gas.

• Heat and work are the two distinct methods of energy
transfer.

• Heat is energy transferred solely due to a temperature
difference.

• The first law of thermodynamics is given as
, where is the change in internal

energy of a system, Q is the net energy transfer into the
system by heat (the sum of all transfers by heat into and
out of the system), and W is the net work done by the

system (the sum of all energy transfers by work out of or
into the system).

• Both Q and W represent energy in transit; only
represents an independent quantity of energy capable
of being stored.

• The internal energy U of a system depends only on the
state of the system, and not how it reached that state.

12.3 Second Law of
Thermodynamics: Entropy

• Entropy is a measure of a system's disorder: the greater
the disorder, the larger the entropy.

• Entropy is also the reduced availability of energy to do
work.

• The second law of thermodynamics states that, for any
spontaneous process, the total entropy of a system
either increases or remains constant; it never decreases.

• Heat transfers energy spontaneously from higher- to
lower-temperature bodies, but never spontaneously in
the reverse direction.

12.4 Applications of
Thermodynamics: Heat Engines,
Heat Pumps, and Refrigerators

• Heat engines use the heat transfer of energy to do work.
• Cyclical processes are processes that return to their

original state at the end of every cycle.
• The thermal efficiency of a heat engine is the ratio of

work output divided by the amount of energy input.
• The amount of work a heat engine can do is determined

by the net heat transfer of energy during a cycle; more
waste heat leads to less work output.
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• Heat pumps draw energy by heat from cold outside air
and use it to heat an interior room.

• A refrigerator is a type of heat pump; it takes energy

from the warm air from the inside compartment and
transfers it to warmer exterior air.

KEY EQUATIONS
12.2 First law of Thermodynamics:
Thermal Energy and Work

ideal gas law

first law of thermodynamics

pressure

pressure–volume work

12.3 Second Law of
Thermodynamics: Entropy

change in entropy

12.4 Applications of
Thermodynamics: Heat Engines,
Heat Pumps, and Refrigerators

thermal efficiency of a heat engine

work output for a cyclical process

CHAPTER REVIEW
Concept Items
12.1 Zeroth Law of Thermodynamics:
Thermal Equilibrium
1. When are two bodies in thermal equilibrium?

a. When they are in thermal contact and are at
different pressures

b. When they are not in thermal contact but are at the
same pressure

c. When they are not in thermal contact but are at
different temperatures

d. When they are in thermal contact and are at the
same temperature

2. What is thermal contact?
a. Two objects are said to be in thermal contact when

they are in contact with each other in such a way
that the transfer of energy by heat can occur
between them.

b. Two objects are said to be in thermal contact when
they are in contact with each other in such a way
that the transfer of energy by mass can occur
between them.

c. Two objects are said to be in thermal contact when
they neither lose nor gain energy by heat. There is no
transfer of energy between them.

d. Two objects are said to be in thermal contact when
they only gain energy by heat. There is transfer of
energy between them.

3. To which mathematical property is the zeroth law of

thermodynamics similar?
a. Associative property
b. Commutative property
c. Distributive property
d. Transitive property

12.2 First law of Thermodynamics: Thermal
Energy and Work
4. Why does thermal expansion occur?

a. An increase in temperature causes intermolecular
distances to increase.

b. An increase in temperature causes intermolecular
distances to decrease.

c. An increase in temperature causes an increase in the
work done on the system.

d. An increase in temperature causes an increase in the
work done by the system.

5. How does pressure-volume work relate to heat and
internal energy of a system?
a. The energy added to a system by heat minus the

change in the internal energy of that system is equal
to the pressure-volume work done by the system.

b. The sum of the energy released by a system by heat
and the change in the internal energy of that system
is equal to the pressure-volume work done by the
system.

c. The product of the energy added to a system by heat
and the change in the internal energy of that system
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is equal to the pressure-volume work done by the
system.

d. If the energy added to a system by heat is divided by
the change in the internal energy of that system, the
quotient is equal to the pressure-volume work done
by the system.

6. On what does internal energy depend?
a. The path of energy changes in the system
b. The state of the system
c. The size of the system
d. The shape of the system

7. The first law of thermodynamics helps us understand the
relationships among which three quantities?
a. Heat, work, and internal energy
b. Heat, work, and external energy
c. Heat, work, and enthalpy
d. Heat, work, and entropy

12.3 Second Law of Thermodynamics:
Entropy
8. Air freshener is sprayed from a bottle. The molecules

spread throughout the room and cannot make their way
back into the bottle. Why is this the case?
a. The entropy of the molecules increases.
b. The entropy of the molecules decreases.
c. The heat content (enthalpy, or total energy available

for heat) of the molecules increases.
d. The heat content (enthalpy, or total energy available

for heat) of the molecules decreases.

9. Give an example of entropy as experienced in everyday
life.
a. rotation of Earth
b. formation of a solar eclipse
c. filling a car tire with air
d. motion of a pendulum bob

12.4 Applications of Thermodynamics:
Heat Engines, Heat Pumps, and
Refrigerators
10. What is the quality by which air conditioners are

judged?
a. The amount of energy generated by heat from a hot

environment, compared with the required work
input

b. The amount of energy transferred by heat from a
cold environment, compared with the required
work input

c. The amount of energy transferred by heat from a
hot environment, compared with the required work
output

d. The amount of energy transferred by heat from a
cold environment, compared with the required
work output

11. Why is the efficiency of a heat engine never 100 percent?
a. Some energy is always gained by heat from the

environment.
b. Some energy is always lost by heat to the

environment.
c. Work output is always greater than energy input.
d. Work output is infinite for any energy input.

12. What is a cyclic process?
a. A process in which the system returns to its original

state at the end of the cycle
b. A process in which the system does not return to its

original state at the end of the cycle
c. A process in which the system follows the same

path for every cycle
d. A process in which the system follows a different

path for every cycle

Critical Thinking Items
12.1 Zeroth Law of Thermodynamics:
Thermal Equilibrium
13. What are the necessary conditions for energy transfer by

heat to occur between two bodies through the process of
conduction?
a. They should be at the same temperature, and they

should be in thermal contact.
b. They should be at the same temperature, and they

should not be in thermal contact.
c. They should be at different temperatures, and they

should be in thermal contact.
d. They should be at different temperatures, and they

should not be in thermal contact.

14. Oil is heated in a pan on a hot plate. The pan is in
thermal equilibrium with the hot plate and also with the
oil. The temperature of the hot plate is 150 °C . What is
the temperature of the oil?
a. 160 °C
b. 150 °C
c. 140 °C
d. 130 °C

12.2 First law of Thermodynamics: Thermal
Energy and Work
15. When an inflated balloon experiences a decrease in size,
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the air pressure inside the balloon remains nearly
constant. If there is no transfer of energy by heat to or
from the balloon, what physical change takes place in the
balloon?
a. The average kinetic energy of the gas particles

decreases, so the balloon becomes colder.
b. The average kinetic energy of the gas particles

increases, so the balloon becomes hotter.
c. The average potential energy of the gas particles

decreases, so the balloon becomes colder.
d. The average potential energy of the gas particles

increases, so the balloon becomes hotter.

16. When heat adds energy to a system, what is likely to
happen to the pressure and volume of the system?
a. Pressure and volume may both decrease with added

energy.
b. Pressure and volume may both increase with added

energy.
c. Pressure must increase with added energy, while

volume must remain constant.
d. Volume must decrease with added energy, while

pressure must remain constant.

17. If more energy is transferred into the system by net heat
as compared to the net work done by the system, what
happens to the difference in energy?
a. It is transferred back to its surroundings.
b. It is stored in the system as internal energy.
c. It is stored in the system as potential energy.
d. It is stored in the system as entropy.

18. Air is pumped into a car tire, causing its temperature to
increase. In another tire, the temperature increase is
due to exposure to the sun. Is it possible to tell what
caused the temperature increase in each tire? Explain
your answer.
a. No, because it is a chemical change, and the cause

of that change does not matter; the final state of
both systems are the same.

b. Although the final state of each system is identical,
the source is different in each case.

c. No, because the changes in energy for both systems
are the same, and the cause of that change does not
matter; the state of each system is identical.

d. Yes, the changes in the energy for both systems are
the same, but the causes of that change are
different, so the states of each system are not
identical.

19. How does the transfer of energy from the sun help
plants?
a. Plants absorb solar energy from the sun and utilize

it during the fertilization process.
b. Plants absorb solar energy from the sun and utilize

it during the process of photosynthesis to turn it
into plant matter.

c. Plants absorb solar energy from the sun and utilize
it to increase the temperature inside them.

d. Plants absorb solar energy from the sun and utilize
it during the shedding of their leaves and fruits.

12.3 Second Law of Thermodynamics:
Entropy
20. If an engine were constructed to perform such that

there would be no losses due to friction, what would be
its efficiency?
a. It would be 0 percent.
b. It would be less than 100 percent.
c. It would be 100 percent.
d. It would be greater than 100 percent.

21. Entropy never decreases in a spontaneous process. Give
an example to support this statement.
a. The transfer of energy by heat from colder bodies to

hotter bodies is a spontaneous process in which the
entropy of the system of bodies increases.

b. The melting of an ice cube placed in a room causes
an increase in the entropy of the room.

c. The dissolution of salt in water is a spontaneous
process in which the entropy of the system
increases.

d. A plant uses energy from the sun and converts it
into sugar molecules by the process of
photosynthesis.

12.4 Applications of Thermodynamics:
Heat Engines, Heat Pumps, and
Refrigerators
22. What is the advantage of a heat pump as opposed to

burning fuel (as in a fireplace) for keeping warm?
a. A heat pump supplies energy by heat from the cold,

outside air.
b. A heat pump supplies energy generated by the

work done.
c. A heat pump supplies energy by heat from the cold,

outside air and also from the energy generated by
the work done.

d. A heat pump supplies energy not by heat from the
cold, outside air, nor from the energy generated by
the work done, but from more accessible sources.

23. What is thermal efficiency of an engine? Can it ever be
100 percent? Why or why not?
a. Thermal efficiency is the ratio of the output (work)

to the input (heat). It is always 100 percent.
b. Thermal efficiency is the ratio of the output (heat)
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to the input (work). It is always 100 percent.
c. Thermal efficiency is the ratio of the output (heat)

to the input (work). It is never 100 percent.
d. Thermal efficiency is the ratio of the output (work)

to the input (heat). It is never 100 percent.

24. When would 100 percent thermal efficiency be possible?
a. When all energy is transferred by heat to the

environment
b. When mass transferred to the environment is zero
c. When mass transferred to the environment is at a

maximum
d. When no energy is transferred by heat to the

environment

Problems
12.2 First law of Thermodynamics: Thermal
Energy and Work
25. Some amount of energy is transferred by heat into a

system. The net work done by the system is , while
the increase in its internal energy is . What is the
amount of net heat?
a.
b.
c.
d.

26. Eighty joules are added by heat to a system, while it
does of work. Later, are added by heat to the
system, and it does of work. What is the change in
the system’s internal energy?
a.
b.
c.
d.

12.4 Applications of Thermodynamics:
Heat Engines, Heat Pumps, and
Refrigerators
27. A coal power station functions at 40.0 percent

efficiency. What is the amount of work it does if it takes
in 1.20×1012 J by heat?
a. 3×1010 J
b. 4.8×1011 J
c. 3×1012 J
d. 4.8×1013 J

28. A heat engine functions with 70.7 percent thermal
efficiency and consumes 12.0 kJ from heat daily. If its
efficiency were raised to 75.0 percent, how much energy
from heat would be saved daily, while providing the
same output?
a. −10.8 kJ
b. −1.08 kJ
c. 0.7 kJ
d. 7 kJ

Performance Task
12.4 Applications of Thermodynamics:
Heat Engines, Heat Pumps, and
Refrigerators
29. You have been tasked to design and construct a

thermometer that works on the principle of thermal
expansion. There are four materials available for you to
test, each of which will find use under different sets of
conditions and temperature ranges:

Materials
• Four sample materials with similar mass or

volume: copper, steel, water, and alcohol (ethanol
or isopropanol)

• Oven or similar heating source
• Instrument (e.g., meter ruler, Vernier calipers, or

micrometer) for measuring changes in dimension
• Balance for measuring mass

Procedure
1. Design a safe experiment to analyze the thermal

expansion properties of each material.
2. Write down the materials needed for your

experiment and the procedure you will follow.
Make sure that you include every detail so that the
experiment can be repeated by others.

3. Select an appropriate material to measure
temperature over a predecided temperature range,
and give reasons for your choice.

4. Calibrate your instrument to measure temperature
changes accurately.

a. Which physical quantities are affected by
temperature change and thermal expansion?

b. How do such properties as specific heat and
thermal conductivity affect the use of each material
as a thermometer?

c. Does a change of phase take place for any of the
tested materials over the temperature range to be
examined?

d. What are your independent and dependent
variables for this series of tests? Which variables
need to be controlled in the experiment?
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e. What are your sources of error?
f. Can all the tested materials be used effectively in

the same ranges of temperature? Which

applications might be suitable for one or more of
the tested substances but not the others?

TEST PREP
Multiple Choice
12.1 Zeroth Law of Thermodynamics:
Thermal Equilibrium
30. Which law of thermodynamics describes thermal

equilibrium?
a. zeroth
b. first
c. second
d. third

31. Name any two industries in which the principles of
thermodynamics are used.
a. aerospace and information technology (IT)

industries
b. industrial manufacturing and aerospace
c. mining and textile industries
d. mining and agriculture industries

12.2 First law of Thermodynamics: Thermal
Energy and Work
32. What is the value of the Boltzmann constant?

a.
b.
c.
d.

33. Which of the following involves work done BY a system?
a. increasing internal energy
b. compression
c. expansion
d. cooling

34. Which principle does the first law of thermodynamics
state?
a. the ideal gas law
b. the transitive property of equality
c. the law of conservation of energy
d. the principle of thermal equilibrium

35. What is the change in internal energy of a system when
and ?

a.
b.
c.
d.

36. When does a real gas behave like an ideal gas?

a. A real gas behaves like an ideal gas at high
temperature and low pressure.

b. A real gas behaves like an ideal gas at high
temperature and high pressure.

c. A real gas behaves like an ideal gas at low
temperature and low pressure.

d. A real gas behaves like an ideal gas at low
temperature and high pressure.

12.3 Second Law of Thermodynamics:
Entropy
37. In an engine, what is the unused energy converted into?

a. internal energy
b. pressure
c. work
d. heat

38. It is natural for systems in the universe to _____
spontaneously.
a. become disordered
b. become ordered
c. produce heat
d. do work

39. If is and is , what is the change in
entropy?
a.
b.
c.
d.

40. Why does entropy increase during a spontaneous
process?
a. Entropy increases because energy always transfers

spontaneously from a dispersed state to a
concentrated state.

b. Entropy increases because energy always transfers
spontaneously from a concentrated state to a
dispersed state.

c. Entropy increases because pressure always
increases spontaneously.

d. Entropy increases because temperature of any
system always increases spontaneously.

41. A system consists of ice melting in a glass of water. What
happens to the entropy of this system?
a. The entropy of the ice decreases, while the entropy

of the water cannot be predicted without more
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specific information.
b. The entropy of the system remains constant.
c. The entropy of the system decreases.
d. The entropy of the system increases.

12.4 Applications of Thermodynamics:
Heat Engines, Heat Pumps, and
Refrigerators
42. Which equation represents the net work done by a

system in a cyclic process?

a.

b.
c.
d.

43. Which of these quantities needs to be zero for efficiency
to be 100 percent?
a. ΔU
b. W
c. Qh

d. Qc

44. Which of the following always has the greatest value in a
system having 80 percent thermal efficiency?
a. ΔU

b. W
c. Qh

d. Qc

45. In the equation Q = Qh − Qc, what does the negative sign
indicate?
a. Heat transfer of energy is always negative.
b. Heat transfer can only occur in one direction.
c. Heat is directed into the system from the

surroundings outside the system.
d. Heat is directed out of the system.

46. What is the purpose of a heat pump?
a. A heat pump uses work to transfer energy by heat

from a colder environment to a warmer
environment.

b. A heat pump uses work to transfer energy by heat
from a warmer environment to a colder
environment.

c. A heat pump does work by using heat to convey
energy from a colder environment to a warmer
environment.

d. A heat pump does work by using heat to convey
energy from a warmer environment to a colder
environment.

Short Answer
12.1 Zeroth Law of Thermodynamics:
Thermal Equilibrium
47. What does green energy development entail?

a. Green energy involves finding new ways to harness
clean and renewable alternative energy sources.

b. Green energy involves finding new ways to
conserve alternative energy sources.

c. Green energy involves decreasing the efficiency of
nonrenewable energy resources.

d. Green energy involves finding new ways to harness
nonrenewable energy resources.

48. Why are the sun and Earth not in thermal equilibrium?
a. The mass of the sun is much greater than the mass

of Earth.
b. There is a vast amount of empty space between the

sun and Earth.
c. The diameter of the sun is much greater than the

diameter of Earth.
d. The sun is in thermal contact with Earth.

12.2 First law of Thermodynamics: Thermal
Energy and Work
49. If a fixed quantity of an ideal gas is held at a constant

volume, which variable relates to pressure, and what is
that relation?
a. Temperature; inverse proportionality
b. Temperature, direct proportionality to square root

c. Temperature; direct proportionality
d. Temperature; direct proportionality to square

50. When is volume directly proportional to temperature?
a. when the pressure of the gas is variable
b. when the pressure of the gas is constant
c. when the mass of the gas is variable
d. when the mass of the gas is constant

51. For fluids, what can work be defined as?
a. pressure acting over the change in depth
b. pressure acting over the change in temperature
c. temperature acting over the change in volume
d. pressure acting over the change in volume

52. In the equation , what does
indicate?
a. the work done on the system
b. the work done by the system
c. the heat into the system
d. the heat out of the system
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53. By convention, if Q is positive, what is the direction in
which heat transfers energy with regard to the system?
a. The direction of the heat transfer of energy

depends on the changes in W, regardless of the
sign of Q.

b. The direction of Q cannot be determined from just
the sign of Q.

c. The direction of net heat transfer of energy will be
out of the system.

d. The direction of net heat transfer of energy will be
into the system.

54. What is net transfer of energy by heat?
a. It is the sum of all energy transfers by heat into the

system.
b. It is the product of all energy transfers by heat into

the system.
c. It is the sum of all energy transfers by heat into and

out of the system.
d. It is the product of all energy transfers by heat into

and out of the system.

55. Three hundred ten joules of heat enter a system, after
which the system does of work. What is the
change in its internal energy? Would this amount
change if the energy transferred by heat were added
after the work was done instead of before?
a. ; this would change if heat added energy

after the work was done
b. ; this would change if heat added energy after

the work was done
c. ; this would not change even if heat added

energy after the work was done
d. ; this would not change even if heat added

energy after the work was done

56. Ten joules are transferred by heat into a system,
followed by another . What is the change in the
system’s internal energy? What would be the difference
in this change if of energy were added by heat to
the system at once?
a. ; the change in internal energy would be same

even if the heat added the energy at once
b. ; the change in internal energy would be same

even if the heat added the energy at once
c. ; the change in internal energy would be more

if the heat added the energy at once
d. ; the change in internal energy would be more

if the heat added the energy at once

12.3 Second Law of Thermodynamics:
Entropy
57. How does the entropy of a system depend on how the

system reaches a given state?

a. Entropy depends on the change of phase of a
system, but not on any other state conditions.

b. Entropy does not depend on how the final state is
reached from the initial state.

c. Entropy is least when the path between the initial
state and the final state is the shortest.

d. Entropy is least when the path between the initial
state and the final state is the longest.

58. Which sort of thermal energy do molecules in a solid
possess?
a. electric potential energy
b. gravitational potential energy
c. translational kinetic energy
d. vibrational kinetic energy

59. A cold object in contact with a hot one never
spontaneously transfers energy by heat to the hot object.
Which law describes this phenomenon?
a. the first law of thermodynamics
b. the second law of thermodynamics
c. the third law of thermodynamics
d. the zeroth law of thermodynamics

60. How is it possible for us to transfer energy by heat from
cold objects to hot ones?
a. by doing work on the system
b. by having work done by the system
c. by increasing the specific heat of the cold body
d. by increasing the specific heat of the hot body

61. What is the change in entropy caused by melting 5.00 kg
of ice at 0 °C ?
a. 0 J/K
b. 6.11×103 J/K
c. 6.11×104 J/K
d. ∞J/K

62. What is the amount of heat required to cause a change
of in the entropy of a system at ?
a.
b.
c.
d.

12.4 Applications of Thermodynamics:
Heat Engines, Heat Pumps, and
Refrigerators
63. In a refrigerator, what is the function of an evaporator?

a. The evaporator converts gaseous refrigerant into
liquid.

b. The evaporator converts solid refrigerant into
liquid.

c. The evaporator converts solid refrigerant into gas.
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d. The evaporator converts liquid refrigerant into gas.

64. Which component of an air conditioner converts gas
into liquid?
a. the condenser
b. the compressor
c. the evaporator
d. the thermostat

65. What is one example for which calculating thermal
efficiency is of interest?
a. A wind turbine
b. An electric pump
c. A bicycle
d. A car engine

66. How is the efficiency of a refrigerator or heat pump
expressed?
a.

b.

c.

d.

67. How can you mathematically express thermal efficiency
in terms of and ?

a.

b.

c.

d.

68. How can you calculate percentage efficiency?
a. percentage efficiency

b. percentage efficiency
c. percentage efficiency
d. percentage efficiency

Extended Response
12.1 Zeroth Law of Thermodynamics:
Thermal Equilibrium
69. What is the meaning of efficiency in terms of a car

engine?
a. An engine’s efficiency equals the sum of useful

energy (work) and the input energy.
b. An engine’s efficiency equals the proportion of

useful energy (work) to the input energy.
c. An engine’s efficiency equals the product of useful

energy (work) and the input energy.
d. An engine’s efficiency equals the difference

between the useful energy (work) and the input
energy.

12.2 First law of Thermodynamics: Thermal
Energy and Work
70. Why does a bridge have expansion joints?

a. because the bridge expands and contracts with the
change in temperature

b. because the bridge expands and contracts with the
change in motion of objects moving on the bridge

c. because the bridge expands and contracts with the
change in total load on the bridge

d. because the bridge expands and contracts with the
change in magnitude of wind blowing

71. Under which conditions will the work done by the gas in
a system increase?
a. It will increase when a large amount of energy is

added to the system, and that energy causes an
increase in the gas’s volume, its pressure, or both.

b. It will increase when a large amount of energy is
extracted from the system, and that energy causes
an increase in the gas’s volume, its pressure, or
both.

c. It will increase when a large amount of energy is
added to the system, and that energy causes a
decrease in the gas’s volume, its pressure, or both.

d. It will increase when a large amount of energy is
extracted from the system, and that energy causes a
decrease in the gas’s volume, its pressure, or both.

72. How does energy transfer by heat aid in body
metabolism?
a. The energy is given to the body through the work

done by the body (W) and through the intake of
food, which may also be considered as the work
done on the body. The transfer of energy out of the
body is by heat (−Q) .

b. The energy given to the body is by the intake of
food, which may also be considered as the work
done on the body. The transfer of energy out of the
body is by heat (−Q) and the work done by the body
(W) .

c. The energy given to the body is by the transfer of
energy by heat (Q) into the body, which may also be
considered as the work done on the body. The
transfer of energy out of the body is the work done
by the body (W) .

d. The energy given to the body is by the transfer of
energy by heat (Q) inside the body. The transfer of
energy out of the body is by the intake of food and
the work done by the body (W) .

73. Two distinct systems have the same amount of stored
internal energy. Five hundred joules are added by heat to
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the first system, and 300 J are added by heat to the
second system. What will be the change in internal
energy of the first system if it does 200 J of work? How
much work will the second system have to do in order to
have the same internal energy?
a. 700 J; 0 J
b. 300 J; 300 J
c. 700 J; 300 J
d. 300 J; 0 J

12.3 Second Law of Thermodynamics:
Entropy
74. Why is it not possible to convert all available energy into

work?
a. Due to the entropy of a system, some energy is

always unavailable for work.
b. Due to the entropy of a system, some energy is

always available for work.
c. Due to the decrease in internal energy of a system,

some energy is always made unavailable for work.
d. Due to the increase in internal energy of a system,

some energy is always made unavailable for work.

75. Why does entropy increase when ice melts into water?
a. Melting converts the highly ordered solid structure

into a disorderly liquid, thereby increasing entropy.
b. Melting converts the highly ordered liquid into a

disorderly solid structure, thereby increasing
entropy.

c. Melting converts the highly ordered solid structure
into a disorderly solid structure, thereby increasing
entropy.

d. Melting converts the highly ordered liquid into a
disorderly liquid, thereby increasing entropy.

76. Why is change in entropy lower for higher
temperatures?
a. Increase in the disorder in the substance is low for

high temperature.

b. Increase in the disorder in the substance is high for
high temperature.

c. Decrease in the disorder in the substance is low for
high temperature.

d. Decrease in the disorder in the substance is high
for high temperature.

12.4 Applications of Thermodynamics:
Heat Engines, Heat Pumps, and
Refrigerators
77. In the equation W = Qh − Qc, if the value of Qc were

equal to zero, what would it signify?
a. The efficiency of the engine is 75 percent.
b. The efficiency of the engine is 25 percent.
c. The efficiency of the engine is 0 percent.
d. The efficiency of the engine is 100 percent.

78. Can the value of thermal efficiency be greater than 1?
Why or why not?
a. No, according to the first law of thermodynamics,

energy output can never be more than the energy
input.

b. No, according to the second law of
thermodynamics, energy output can never be more
than the energy input.

c. Yes, according to the first law of thermodynamics,
energy output can be more than the energy input.

d. Yes, according to the second law of
thermodynamics, energy output can be more than
the energy input.

79. A coal power station transfers 3.0×1012 J by heat from
burning coal and transfers 1.5×1012 J by heat into the
environment. What is the efficiency of the power
station?
a. 0.33
b. 0.5
c. 0.66
d. 1
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INTRODUCTION

CHAPTER 13
Waves and Their Properties

13.1 Types of Waves

13.2 Wave Properties: Speed, Amplitude, Frequency, and Period

13.3 Wave Interaction: Superposition and Interference

Recall from the chapter on Motion in Two Dimensions that oscillations—the back-and-forth movement
between two points—involve force and energy. Some oscillations create waves, such as the sound waves created by plucking a
guitar string. Other examples of waves include earthquakes and visible light. Even subatomic particles, such as electrons, can
behave like waves. You can make water waves in a swimming pool by slapping the water with your hand. Some of these waves,
such as water waves, are visible; others, such as sound waves, are not. But every wave is a disturbance that moves from its source
and carries energy. In this chapter, we will learn about the different types of waves, their properties, and how they interact with
one another.

Figure 13.1 Waves in the ocean behave similarly to all other types of waves. (Steve Jurveston, Flickr)

Chapter Outline



13.1 Types of Waves
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Define mechanical waves and medium, and relate the two
• Distinguish a pulse wave from a periodic wave
• Distinguish a longitudinal wave from a transverse wave and give examples of such waves

Section Key Terms
longitudinal wave mechanical wave medium wave
periodic wave pulse wave transverse wave

Mechanical Waves
What do we mean when we say something is a wave? A wave is a disturbance that travels or propagates from the place where it
was created. Waves transfer energy from one place to another, but they do not necessarily transfer any mass. Light, sound, and
waves in the ocean are common examples of waves. Sound and water waves are mechanical waves; meaning, they require a
medium to travel through. The medium may be a solid, a liquid, or a gas, and the speed of the wave depends on the material
properties of the medium through which it is traveling. However, light is not a mechanical wave; it can travel through a vacuum
such as the empty parts of outer space.

A familiar wave that you can easily imagine is the water wave. For water waves, the disturbance is in the surface of the water, an
example of which is the disturbance created by a rock thrown into a pond or by a swimmer splashing the water surface
repeatedly. For sound waves, the disturbance is caused by a change in air pressure, an example of which is when the oscillating
cone inside a speaker creates a disturbance. For earthquakes, there are several types of disturbances, which include the
disturbance of Earth’s surface itself and the pressure disturbances under the surface. Even radio waves are most easily
understood using an analogy with water waves. Because water waves are common and visible, visualizing water waves may help
you in studying other types of waves, especially those that are not visible.

Water waves have characteristics common to all waves, such as amplitude, period, frequency, and energy, which we will discuss
in the next section.

Pulse Waves and Periodic Waves
If you drop a pebble into the water, only a few waves may be generated before the disturbance dies down, whereas in a wave
pool, the waves are continuous. A pulse wave is a sudden disturbance in which only one wave or a few waves are generated, such
as in the example of the pebble. Thunder and explosions also create pulse waves. A periodic wave repeats the same oscillation for
several cycles, such as in the case of the wave pool, and is associated with simple harmonic motion. Each particle in the medium
experiences simple harmonic motion in periodic waves by moving back and forth periodically through the same positions.

Consider the simplified water wave in Figure 13.2. This wave is an up-and-down disturbance of the water surface, characterized
by a sine wave pattern. The uppermost position is called the crest and the lowest is the trough. It causes a seagull to move up and
down in simple harmonic motion as the wave crests and troughs pass under the bird.

Figure 13.2 An idealized ocean wave passes under a seagull that bobs up and down in simple harmonic motion.
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Longitudinal Waves and Transverse Waves
Mechanical waves are categorized by their type of motion and fall into any of two categories: transverse or longitudinal. Note
that both transverse and longitudinal waves can be periodic. A transverse wave propagates so that the disturbance is
perpendicular to the direction of propagation. An example of a transverse wave is shown in Figure 13.3, where a woman moves a
toy spring up and down, generating waves that propagate away from herself in the horizontal direction while disturbing the toy
spring in the vertical direction.

Figure 13.3 In this example of a transverse wave, the wave propagates horizontally and the disturbance in the toy spring is in the vertical

direction.

In contrast, in a longitudinal wave, the disturbance is parallel to the direction of propagation. Figure 13.4 shows an example of a
longitudinal wave, where the woman now creates a disturbance in the horizontal direction—which is the same direction as the
wave propagation—by stretching and then compressing the toy spring.

Figure 13.4 In this example of a longitudinal wave, the wave propagates horizontally and the disturbance in the toy spring is also in the

horizontal direction.

TIPS FOR SUCCESS
Longitudinal waves are sometimes called compression waves or compressional waves, and transverse waves are sometimes
called shear waves.

Waves may be transverse, longitudinal, or a combination of the two. The waves on the strings of musical instruments are
transverse (as shown in Figure 13.5), and so are electromagnetic waves, such as visible light. Sound waves in air and water are
longitudinal. Their disturbances are periodic variations in pressure that are transmitted in fluids.
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Figure 13.5 The wave on a guitar string is transverse. However, the sound wave coming out of a speaker rattles a sheet of paper in a

direction that shows that such sound wave is longitudinal.

Sound in solids can be both longitudinal and transverse. Essentially, water waves are also a combination of transverse and
longitudinal components, although the simplified water wave illustrated in Figure 13.2 does not show the longitudinal motion of
the bird.

Earthquake waves under Earth’s surface have both longitudinal and transverse components as well. The longitudinal waves in an
earthquake are called pressure or P-waves, and the transverse waves are called shear or S-waves. These components have
important individual characteristics; for example, they propagate at different speeds. Earthquakes also have surface waves that
are similar to surface waves on water.

WATCH PHYSICS

Introduction to Waves
This video explains wave propagation in terms of momentum using an example of a wave moving along a rope. It also covers the
differences between transverse and longitudinal waves, and between pulse and periodic waves.

Click to view content (https://openstax.org/l/02introtowaves)

GRASP CHECK
In a longitudinal sound wave, after a compression wave moves through a region, the density of molecules briefly decreases.
Why is this?
a. After a compression wave, some molecules move forward temporarily.
b. After a compression wave, some molecules move backward temporarily.
c. After a compression wave, some molecules move upward temporarily.
d. After a compression wave, some molecules move downward temporarily.

FUN IN PHYSICS

The Physics of Surfing
Many people enjoy surfing in the ocean. For some surfers, the bigger the wave, the better. In one area off the coast of central
California, waves can reach heights of up to 50 feet in certain times of the year (Figure 13.6).
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Figure 13.6 A surfer negotiates a steep take-off on a winter day in California while his friend watches. (Ljsurf, Wikimedia Commons)

How do waves reach such extreme heights? Other than unusual causes, such as when earthquakes produce tsunami waves, most
huge waves are caused simply by interactions between the wind and the surface of the water. The wind pushes up against the
surface of the water and transfers energy to the water in the process. The stronger the wind, the more energy transferred. As
waves start to form, a larger surface area becomes in contact with the wind, and even more energy is transferred from the wind
to the water, thus creating higher waves. Intense storms create the fastest winds, kicking up massive waves that travel out from
the origin of the storm. Longer-lasting storms and those storms that affect a larger area of the ocean create the biggest waves
since they transfer more energy. The cycle of the tides from the Moon’s gravitational pull also plays a small role in creating waves.

Actual ocean waves are more complicated than the idealized model of the simple transverse wave with a perfect sinusoidal
shape. Ocean waves are examples of orbital progressive waves, where water particles at the surface follow a circular path from
the crest to the trough of the passing wave, then cycle back again to their original position. This cycle repeats with each passing
wave.

As waves reach shore, the water depth decreases and the energy of the wave is compressed into a smaller volume. This creates
higher waves—an effect known as shoaling.

Since the water particles along the surface move from the crest to the trough, surfers hitch a ride on the cascading water, gliding
along the surface. If ocean waves work exactly like the idealized transverse waves, surfing would be much less exciting as it
would simply involve standing on a board that bobs up and down in place, just like the seagull in the previous figure.

Additional information and illustrations about the scientific principles behind surfing can be found in the “Using Science to Surf
Better!” (http://www.openstax.org/l/28Surf) video.

GRASP CHECK
If we lived in a parallel universe where ocean waves were longitudinal, what would a surfer’s motion look like?
a. The surfer would move side-to-side/back-and-forth vertically with no horizontal motion.
b. The surfer would forward and backward horizontally with no vertical motion.

Check Your Understanding
1. What is a wave?

a. A wave is a force that propagates from the place where it was created.
b. A wave is a disturbance that propagates from the place where it was created.
c. A wave is matter that provides volume to an object.
d. A wave is matter that provides mass to an object.

2. Do all waves require a medium to travel? Explain.
a. No, electromagnetic waves do not require any medium to propagate.
b. No, mechanical waves do not require any medium to propagate.
c. Yes, both mechanical and electromagnetic waves require a medium to propagate.
d. Yes, all transverse waves require a medium to travel.

3. What is a pulse wave?
a. A pulse wave is a sudden disturbance with only one wave generated.
b. A pulse wave is a sudden disturbance with only one or a few waves generated.
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c. A pulse wave is a gradual disturbance with only one or a few waves generated.
d. A pulse wave is a gradual disturbance with only one wave generated.

4. Is the following statement true or false? A pebble dropped in water is an example of a pulse wave.
a. False
b. True

5. What are the categories of mechanical waves based on the type of motion?
a. Both transverse and longitudinal waves
b. Only longitudinal waves
c. Only transverse waves
d. Only surface waves

6. In which direction do the particles of the medium oscillate in a transverse wave?
a. Perpendicular to the direction of propagation of the transverse wave
b. Parallel to the direction of propagation of the transverse wave

13.2 Wave Properties: Speed, Amplitude, Frequency, and
Period
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Define amplitude, frequency, period, wavelength, and velocity of a wave
• Relate wave frequency, period, wavelength, and velocity
• Solve problems involving wave properties

Section Key Terms

wavelength wave velocity

Wave Variables
In the chapter on motion in two dimensions, we defined the following variables to describe harmonic motion:

• Amplitude—maximum displacement from the equilibrium position of an object oscillating around such equilibrium
position

• Frequency—number of events per unit of time
• Period—time it takes to complete one oscillation

For waves, these variables have the same basic meaning. However, it is helpful to word the definitions in a more specific way that
applies directly to waves:

• Amplitude—distance between the resting position and the maximum displacement of the wave
• Frequency—number of waves passing by a specific point per second
• Period—time it takes for one wave cycle to complete

In addition to amplitude, frequency, and period, their wavelength and wave velocity also characterize waves. The wavelength
is the distance between adjacent identical parts of a wave, parallel to the direction of propagation. The wave velocity is the
speed at which the disturbance moves.

TIPS FOR SUCCESS
Wave velocity is sometimes also called the propagation velocity or propagation speed because the disturbance propagates
from one location to another.

Consider the periodic water wave in Figure 13.7. Its wavelength is the distance from crest to crest or from trough to trough. The
wavelength can also be thought of as the distance a wave has traveled after one complete cycle—or one period. The time for one
complete up-and-down motion is the simple water wave’s period T. In the figure, the wave itself moves to the right with a wave
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velocity vw. Its amplitude X is the distance between the resting position and the maximum displacement—either the crest or the
trough—of the wave. It is important to note that this movement of the wave is actually the disturbance moving to the right, not
the water itself; otherwise, the bird would move to the right. Instead, the seagull bobs up and down in place as waves pass
underneath, traveling a total distance of 2X in one cycle. However, as mentioned in the text feature on surfing, actual ocean
waves are more complex than this simplified example.

Figure 13.7 The wave has a wavelength λ, which is the distance between adjacent identical parts of the wave. The up-and-down

disturbance of the surface propagates parallel to the surface at a speed vw.

WATCH PHYSICS

Amplitude, Period, Frequency, and Wavelength of Periodic Waves
This video is a continuation of the video “Introduction to Waves” from the "Types of Waves" section. It discusses the properties of
a periodic wave: amplitude, period, frequency, wavelength, and wave velocity.

Click to view content (https://www.openstax.org/l/28wavepro)

TIPS FOR SUCCESS
The crest of a wave is sometimes also called the peak.

GRASP CHECK
If you are on a boat in the trough of a wave on the ocean, and the wave amplitude is , what is the wave height from your
position?
a.
b.
c.
d.

The Relationship between Wave Frequency, Period, Wavelength, and
Velocity
Since wave frequency is the number of waves per second, and the period is essentially the number of seconds per wave, the
relationship between frequency and period is

or

just as in the case of harmonic motion of an object. We can see from this relationship that a higher frequency means a shorter
period. Recall that the unit for frequency is hertz (Hz), and that 1 Hz is one cycle—or one wave—per second.

The speed of propagation vw is the distance the wave travels in a given time, which is one wavelength in a time of one period. In

13.1
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equation form, it is written as

or

From this relationship, we see that in a medium where vw is constant, the higher the frequency, the smaller the wavelength. See
Figure 13.8.

Figure 13.8 Because they travel at the same speed in a given medium, low-frequency sounds must have a greater wavelength than high-

frequency sounds. Here, the lower-frequency sounds are emitted by the large speaker, called a woofer, while the higher-frequency sounds

are emitted by the small speaker, called a tweeter.

These fundamental relationships hold true for all types of waves. As an example, for water waves, vw is the speed of a surface
wave; for sound, vw is the speed of sound; and for visible light, vw is the speed of light. The amplitude X is completely
independent of the speed of propagation vw and depends only on the amount of energy in the wave.

13.3

13.4

Snap Lab

Waves in a Bowl
In this lab, you will take measurements to determine how the amplitude and the period of waves are affected by the transfer
of energy from a cork dropped into the water. The cork initially has some potential energy when it is held above the
water—the greater the height, the higher the potential energy. When it is dropped, such potential energy is converted to
kinetic energy as the cork falls. When the cork hits the water, that energy travels through the water in waves.

• Large bowl or basin
• Water
• Cork (or ping pong ball)
• Stopwatch
• Measuring tape

Instructions

Procedure
1. Fill a large bowl or basin with water and wait for the water to settle so there are no ripples.
2. Gently drop a cork into the middle of the bowl.
3. Estimate the wavelength and the period of oscillation of the water wave that propagates away from the cork. You can

estimate the period by counting the number of ripples from the center to the edge of the bowl while your partner times
it. This information, combined with the bowl measurement, will give you the wavelength when the correct formula is
used.

4. Remove the cork from the bowl and wait for the water to settle again.
5. Gently drop the cork at a height that is different from the first drop.
6. Repeat Steps 3 to 5 to collect a second and third set of data, dropping the cork from different heights and recording the

resulting wavelengths and periods.
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LINKS TO PHYSICS

Geology: Physics of Seismic Waves

Figure 13.9 The destructive effect of an earthquake is a palpable evidence of the energy carried in the earthquake waves. The Richter scale

rating of earthquakes is related to both their amplitude and the energy they carry. (Petty Officer 2nd Class Candice Villarreal, U.S. Navy)

Geologists rely heavily on physics to study earthquakes since earthquakes involve several types of wave disturbances, including
disturbance of Earth’s surface and pressure disturbances under the surface. Surface earthquake waves are similar to surface
waves on water. The waves under Earth’s surface have both longitudinal and transverse components. The longitudinal waves in
an earthquake are called pressure waves (P-waves) and the transverse waves are called shear waves (S-waves). These two types of
waves propagate at different speeds, and the speed at which they travel depends on the rigidity of the medium through which
they are traveling. During earthquakes, the speed of P-waves in granite is significantly higher than the speed of S-waves. Both
components of earthquakes travel more slowly in less rigid materials, such as sediments. P-waves have speeds of 4 to 7 km/s,
and S-waves have speeds of 2 to 5 km/s, but both are faster in more rigid materials. The P-wave gets progressively farther ahead
of the S-wave as they travel through Earth’s crust. For that reason, the time difference between the P- and S-waves is used to
determine the distance to their source, the epicenter of the earthquake.

We know from seismic waves produced by earthquakes that parts of the interior of Earth are liquid. Shear or transverse waves
cannot travel through a liquid and are not transmitted through Earth’s core. In contrast, compression or longitudinal waves can
pass through a liquid and they do go through the core.

All waves carry energy, and the energy of earthquake waves is easy to observe based on the amount of damage left behind after
the ground has stopped moving. Earthquakes can shake whole cities to the ground, performing the work of thousands of
wrecking balls. The amount of energy in a wave is related to its amplitude. Large-amplitude earthquakes produce large ground
displacements and greater damage. As earthquake waves spread out, their amplitude decreases, so there is less damage the
farther they get from the source.

GRASP CHECK
What is the relationship between the propagation speed, frequency, and wavelength of the S-waves in an earthquake?
a. The relationship between the propagation speed, frequency, and wavelength is

b. The relationship between the propagation speed, frequency, and wavelength is

c. The relationship between the propagation speed, frequency, and wavelength is

7. Interpret your results.

GRASP CHECK
A cork is dropped into a pool of water creating waves. Does the wavelength depend upon the height above the water from
which the cork is dropped?
a. No, only the amplitude is affected.
b. Yes, the wavelength is affected.
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d. The relationship between the propagation speed, frequency, and wavelength is

Solving Wave Problems

WORKED EXAMPLE

Calculate the Velocity of Wave Propagation: Gull in the Ocean
Calculate the wave velocity of the ocean wave in the previous figure if the distance between wave crests is 10.0 m and the time for
a seagull to bob up and down is 5.00 s.
STRATEGY
The values for the wavelength and the period are given and we are asked to find Therefore, we
can use to find the wave velocity.

Solution
Enter the known values into

Discussion
This slow speed seems reasonable for an ocean wave. Note that in the figure, the wave moves to the right at this speed, which is
different from the varying speed at which the seagull bobs up and down.

WORKED EXAMPLE

Calculate the Period and the Wave Velocity of a Toy Spring
The woman in creates two waves every second by shaking the toy spring up and down. (a)What is the period of each wave? (b) If
each wave travels 0.9 meters after one complete wave cycle, what is the velocity of wave propagation?
STRATEGY FOR (A)
To find the period, we solve for , given the value of the frequency

Virtual Physics

Wave on a String
Click to view content (http://www.openstax.org/l/28wavestring)
In this animation, watch how a string vibrates in slow motion by choosing the Slow Motion setting. Select the No End and
Manual options, and wiggle the end of the string to make waves yourself. Then switch to the Oscillate setting to generate
waves automatically. Adjust the frequency and the amplitude of the oscillations to see what happens. Then experiment with
adjusting the damping and the tension.

GRASP CHECK
Which of the settings—amplitude, frequency, damping, or tension—changes the amplitude of the wave as it
propagates? What does it do to the amplitude?
a. Frequency; it decreases the amplitude of the wave as it propagates.
b. Frequency; it increases the amplitude of the wave as it propagates.
c. Damping; it decreases the amplitude of the wave as it propagates.
d. Damping; it increases the amplitude of the wave as it propagates.

13.5
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Solution for (a)
Enter the known value into

STRATEGY FOR (B)
Since one definition of wavelength is the distance a wave has traveled after one complete cycle—or one period—the values for
the wavelength as well as the frequency are given. Therefore, we can use to find the wave velocity.

Solution for (b)
Enter the known values into

Discussion
We could have also used the equation to solve for the wave velocity since we already know the value of the period

from our calculation in part (a), and we would come up with the same answer.

Practice Problems
7. The frequency of a wave is 10 Hz. What is its period?

a. The period of the wave is 100 s.
b. The period of the wave is 10 s.
c. The period of the wave is 0.01 s.
d. The period of the wave is 0.1 s.

8. What is the velocity of a wave whose wavelength is 2 m and whose frequency is 5 Hz?
a. 20 m/s
b. 2.5 m/s
c. 0.4 m/s
d. 10 m/s

Check Your Understanding
9. What is the amplitude of a wave?

a. A quarter of the total height of the wave
b. Half of the total height of the wave
c. Two times the total height of the wave
d. Four times the total height of the wave

10. What is meant by the wavelength of a wave?
a. The wavelength is the distance between adjacent identical parts of a wave, parallel to the direction of propagation.
b. The wavelength is the distance between adjacent identical parts of a wave, perpendicular to the direction of

propagation.
c. The wavelength is the distance between a crest and the adjacent trough of a wave, parallel to the direction of

propagation.
d. The wavelength is the distance between a crest and the adjacent trough of a wave, perpendicular to the direction of

propagation.

11. How can you mathematically express wave frequency in terms of wave period?
a.

b.
c.
d.

12. When is the wavelength directly proportional to the period of a wave?

13.6
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a. When the velocity of the wave is halved
b. When the velocity of the wave is constant
c. When the velocity of the wave is doubled
d. When the velocity of the wave is tripled

13.3 Wave Interaction: Superposition and Interference
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe superposition of waves
• Describe interference of waves and distinguish between constructive and destructive interference of waves
• Describe the characteristics of standing waves
• Distinguish reflection from refraction of waves

Section Key Terms

antinode constructive interference destructive interference inversion nodes

reflection refraction standing wave superposition

Superposition of Waves
Most waves do not look very simple. They look more like the waves in Figure 13.10, rather than the simple water wave considered
in the previous sections, which has a perfect sinusoidal shape.

Figure 13.10 These waves result from the superposition of several waves from different sources, producing a complex pattern.

(Waterborough, Wikimedia Commons)

Most waves appear complex because they result from two or more simple waves that combine as they come together at the same
place at the same time—a phenomenon called superposition.

Waves superimpose by adding their disturbances; each disturbance corresponds to a force, and all the forces add. If the
disturbances are along the same line, then the resulting wave is a simple addition of the disturbances of the individual waves,
that is, their amplitudes add.

Wave Interference
The two special cases of superposition that produce the simplest results are pure constructive interference and pure destructive
interference.

Pure constructive interference occurs when two identical waves arrive at the same point exactly in phase. When waves are
exactly in phase, the crests of the two waves are precisely aligned, as are the troughs. Refer to Figure 13.11. Because the
disturbances add, the pure constructive interference of two waves with the same amplitude produces a wave that has twice the
amplitude of the two individual waves, but has the same wavelength.
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Figure 13.11 The pure constructive interference of two identical waves produces a wave with twice the amplitude but the same

wavelength.

Figure 13.12 shows two identical waves that arrive exactly out of phase—that is, precisely aligned crest to trough—producing
pure destructive interference. Because the disturbances are in opposite directions for this superposition, the resulting
amplitude is zero for pure destructive interference; that is, the waves completely cancel out each other.

Figure 13.12 The pure destructive interference of two identical waves produces zero amplitude, or complete cancellation.

While pure constructive interference and pure destructive interference can occur, they are not very common because they
require precisely aligned identical waves. The superposition of most waves that we see in nature produces a combination of
constructive and destructive interferences.

Waves that are not results of pure constructive or destructive interference can vary from place to place and time to time. The
sound from a stereo, for example, can be loud in one spot and soft in another. The varying loudness means that the sound waves
add partially constructively and partially destructively at different locations. A stereo has at least two speakers that create sound
waves, and waves can reflect from walls. All these waves superimpose.

An example of sounds that vary over time from constructive to destructive is found in the combined whine of jet engines heard
by a stationary passenger. The volume of the combined sound can fluctuate up and down as the sound from the two engines
varies in time from constructive to destructive.

The two previous examples considered waves that are similar—both stereo speakers generate sound waves with the same
amplitude and wavelength, as do the jet engines. But what happens when two waves that are not similar, that is, having
different amplitudes and wavelengths, are superimposed? An example of the superposition of two dissimilar waves is shown in
Figure 13.13. Here again, the disturbances add and subtract, but they produce an even more complicated-looking wave. The
resultant wave from the combined disturbances of two dissimilar waves looks much different than the idealized sinusoidal
shape of a periodic wave.
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Figure 13.13 The superposition of nonidentical waves exhibits both constructive and destructive interferences.

Standing Waves
Sometimes waves do not seem to move and they appear to just stand in place, vibrating. Such waves are called standing waves
and are formed by the superposition of two or more waves moving in opposite directions. The waves move through each other
with their disturbances adding as they go by. If the two waves have the same amplitude and wavelength, then they alternate
between constructive and destructive interference. Standing waves created by the superposition of two identical waves moving
in opposite directions are illustrated in Figure 13.14.

Figure 13.14 A standing wave is created by the superposition of two identical waves moving in opposite directions. The oscillations are at

fixed locations in space and result from alternating constructive and destructive interferences.

As an example, standing waves can be seen on the surface of a glass of milk in a refrigerator. The vibrations from the refrigerator
motor create waves on the milk that oscillate up and down but do not seem to move across the surface. The two waves that

Virtual Physics

Wave Interference
Click to view content (http://www.openstax.org/l/28interference)
In this simulation, make waves with a dripping faucet, an audio speaker, or a laser by switching between the water, sound,
and light tabs. Contrast and compare how the different types of waves behave. Try rotating the view from top to side to
make observations. Then experiment with adding a second source or a pair of slits to create an interference pattern.

GRASP CHECK
In the water tab, compare the waves generated by one drip versus two drips. What happens to the amplitude of the
waves when there are two drips? Is this constructive or destructive interference? Why would this be the case?
a. The amplitude of the water waves remains same because of the destructive interference as the drips of water hit the

surface at the same time.
b. The amplitude of the water waves is canceled because of the destructive interference as the drips of water hit the

surface at the same time.
c. The amplitude of water waves remains same because of the constructive interference as the drips of water hit the

surface at the same time.
d. The amplitude of water waves doubles because of the constructive interference as the drips of water hit the surface

at the same time.
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produce standing waves may be due to the reflections from the side of the glass.

Earthquakes can create standing waves and cause constructive and destructive interferences. As the earthquake waves travel
along the surface of Earth and reflect off denser rocks, constructive interference occurs at certain points. As a result, areas closer
to the epicenter are not damaged while areas farther from the epicenter are damaged.

Standing waves are also found on the strings of musical instruments and are due to reflections of waves from the ends of the
string. Figure 13.15 and Figure 13.16 show three standing waves that can be created on a string that is fixed at both ends. When
the wave reaches the fixed end, it has nowhere else to go but back where it came from, causing the reflection. The nodes are the
points where the string does not move; more generally, the nodes are the points where the wave disturbance is zero in a standing
wave. The fixed ends of strings must be nodes, too, because the string cannot move there.

The antinode is the location of maximum amplitude in standing waves. The standing waves on a string have a frequency that is
related to the propagation speed of the disturbance on the string. The wavelength is determined by the distance between
the points where the string is fixed in place.

Figure 13.15 The figure shows a string oscillating with its maximum disturbance as the antinode.

Figure 13.16 The figure shows a string oscillating with multiple nodes.

Reflection and Refraction of Waves
As we saw in the case of standing waves on the strings of a musical instrument, reflection is the change in direction of a wave
when it bounces off a barrier, such as a fixed end. When the wave hits the fixed end, it changes direction, returning to its source.
As it is reflected, the wave experiences an inversion, which means that it flips vertically. If a wave hits the fixed end with a crest,
it will return as a trough, and vice versa (Henderson 2015). Refer to Figure 13.17.

Figure 13.17 A wave is inverted after reflection from a fixed end.

TIPS FOR SUCCESS
If the end is not fixed, it is said to be a free end, and no inversion occurs. When the end is loosely attached, it reflects without

13.3 • Wave Interaction: Superposition and Interference 403



inversion, and when the end is not attached to anything, it does not reflect at all. You may have noticed this while changing
the settings from Fixed End to Loose End to No End in the Waves on a String PhET simulation.

Rather than encountering a fixed end or barrier, waves sometimes pass from one medium into another, for instance, from air
into water. Different types of media have different properties, such as density or depth, that affect how a wave travels through
them. At the boundary between media, waves experience refraction—they change their path of propagation. As the wave bends,
it also changes its speed and wavelength upon entering the new medium. Refer to Figure 13.18.

Figure 13.18 A wave refracts as it enters a different medium.

For example, water waves traveling from the deep end to the shallow end of a swimming pool experience refraction. They bend
in a path closer to perpendicular to the surface of the water, propagate slower, and decrease in wavelength as they enter
shallower water.

Check Your Understanding
13. What is the superposition of waves?

a. When a single wave splits into two different waves at a point
b. When two waves combine at the same place at the same time

14. How do waves superimpose on one another?
a. By adding their frequencies
b. By adding their wavelengths
c. By adding their disturbances
d. By adding their speeds

15. What is interference of waves?
a. Interference is a superposition of two waves to form a resultant wave with higher or lower frequency.
b. Interference is a superposition of two waves to form a wave of larger or smaller amplitude.
c. Interference is a superposition of two waves to form a resultant wave with higher or lower velocity.
d. Interference is a superposition of two waves to form a resultant wave with longer or shorter wavelength.

16. Is the following statement true or false? The two types of interference are constructive and destructive interferences.
a. True
b. False

17. What are standing waves?
a. Waves that appear to remain in one place and do not seem to move
b. Waves that seem to move along a trajectory

18. How are standing waves formed?
a. Standing waves are formed by the superposition of two or more waves moving in opposite directions.
b. Standing waves are formed by the superposition of two or more waves moving in the same direction.
c. Standing waves are formed by the superposition of two or more waves moving in perpendicular directions.
d. Standing waves are formed by the superposition of two or more waves moving in any arbitrary directions.

19. What is the reflection of a wave?
a. The reflection of a wave is the change in amplitude of a wave when it bounces off a barrier.
b. The reflection of a wave is the change in frequency of a wave when it bounces off a barrier.
c. The reflection of a wave is the change in velocity of a wave when it bounces off a barrier.
d. The reflection of a wave is the change in direction of a wave when it bounces off a barrier.
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20. What is inversion of a wave?
a. Inversion occurs when a wave reflects off a fixed end, and the wave amplitude changes sign.
b. Inversion occurs when a wave reflects off a loose end, and the wave amplitude changes sign.
c. Inversion occurs when a wave reflects off a fixed end without the wave amplitude changing sign.
d. Inversion occurs when a wave reflects off a loose end without the wave amplitude changing sign.
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KEY TERMS
antinode location of maximum amplitude in standing

waves
constructive interference when two waves arrive at the

same point exactly in phase; that is, the crests of the two
waves are precisely aligned, as are the troughs

destructive interference when two identical waves arrive at
the same point exactly out of phase that is precisely
aligned crest to trough

inversion vertical flipping of a wave after reflection from a
fixed end

longitudinal wave wave in which the disturbance is parallel
to the direction of propagation

mechanical wave wave that requires a medium through
which it can travel

medium solid, liquid, or gas material through which a
wave propagates

nodes points where the string does not move; more
generally, points where the wave disturbance is zero in a
standing wave

periodic wave wave that repeats the same oscillation for
several cycles and is associated with simple harmonic

motion
pulse wave sudden disturbance with only one wave or a few

waves generated
reflection change in direction of a wave at a boundary or

fixed end
refraction bending of a wave as it passes from one medium

to another medium with a different density
standing wave wave made by the superposition of two

waves of the same amplitude and wavelength moving in
opposite directions and which appears to vibrate in place

superposition phenomenon that occurs when two or more
waves arrive at the same point

transverse wave wave in which the disturbance is
perpendicular to the direction of propagation

wave disturbance that moves from its source and carries
energy

wave velocity speed at which the disturbance moves; also
called the propagation velocity or propagation speed

wavelength distance between adjacent identical parts of a
wave

SECTION SUMMARY
13.1 Types of Waves

• A wave is a disturbance that moves from the point of
creation and carries energy but not mass.

• Mechanical waves must travel through a medium.
• Sound waves, water waves, and earthquake waves are all

examples of mechanical waves.
• Light is not a mechanical wave since it can travel

through a vacuum.
• A periodic wave is a wave that repeats for several cycles,

whereas a pulse wave has only one crest or a few crests
and is associated with a sudden disturbance.

• Periodic waves are associated with simple harmonic
motion.

• A transverse wave has a disturbance perpendicular to its
direction of propagation, whereas a longitudinal wave
has a disturbance parallel to its direction of
propagation.

13.2 Wave Properties: Speed,
Amplitude, Frequency, and Period

• A wave is a disturbance that moves from the point of
creation at a wave velocity vw.

• A wave has a wavelength , which is the distance
between adjacent identical parts of the wave.

• The wave velocity and the wavelength are related to the
wave’s frequency and period by or

• The time for one complete wave cycle is the period T.
• The number of waves per unit time is the frequency ƒ.
• The wave frequency and the period are inversely related

to one another.

13.3 Wave Interaction:
Superposition and Interference

• Superposition is the combination of two waves at the
same location.

• Constructive interference occurs when two identical
waves are superimposed exactly in phase.

• Destructive interference occurs when two identical
waves are superimposed exactly out of phase.

• A standing wave is a wave produced by the
superposition of two waves. It varies in amplitude but
does not propagate.

• The nodes are the points where there is no motion in
standing waves.

• An antinode is the location of maximum amplitude of a
standing wave.

• Reflection causes a wave to change direction.
• Inversion occurs when a wave reflects from a fixed end.
• Refraction causes a wave’s path to bend and occurs

when a wave passes from one medium into another
medium with a different density.
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KEY EQUATIONS
13.2 Wave Properties: Speed,
Amplitude, Frequency, and Period

wave velocity or

period

frequency

CHAPTER REVIEW
Concept Items
13.1 Types of Waves
1. Do water waves push water from one place to another?

Explain.
a. No, water waves transfer only energy from one place

to another.
b. Yes, water waves transfer water from one place to

another.

2. With reference to waves, what is a trough?
a. the lowermost position of a wave
b. the uppermost position of a wave
c. the final position of a wave
d. the initial position of the wave

3. Give an example of longitudinal waves.
a. light waves
b. water waves in a lake
c. sound waves in air
d. seismic waves in Earth’s surface

4. What does the speed of a mechanical wave depend on?
a. the properties of the material through which it

travels
b. the shape of the material through which it travels
c. the size of the material through which it travels
d. the color of the material through which it travels

13.2 Wave Properties: Speed, Amplitude,
Frequency, and Period
5. Which characteristic of a transverse wave is measured

along the direction of propagation?
a. The amplitude of a transverse wave is measured

along the direction of propagation.
b. The amplitude and the wavelength of a transverse

wave are measured along the direction of
propagation.

c. The wavelength of a transverse wave is measured
along the direction of propagation.

d. The displacement of the particles of the medium in a
transverse wave is measured along the direction of
propagation.

6. Which kind of seismic waves cannot travel through

liquid?
a. compressional waves
b. P-waves
c. longitudinal waves
d. S-waves

7. What is the period of a wave?
a. the time that a wave takes to complete a half cycle
b. the time that a wave takes to complete one cycle
c. the time that a wave takes to complete two cycles
d. the time that a wave takes to complete four cycles

8. When the period of a wave increases, what happens to its
frequency?
a. Its frequency decreases.
b. Its frequency increases.
c. Its frequency remains the same.

13.3 Wave Interaction: Superposition and
Interference
9. Is this statement true or false? The amplitudes of waves

add up only if they are propagating in the same line.
a. True
b. False

10. Why is sound from a stereo louder in one part of the
room and softer in another?
a. Sound is louder in parts of the room where the

density is greatest. Sound is softer in parts of the
room where density is smallest.

b. Sound is louder in parts of the room where the
density is smallest. Sound is softer in parts of the
room where density is greatest.

c. Sound is louder in parts of the room where
constructive interference occurs and softer in parts
where destructive interference occurs.

d. Sound is louder in parts of the room where
destructive interference occurs and softer in parts
where constructive interference occurs.

11. In standing waves on a string, what does the frequency
depend on?
a. The frequency depends on the propagation speed

and the density of the string.
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b. The frequency depends on the propagation speed
and the length of the string.

c. The frequency depends on the density and the
length of the string.

d. The frequency depends on the propagation speed,
the density, and the length of the string.

12. Is the following statement true or false? Refraction is
useful in fiber optic cables for transmitting signals.
a. False
b. True

13. What is refraction?

a. Refraction is the phenomenon in which waves
change their path of propagation at the interface of
two media with different densities.

b. Refraction is the phenomenon in which waves
change their path of propagation at the interface of
two media with the same density.

c. Refraction is the phenomenon in which waves
become non-periodic at the boundary of two media
with different densities.

d. Refraction is the phenomenon in which waves
become non-periodic at the boundary of two media
with the same density.

Critical Thinking Items
13.1 Types of Waves
14. Give an example of a wave that propagates only through

a solid.
a. Light wave
b. Sound wave
c. Seismic wave
d. Surface wave

15. Can mechanical waves be periodic waves?
a. No, mechanical waves cannot be periodic waves.
b. Yes, mechanical waves can be periodic.

16. In a sound wave, which parameter of the medium varies
with every cycle?
a. The density of the medium varies with every cycle.
b. The mass of the medium varies with every cycle.
c. The resistivity of the medium varies with every

cycle.
d. The volume of the medium varies with every cycle.

17. What is a transverse wave in an earthquake called?
a. L-wave
b. P-wave
c. S-wave
d. R-wave

13.2 Wave Properties: Speed, Amplitude,
Frequency, and Period
18. If the horizontal distance, that is, the distance in the

direction of propagation, between a crest and the
adjacent trough of a sine wave is 1 m, what is the
wavelength of the wave?
a. 0.5 m
b. 1 m
c. 2 m
d. 4 m

19. How is the distance to the epicenter of an earthquake
determined?

a. The wavelength difference between P-waves and S-
waves is used to measure the distance to the
epicenter.

b. The time difference between P-waves and S-waves
is used to measure the distance to the epicenter.

c. The frequency difference between P-waves and S-
waves is used to measure the distance to the
epicenter.

d. The phase difference between P-waves and S-waves
is used to measure the distance to the epicenter.

20. Two identical waves superimpose in pure constructive
interference. What is the height of the resultant wave if
the amplitude of each of the waves is 1 m?
a. 1 m
b. 2 m
c. 3 m
d. 4 m

13.3 Wave Interaction: Superposition and
Interference
21. Two identical waves with an amplitude superimpose

in a way that pure constructive interference occurs.
What is the amplitude of the resultant wave?
a.
b.
c.
d.

22. In which kind of wave is the amplitude at each point
constant?
a. Seismic waves
b. Pulse wave
c. Standing waves
d. Electromagnetic waves

23. Which property of a medium causes refraction?
a. Conductivity
b. Opacity
c. Ductility
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d. Density

24. What is added together when two waves superimpose?
a. Amplitudes

b. Wavelengths
c. Velocities

Problems
13.2 Wave Properties: Speed, Amplitude,
Frequency, and Period
25. If a seagull sitting in water bobs up and down once every

2 seconds and the distance between two crests of the
water wave is 3 m, what is the velocity of the wave?
a. 1.5 m/s
b. 3 m/s
c. 6 m/s

d. 12 m/s

26. A boat in the trough of a wave takes 3 seconds to reach
the highest point of the wave. The velocity of the wave is
5 m/s. What is its wavelength?
a. 0.83 m
b. 15 m
c. 30 m
d. 180 m

Performance Task
13.3 Wave Interaction: Superposition and
Interference
27. Ocean waves repeatedly crash against beaches and

coasts. Their energy can lead to erosion and collapse of
land. Scientists and engineers need to study how waves
interact with beaches in order to assess threats to
coastal communities and construct breakwater systems.
In this task, you will construct a wave tank and fill it
with water. Simulate a beach by placing sand at one end.
Create waves by moving a piece of wood or plastic up
and down in the water. Measure or estimate the

wavelength, period, frequency, and amplitude of the
wave, and observe the effect of the wave on the sand.
Produce waves of different amplitudes and frequencies,
and record your observations each time. Use
mathematical representations to demonstrate the
relationships between different wave properties.
Change the position of the sand to create a steeper
beach and record your observations. Give a qualitative
analysis of the effects of the waves on the beach. What
kind of wave causes the most damage? At what height,
wavelength, and frequency do waves break? How does
the steepness of the beach affect the waves?

TEST PREP
Multiple Choice
13.1 Types of Waves
28. What kind of waves are sound waves?

a. Mechanical waves
b. Electromagnetic waves

29. What kind of a wave does a tuning fork create?
a. Pulse wave
b. Periodic wave
c. Electromagnetic wave

30. What kind of waves are electromagnetic waves?
a. Longitudinal waves
b. Transverse waves
c. Mechanical waves
d. P-waves

31. With reference to waves, what is a disturbance?
a. It refers to the resistance produced by some

particles of a material.
b. It refers to an oscillation produced by some energy

that creates a wave.
c. It refers to the wavelength of the wave.
d. It refers to the speed of the wave.

13.2 Wave Properties: Speed, Amplitude,
Frequency, and Period
32. Which of these is not a characteristic of a wave?

a. amplitude
b. period
c. mass
d. velocity

33. If you are in a boat at a resting position, how much will
your height change when you are hit by the peak of a
wave with a height of 2 m?
a. 0 m
b. 1 m
c. 2 m
d. 4 m

34. What is the period of a wave with a frequency of 0.5 Hz?

Chapter 13 • Test Prep 409



a. 0.5 s
b. 1 s
c. 2 s
d. 3 s

35. What is the relation between the amplitude of a wave
and its speed?
a. The amplitude of a wave is independent of its

speed.
b. The amplitude of a wave is directly proportional to

its speed.
c. The amplitude of a wave is directly proportional to

the square of the inverse of its speed.
d. The amplitude of a wave is directly proportional to

the inverse of its speed.

36. What does the speed of seismic waves depend on?
a. The speed of seismic waves depends on the size of

the medium.
b. The speed of seismic waves depends on the shape of

the medium.
c. The speed of seismic waves depends on the rigidity

of the medium.

13.3 Wave Interaction: Superposition and
Interference
37. What is added together when two waves superimpose?

a. amplitudes
b. wavelengths
c. velocities

38. Pure constructive interference occurs between two
waves when they have the same _____.

a. frequency and are in phase
b. frequency and are out of phase
c. amplitude and are in phase
d. amplitude and are out of phase

39. What kind(s) of interference can occur between two
identical waves moving in opposite directions?
a. Constructive interference only
b. Destructive interference only
c. Both constructive and destructive interference
d. Neither constructive nor destructive interference

40. What term refers to the bending of light at the junction
of two media?
a. interference
b. diffraction
c. scattering
d. refraction

41. Which parameter of a wave gets affected after
superposition?
a. wavelength
b. direction
c. amplitude
d. frequency

42. When do the amplitudes of two waves get added?
a. When their amplitudes are the same
b. When their amplitudes are different
c. When they propagate in perpendicular directions
d. When they are propagating along the same line in

opposite directions

Short Answer
13.1 Types of Waves
43. Give an example of a non-mechanical wave.

a. A radio wave is an example of a nonmechanical
wave.

b. A sound wave is an example of a nonmechanical
wave.

c. A surface wave is an example of a nonmechanical
wave.

d. A seismic wave is an example of a nonmechanical
wave.

44. How is sound produced by an electronic speaker?
a. The cone of a speaker vibrates to create small

changes in the temperature of the air.
b. The cone of a speaker vibrates to create small

changes in the pressure of the air.
c. The cone of a speaker vibrates to create small

changes in the volume of the air.

d. The cone of a speaker vibrates to create small
changes in the resistance of the air.

45. What kind of wave is thunder?
a. Transverse wave
b. Pulse wave
c. R-wave
d. P-wave

46. Are all ocean waves perfectly sinusoidal?
a. No, all ocean waves are not perfectly sinusoidal.
b. Yes, all ocean waves are perfectly sinusoidal.

47. What are orbital progressive waves?
a. Waves that force the particles of the medium to

follow a linear path from the crest to the trough
b. Waves that force the particles of the medium to

follow a circular path from the crest to the trough
c. Waves that force the particles of the medium to

follow a zigzag path from the crest to the trough
d. Waves that force the particles of the medium to
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follow a random path from the crest to the trough

48. Give an example of orbital progressive waves.
a. light waves
b. ocean waves
c. sound waves
d. seismic waves

13.2 Wave Properties: Speed, Amplitude,
Frequency, and Period
49. What is the relation between the amplitude and height

of a transverse wave?
a. The height of a wave is half of its amplitude.
b. The height of a wave is equal to its amplitude.
c. The height of a wave is twice its amplitude.
d. The height of a wave is four times its amplitude.

50. If the amplitude of a water wave is 0.2 m and its
frequency is 2 Hz, how much distance would a bird
sitting on the water’s surface move with every wave?
How many times will it do this every second?
a. The bird will go up and down a distance of 0.4 m. It

will do this twice per second.
b. The bird will go up and down a distance of 0.2 m. It

will do this twice per second.
c. The bird will go up and down a distance of 0.4 m. It

will do this once per second.
d. The bird will go up and down a distance of 0.2 m. It

will do this once per second.

51. What is the relation between the amplitude and the
frequency of a wave?
a. The amplitude and the frequency of a wave are

independent of each other.
b. The amplitude and the frequency of a wave are

equal.
c. The amplitude decreases with an increase in the

frequency of a wave.
d. The amplitude increases with an increase in the

frequency of a wave.

52. What is the relation between a wave’s energy and its
amplitude?
a. There is no relation between the energy and the

amplitude of a wave.
b. The magnitude of the energy is equal to the

magnitude of the amplitude of a wave.
c. The energy of a wave increases with an increase in

the amplitude of the wave.
d. The energy of a wave decreases with an increase in

the amplitude of a wave.

53. A wave travels every 2 cycles. What is its
wavelength?
a.

b.
c.
d.

54. A water wave propagates in a river at 6 m/s. If the river
moves in the opposite direction at 3 m/s, what is the
effective velocity of the wave?
a. 3 m/s
b. 6 m/s
c. 9 m/s
d. 18 m/s

13.3 Wave Interaction: Superposition and
Interference
55. Is this statement true or false? Spherical waves can

superimpose.
a. True
b. False

56. Is this statement true or false? Waves can superimpose
if their frequencies are different.
a. True
b. False

57. When does pure destructive interference occur?
a. When two waves with equal frequencies that are

perfectly in phase and propagating along the same
line superimpose.

b. When two waves with unequal frequencies that are
perfectly in phase and propagating along the same
line superimpose.

c. When two waves with unequal frequencies that are
perfectly out of phase and propagating along the
same line superimpose.

d. When two waves with equal frequencies that are
perfectly out of phase and propagating along the
same line superimpose.

58. Is this statement true or false? The amplitude of one
wave is affected by the amplitude of another wave only
when they are precisely aligned.
a. True
b. False

59. Why does a standing wave form on a guitar string?
a. due to superposition with the reflected waves from

the ends of the string
b. due to superposition with the reflected waves from

the walls of the room
c. due to superposition with waves generated from

the body of the guitar

60. Is the following statement true or false? A standing wave
is a superposition of two identical waves that are in
phase and propagating in the same direction.
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a. True
b. False

61. Why do water waves traveling from the deep end to the
shallow end of a swimming pool experience refraction?
a. Because the pressure of water at the two ends of the

pool is same
b. Because the pressures of water at the two ends of

the pool are different

c. Because the density of water at the two ends of the
pool is same

d. Because the density of water at the two ends of the
pool is different

62. Is the statement true or false? Waves propagate faster in
a less dense medium if the stiffness is the same.
a. True
b. False

Extended Response
13.1 Types of Waves
63. Why can light travel through outer space while sound

cannot?
a. Sound waves are mechanical waves and require a

medium to propagate. Light waves can travel
through a vacuum.

b. Sound waves are electromagnetic waves and
require a medium to propagate. Light waves can
travel through a vacuum.

c. Light waves are mechanical waves and do not
require a medium to propagate; sound waves
require a medium to propagate.

d. Light waves are longitudinal waves and do not
require a medium to propagate; sound waves
require a medium to propagate.

64. Do periodic waves require a medium to travel through?
a. No, the requirement of a medium for propagation

does not depend on whether the waves are pulse
waves or periodic waves.

b. Yes, the requirement of a medium for propagation
depends on whether the waves are pulse waves or
periodic waves.

65. How is the propagation of sound in solids different from
that in air?
a. Sound waves in solids are transverse, whereas in

air, they are longitudinal.
b. Sound waves in solids are longitudinal, whereas in

air, they are transverse.
c. Sound waves in solids can be both longitudinal and

transverse, whereas in air, they are longitudinal.
d. Sound waves in solids are longitudinal, whereas in

air, they can be both longitudinal and transverse.

13.2 Wave Properties: Speed, Amplitude,
Frequency, and Period
66. A seagull is sitting in the water surface and a simple

water wave passes under it. What sort of motion does
the gull experience? Why?
a. The gull experiences mostly side-to-side motion

and moves with the wave in its direction.
b. The gull experiences mostly side-to-side motion

but does not move with the wave in its direction.
c. The gull experiences mostly up-and-down motion

and moves with the wave in its direction.
d. The gull experiences mostly up-and-down motion

but does not move in the direction of the wave.

67. Why does a good-quality speaker have a woofer and a
tweeter?
a. In a good-quality speaker, sounds with high

frequencies or short wavelengths are reproduced
accurately by woofers, while sounds with low
frequencies or long wavelengths are reproduced
accurately by tweeters.

b. Sounds with high frequencies or short wavelengths
are reproduced more accurately by tweeters, while
sounds with low frequencies or long wavelengths
are reproduced more accurately by woofers.

68. The time difference between a 2 km/s S-wave and a 6
km/s P-wave recorded at a certain point is 10 seconds.
How far is the epicenter of the earthquake from that
point?
a. 15 m
b. 30 m
c. 15 km
d. 30 km

13.3 Wave Interaction: Superposition and
Interference
69. Why do water waves sometimes appear like a complex

criss-cross pattern?
a. The crests and the troughs of waves traveling in the

same direction combine to form a criss-cross
pattern.

b. The crests and the troughs of waves traveling in
different directions combine to form a criss-cross
pattern.

70. What happens when two dissimilar waves interfere?
a. pure constructive interference
b. pure destructive interference
c. a combination of constructive and destructive
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interference

71. Occasionally, during earthquakes, areas near the
epicenter are not damaged while those farther away are
damaged. Why could this occur?
a. Destructive interference results in waves with

greater amplitudes being formed in places farther
away from the epicenter.

b. Constructive interference results in waves with
greater amplitudes being formed in places farther
away from the epicenter.

c. The standing waves of great amplitudes are formed
in places farther away from the epicenter.

d. The pulse waves of great amplitude are formed in
places farther away from the epicenter.

72. Why does an object appear to be distorted when you

view it through a glass of water?
a. The glass and the water reflect the light in different

directions. Hence, the object appears to be
distorted.

b. The glass and the water absorb the light by different
amounts. Hence, the object appears to be
distorted.

c. Water, air, and glass are media with different
densities. Light rays refract and bend when they
pass from one medium to another. Hence, the
object appears to be distorted.

d. The glass and the water disperse the light into its
components. Hence, the object appears to be
distorted.
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INTRODUCTION

CHAPTER 14
Sound

14.1 Speed of Sound, Frequency, and Wavelength

14.2 Sound Intensity and Sound Level

14.3 Doppler Effect and Sonic Booms

14.4 Sound Interference and Resonance

If a tree falls in a forest (see Figure 14.1) and no one is there to hear it, does it make a sound? The answer to
this old philosophical question depends on how you define sound. If sound only exists when someone is around to perceive it,
then the falling tree produced no sound. However, in physics, we know that colliding objects can disturb the air, water or other
matter surrounding them. As a result of the collision, the surrounding particles of matter began vibrating in a wave-like
fashion. This is a sound wave. Consequently, if a tree collided with another object in space, no one would hear it, because no
sound would be produced. This is because, in space, there is no air, water or other matter to be disturbed and produce sound
waves. In this chapter, we’ll learn more about the wave properties of sound, and explore hearing, as well as some special uses for
sound.

Figure 14.1 This tree fell some time ago. When it fell, particles in the air were disturbed by the energy of the tree
hitting the ground. This disturbance of matter, which our ears have evolved to detect, is called sound. (B.A. Bowen
Photography)
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14.1 Speed of Sound, Frequency, and Wavelength
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Relate the characteristics of waves to properties of sound waves
• Describe the speed of sound and how it changes in various media
• Relate the speed of sound to frequency and wavelength of a sound wave

Section Key Terms

rarefaction sound

Properties of Sound Waves
Sound is a wave. More specifically, sound is defined to be a disturbance of matter that is transmitted from its source outward. A
disturbance is anything that is moved from its state of equilibrium. Some sound waves can be characterized as periodic waves,
which means that the atoms that make up the matter experience simple harmonic motion.

A vibrating string produces a sound wave as illustrated in Figure 14.2, Figure 14.3, and Figure 14.4. As the string oscillates back
and forth, part of the string’s energy goes into compressing and expanding the surrounding air. This creates slightly higher and
lower pressures. The higher pressure... regions are compressions, and the low pressure regions are rarefactions. The pressure
disturbance moves through the air as longitudinal waves with the same frequency as the string. Some of the energy is lost in the
form of thermal energy transferred to the air. You may recall from the chapter on waves that areas of compression and
rarefaction in longitudinal waves (such as sound) are analogous to crests and troughs in transverse waves.

Figure 14.2 A vibrating string moving to the right compresses the air in front of it and expands the air behind it.

Figure 14.3 As the string moves to the left, it creates another compression and rarefaction as the particles on the right move away from the

string.
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Figure 14.4 After many vibrations, there is a series of compressions and rarefactions that have been transmitted from the string as a sound

wave. The graph shows gauge pressure (Pgauge) versus distance x from the source. Gauge pressure is the pressure relative to atmospheric

pressure; it is positive for pressures above atmospheric pressure, and negative for pressures below it. For ordinary, everyday sounds,

pressures vary only slightly from average atmospheric pressure.

The amplitude of a sound wave decreases with distance from its source, because the energy of the wave is spread over a larger
and larger area. But some of the energy is also absorbed by objects, such as the eardrum in Figure 14.5, and some of the energy is
converted to thermal energy in the air. Figure 14.4 shows a graph of gauge pressure versus distance from the vibrating string.
From this figure, you can see that the compression of a longitudinal wave is analogous to the peak of a transverse wave, and the
rarefaction of a longitudinal wave is analogous to the trough of a transverse wave. Just as a transverse wave alternates between
peaks and troughs, a longitudinal wave alternates between compression and rarefaction.

Figure 14.5 Sound wave compressions and rarefactions travel up the ear canal and force the eardrum to vibrate. There is a net force on the

eardrum, since the sound wave pressures differ from the atmospheric pressure found behind the eardrum. A complicated mechanism

converts the vibrations to nerve impulses, which are then interpreted by the brain.

The Speed of Sound
The speed of sound varies greatly depending upon the medium it is traveling through. The speed of sound in a medium is
determined by a combination of the medium’s rigidity (or compressibility in gases) and its density. The more rigid (or less
compressible) the medium, the faster the speed of sound. The greater the density of a medium, the slower the speed of sound.
The speed of sound in air is low, because air is compressible. Because liquids and solids are relatively rigid and very difficult to
compress, the speed of sound in such media is generally greater than in gases. Table 14.1 shows the speed of sound in various
media. Since temperature affects density, the speed of sound varies with the temperature of the medium through which it’s
traveling to some extent, especially for gases.
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Medium vw (m/s)

Gases at 0 °C

Air 331

Carbon dioxide 259

Oxygen 316

Helium 965

Hydrogen 1290

Liquids at 20 °C

Ethanol 1160

Mercury 1450

Water, fresh 1480

Sea water 1540

Human tissue 1540

Solids (longitudinal or bulk)

Vulcanized rubber 54

Polyethylene 920

Marble 3810

Glass, Pyrex 5640

Lead 1960

Aluminum 5120

Steel 5960

Table 14.1 Speed of Sound in
Various Media
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The Relationship Between the Speed of Sound and the Frequency and
Wavelength of a Sound Wave

Figure 14.6 When fireworks explode in the sky, the light energy is perceived before the sound energy. Sound travels more slowly than light

does. (Dominic Alves, Flickr)

Sound, like all waves, travels at certain speeds through different media and has the properties of frequency and wavelength.
Sound travels much slower than light—you can observe this while watching a fireworks display (see Figure 14.6), since the flash
of an explosion is seen before its sound is heard.

The relationship between the speed of sound, its frequency, and wavelength is the same as for all waves:

where v is the speed of sound (in units of m/s), f is its frequency (in units of hertz), and is its wavelength (in units of meters).
Recall that wavelength is defined as the distance between adjacent identical parts of a wave. The wavelength of a sound,
therefore, is the distance between adjacent identical parts of a sound wave. Just as the distance between adjacent crests in a
transverse wave is one wavelength, the distance between adjacent compressions in a sound wave is also one wavelength, as
shown in Figure 14.7. The frequency of a sound wave is the same as that of the source. For example, a tuning fork vibrating at a
given frequency would produce sound waves that oscillate at that same frequency. The frequency of a sound is the number of
waves that pass a point per unit time.

Figure 14.7 A sound wave emanates from a source vibrating at a frequency f, propagates at v, and has a wavelength .

One of the more important properties of sound is that its speed is nearly independent of frequency. If this were not the case,
and high-frequency sounds traveled faster, for example, then the farther you were from a band in a football stadium, the more
the sound from the low-pitch instruments would lag behind the high-pitch ones. But the music from all instruments arrives in
cadence independent of distance, and so all frequencies must travel at nearly the same speed.

Recall that , and in a given medium under fixed temperature and humidity, v is constant. Therefore, the relationship
between f and is inverse: The higher the frequency, the shorter the wavelength of a sound wave.

The speed of sound can change when sound travels from one medium to another. However, the frequency usually remains the
same because it is like a driven oscillation and maintains the frequency of the original source. If v changes and f remains the
same, then the wavelength must change. Since , the higher the speed of a sound, the greater its wavelength for a given
frequency.

14.1

Virtual Physics

Sound
Click to view content (https://www.openstax.org/l/28sound)
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This simulation lets you see sound waves. Adjust the frequency or amplitude (volume) and you can see and hear how the
wave changes. Move the listener around and hear what she hears. Switch to the Two Source Interference tab or the
Interference by Reflection tab to experiment with interference and reflection.

TIPS FOR SUCCESS
Make sure to have audio enabled and set to Listener rather than Speaker, or else the sound will not vary as you move the
listener around.

GRASP CHECK
In the first tab, Listen to a Single Source, move the listener as far away from the speaker as possible, and then change the
frequency of the sound wave. You may have noticed that there is a delay between the time when you change the setting
and the time when you hear the sound get lower or higher in pitch. Why is this?
a. Because, intensity of the sound wave changes with the frequency.
b. Because, the speed of the sound wave changes when the frequency is changed.
c. Because, loudness of the sound wave takes time to adjust after a change in frequency.
d. Because it takes time for sound to reach the listener, so the listener perceives the new frequency of sound wave after

a delay.

Is there a difference in the amount of delay depending on whether you make the frequency higher or lower? Why?
a. Yes, the speed of propagation depends only on the frequency of the wave.
b. Yes, the speed of propagation depends upon the wavelength of the wave, and wavelength changes as the frequency

changes.
c. No, the speed of propagation depends only on the wavelength of the wave.
d. No, the speed of propagation is constant in a given medium; only the wavelength changes as the frequency changes.

Snap Lab

Voice as a Sound Wave
In this lab you will observe the effects of blowing and speaking into a piece of paper in order to compare and contrast
different sound waves.

• sheet of paper
• tape
• table

Instructions

Procedure
1. Suspend a sheet of paper so that the top edge of the paper is fixed and the bottom edge is free to move. You could tape

the top edge of the paper to the edge of a table, for example.
2. Gently blow air near the edge of the bottom of the sheet and note how the sheet moves.
3. Speak softly and then louder such that the sounds hit the edge of the bottom of the paper, and note how the sheet

moves.
4. Interpret the results.

GRASP CHECK
Which sound wave property increases when you are speaking more loudly than softly?
a. amplitude of the wave
b. frequency of the wave
c. speed of the wave
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WORKED EXAMPLE

What Are the Wavelengths of Audible Sounds?
Calculate the wavelengths of sounds at the extremes of the audible range, 20 and 20,000 Hz, in conditions where sound travels
at 348.7 m/s.
STRATEGY
To find wavelength from frequency, we can use .

Solution
(1) Identify the knowns. The values for v and f are given.

(2) Solve the relationship between speed, frequency and wavelength for .

(3) Enter the speed and the minimum frequency to give the maximum wavelength.

(4) Enter the speed and the maximum frequency to give the minimum wavelength.

Discussion
Because the product of f multiplied by equals a constant velocity in unchanging conditions, the smaller f is, the larger must
be, and vice versa. Note that you can also easily rearrange the same formula to find frequency or velocity.

Practice Problems
1. What is the speed of a sound wave with frequency and wavelength ?

a.
b.
c.
d.

2. Dogs can hear frequencies of up to . What is the wavelength of a sound wave with this frequency traveling in air at
?

a.
b.
c.
d.

d. wavelength of the wave

14.2

14.3

14.4
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LINKS TO PHYSICS

Echolocation

Figure 14.8 A bat uses sound echoes to find its way about and to catch prey. The time for the echo to return is directly proportional to the

distance.

Echolocation is the use of reflected sound waves to locate and identify objects. It is used by animals such as bats, dolphins and
whales, and is also imitated by humans in SONAR—Sound Navigation and Ranging—and echolocation technology.

Bats, dolphins and whales use echolocation to navigate and find food in their environment. They locate an object (or obstacle) by
emitting a sound and then sensing the reflected sound waves. Since the speed of sound in air is constant, the time it takes for
the sound to travel to the object and back gives the animal a sense of the distance between itself and the object. This is called
ranging. Figure 14.8 shows a bat using echolocation to sense distances.

Echolocating animals identify an object by comparing the relative intensity of the sound waves returning to each ear to figure
out the angle at which the sound waves were reflected. This gives information about the direction, size and shape of the object.
Since there is a slight distance in position between the two ears of an animal, the sound may return to one of the ears with a bit
of a delay, which also provides information about the position of the object. For example, if a bear is directly to the right of a bat,
the echo will return to the bat’s left ear later than to its right ear. If, however, the bear is directly ahead of the bat, the echo would
return to both ears at the same time. For an animal without a sense of sight such as a bat, it is important to know where other
animals are as well as what they are; their survival depends on it.

Principles of echolocation have been used to develop a variety of useful sensing technologies. SONAR, is used by submarines to
detect objects underwater and measure water depth. Unlike animal echolocation, which relies on only one transmitter (a mouth)
and two receivers (ears), manmade SONAR uses many transmitters and beams to get a more accurate reading of the
environment. Radar technologies use the echo of radio waves to locate clouds and storm systems in weather forecasting, and to
locate aircraft for air traffic control. Some new cars use echolocation technology to sense obstacles around the car, and warn the
driver who may be about to hit something (or even to automatically parallel park). Echolocation technologies and training
systems are being developed to help visually impaired people navigate their everyday environments.

GRASP CHECK
If a predator is directly to the left of a bat, how will the bat know?
a. The echo would return to the left ear first.
b. The echo would return to the right ear first.

Check Your Understanding
3. What is a rarefaction?

a. Rarefaction is the high-pressure region created in a medium when a longitudinal wave passes through it.
b. Rarefaction is the low-pressure region created in a medium when a longitudinal wave passes through it.
c. Rarefaction is the highest point of amplitude of a sound wave.
d. Rarefaction is the lowest point of amplitude of a sound wave.

4. What sort of motion do the particles of a medium experience when a sound wave passes through it?
a. Simple harmonic motion

422 Chapter 14 • Sound

Access for free at openstax.org.



b. Circular motion
c. Random motion
d. Translational motion

5. What does the speed of sound depend on?
a. The wavelength of the wave
b. The size of the medium
c. The frequency of the wave
d. The properties of the medium

6. What property of a gas would affect the speed of sound traveling through it?
a. The volume of the gas
b. The flammability of the gas
c. The mass of the gas
d. The compressibility of the gas

14.2 Sound Intensity and Sound Level
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Relate amplitude of a wave to loudness and energy of a sound wave
• Describe the decibel scale for measuring sound intensity
• Solve problems involving the intensity of a sound wave
• Describe how humans produce and hear sounds

Section Key Terms

amplitude decibel hearing loudness

pitch sound intensity sound intensity level

Amplitude, Loudness and Energy of a Sound Wave

Figure 14.9 Noise on crowded roadways like this one in Delhi makes it hard to hear others unless they shout. (Lingaraj G J, Flickr)

In a quiet forest, you can sometimes hear a single leaf fall to the ground. But in a traffic jam filled with honking cars, you may
have to shout just so the person next to you can hear Figure 14.9.The loudness of a sound is related to how energetically its source
is vibrating. In cartoons showing a screaming person, the cartoonist often shows an open mouth with a vibrating uvula (the
hanging tissue at the back of the mouth) to represent a loud sound coming from the throat. Figure 14.10 shows such a cartoon
depiction of a bird loudly expressing its opinion.

A useful quantity for describing the loudness of sounds is called sound intensity. In general, the intensity of a wave is the power
per unit area carried by the wave. Power is the rate at which energy is transferred by the wave. In equation form, intensity I is

where P is the power through an area A. The SI unit for I is W/m2. The intensity of a sound depends upon its pressure amplitude.

14.5
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The relationship between the intensity of a sound wave and its pressure amplitude (or pressure variation Δp) is

where ρ is the density of the material in which the sound wave travels, in units of kg/m3, and v is the speed of sound in the
medium, in units of m/s. Pressure amplitude has units of pascals (Pa) or N/m2. Note that Δp is half the difference between the
maximum and minimum pressure in the sound wave.

We can see from the equation that the intensity of a sound is proportional to its amplitude squared. The pressure variation is
proportional to the amplitude of the oscillation, and so I varies as (Δp)2. This relationship is consistent with the fact that the
sound wave is produced by some vibration; the greater its pressure amplitude, the more the air is compressed during the
vibration. Because the power of a sound wave is the rate at which energy is transferred, the energy of a sound wave is also
proportional to its amplitude squared.

TIPS FOR SUCCESS
Pressure is usually denoted by capital P, but we are using a lowercase p for pressure in this case to distinguish it from power
P above.

Figure 14.10 Graphs of the pressures in two sound waves of different intensities. The more intense sound is produced by a source that has

larger-amplitude oscillations and has greater pressure maxima and minima. Because pressures are higher in the greater-intensity sound, it

can exert larger forces on the objects it encounters.

The Decibel Scale
You may have noticed that when people talk about the loudness of a sound, they describe it in units of decibels rather than watts
per meter squared. While sound intensity (in W/m2) is the SI unit, the sound intensity level in decibels (dB) is more relevant for
how humans perceive sounds. The way our ears perceive sound can be more accurately described by the logarithm of the
intensity of a sound rather than the intensity of a sound directly. The sound intensity level β is defined to be

where I is sound intensity in watts per meter squared, and I0 = 10–12 W/m2 is a reference intensity. I0 is chosen as the reference
point because it is the lowest intensity of sound a person with normal hearing can perceive. The decibel level of a sound having
an intensity of 10–12 W/m2 is β = 0 dB, because log10 1 = 0. That is, the threshold of human hearing is 0 decibels.

Each factor of 10 in intensity corresponds to 10 dB. For example, a 90 dB sound compared with a 60 dB sound is 30 dB greater, or
three factors of 10 (that is, 103 times) as intense. Another example is that if one sound is 107 as intense as another, it is 70 dB
higher.

Since β is defined in terms of a ratio, it is unit-less. The unit called decibel (dB) is used to indicate that this ratio is multiplied by
10. The sound intensity level is not the same as sound intensity—it tells you the level of the sound relative to a reference intensity
rather than the actual intensity.

14.6

14.7
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Solving Sound Wave Intensity Problems

WORKED EXAMPLE

Calculating Sound Intensity Levels: Sound Waves
Calculate the sound intensity level in decibels for a sound wave traveling in air at 0 ºC and having a pressure amplitude of 0.656
Pa.
STRATEGY

We are given Δp, so we can calculate I using the equation . Using I , we can calculate β straight from its definition in

.

Solution
(1) Identify knowns:

Sound travels at 331 m/s in air at 0 °C.

Air has a density of 1.29 kg/m3 at atmospheric pressure and 0ºC.

(2) Enter these values and the pressure amplitude into .

(3) Enter the value for I and the known value for I0 into . Calculate to find the sound intensity level in

decibels.

Snap Lab

Feeling Sound
In this lab, you will play music with a heavy beat to literally feel the vibrations and explore what happens when the volume
changes.

• CD player or portable electronic device connected to speakers
• rock or rap music CD or mp3
• a lightweight table

Procedure
1. Place the speakers on a light table, and start playing the CD or mp3.
2. Place your hand gently on the table next to the speakers.
3. Increase the volume and note the level when the table just begins to vibrate as the music plays.
4. Increase the reading on the volume control until it doubles. What has happened to the vibrations?

GRASP CHECK
Do you think that when you double the volume of a sound wave you are doubling the sound intensity level (in dB) or the
sound intensity (in )? Why?
a. The sound intensity in , because it is a closer measure of how humans perceive sound.
b. The sound intensity level in because it is a closer measure of how humans perceive sound.
c. The sound intensity in because it is the only unit to express the intensity of sound.
d. The sound intensity level in because it is the only unit to express the intensity of sound.
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Discussion
This 87.0 dB sound has an intensity five times as great as an 80 dB sound. So a factor of five in intensity corresponds to a
difference of 7 dB in sound intensity level. This value is true for any intensities differing by a factor of five.

WORKED EXAMPLE

Change Intensity Levels of a Sound: What Happens to the Decibel Level?
Show that if one sound is twice as intense as another, it has a sound level about 3 dB higher.
STRATEGY
You are given that the ratio of two intensities is 2 to 1, and are then asked to find the difference in their sound levels in decibels.
You can solve this problem using of the properties of logarithms.

Solution
(1) Identify knowns:

The ratio of the two intensities is 2 to 1, or:

We want to show that the difference in sound levels is about 3 dB. That is, we want to show

Note that

(2) Use the definition of β to get

Therefore,

Discussion
This means that the two sound intensity levels differ by 3.01 dB, or about 3 dB, as advertised. Note that because only the ratio
I2/I1 is given (and not the actual intensities), this result is true for any intensities that differ by a factor of two. For example, a
56.0 dB sound is twice as intense as a 53.0 dB sound, a 97.0 dB sound is half as intense as a 100 dB sound, and so on.

Practice Problems
7. Calculate the intensity of a wave if the power transferred is 10 W and the area through which the wave is transferred is 5

square meters.
a. 200 W / m2

b. 50 W / m2

c. 0.5 W / m2

d. 2 W / m2

8. Calculate the sound intensity for a sound wave traveling in air at and having a pressure amplitude of .
a.
b.
c.
d.

Hearing and Voice
People create sounds by pushing air up through their lungs and through elastic folds in the throat called vocal cords. These folds

14.8

14.9

14.10
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open and close rhythmically, creating a pressure buildup. As air travels up and past the vocal cords, it causes them to vibrate.
This vibration escapes the mouth along with puffs of air as sound. A voice changes in pitch when the muscles of the larynx relax
or tighten, changing the tension on the vocal chords. A voice becomes louder when air flow from the lungs increases, making the
amplitude of the sound pressure wave greater.

Hearing is the perception of sound. It can give us plenty of information—such as pitch, loudness, and direction. Humans can
normally hear frequencies ranging from approximately 20 to 20,000 Hz. Other animals have hearing ranges different from that
of humans. Dogs can hear sounds as high as 45,000 Hz, whereas bats and dolphins can hear up to 110,000 Hz sounds. You may
have noticed that dogs respond to the sound of a dog whistle which produces sound out of the range of human hearing.

Sounds below 20 Hz are called infrasound, whereas those above 20,000 Hz are ultrasound. The perception of frequency is called
pitch, and the perception of intensity is called loudness.

The way we hear involves some interesting physics. The sound wave that hits our ear is a pressure wave. The ear converts sound
waves into electrical nerve impulses, similar to a microphone.

Figure 14.11 shows the anatomy of the ear with its division into three parts: the outer ear or ear canal; the middle ear, which runs
from the eardrum to the cochlea; and the inner ear, which is the cochlea itself. The body part normally referred to as the ear is
technically called the pinna.

Figure 14.11 The illustration shows the anatomy of the human ear.

The outer ear, or ear canal, carries sound to the eardrum protected inside of the ear. The middle ear converts sound into
mechanical vibrations and applies these vibrations to the cochlea. The lever system of the middle ear takes the force exerted on
the eardrum by sound pressure variations, amplifies it and transmits it to the inner ear via the oval window. Two muscles in the
middle ear protect the inner ear from very intense sounds. They react to intense sound in a few milliseconds and reduce the
force transmitted to the cochlea. This protective reaction can also be triggered by your own voice, so that humming during a
fireworks display, for example, can reduce noise damage.

Figure 14.12 shows the middle and inner ear in greater detail. As the middle ear bones vibrate, they vibrate the cochlea, which
contains fluid. This creates pressure waves in the fluid that cause the tectorial membrane to vibrate. The motion of the tectorial
membrane stimulates tiny cilia on specialized cells called hair cells. These hair cells, and their attached neurons, transform the
motion of the tectorial membrane into electrical signals that are sent to the brain.

The tectorial membrane vibrates at different positions based on the frequency of the incoming sound. This allows us to detect
the pitch of sound. Additional processing in the brain also allows us to determine which direction the sound is coming from
(based on comparison of the sound’s arrival time and intensity between our two ears).
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Figure 14.12 The inner ear, or cochlea, is a coiled tube about 3 mm in diameter and 3 cm in length when uncoiled. As the stapes vibrates

against the oval window, it creates pressure waves that travel through fluid in the cochlea. These waves vibrate the tectorial membrane,

which bends the cilia and stimulates nerves in the organ of Corti. These nerves then send information about the sound to the brain.

FUN IN PHYSICS

Musical Instruments

Figure 14.13 Playing music, also known as “rocking out”, involves creating vibrations using musical instruments. (John Norton)

Yet another way that people make sounds is through playing musical instruments (see the previous figure). Recall that the
perception of frequency is called pitch. You may have noticed that the pitch range produced by an instrument tends to depend
upon its size. Small instruments, such as a piccolo, typically make high-pitch sounds, while larger instruments, such as a tuba,
typically make low-pitch sounds. High-pitch means small wavelength, and the size of a musical instrument is directly related to
the wavelengths of sound it produces. So a small instrument creates short-wavelength sounds, just as a large instrument creates
long-wavelength sounds.

Most of us have excellent relative pitch, which means that we can tell whether one sound has a different frequency from another.
We can usually distinguish one sound from another if the frequencies of the two sounds differ by as little as 1 Hz. For example,
500.0 and 501.5 Hz are noticeably different.

Musical notes are particular sounds that can be produced by most instruments, and are the building blocks of a song. In
Western music, musical notes have particular names, such as A-sharp, C, or E-flat. Some people can identify musical notes just
by listening to them. This rare ability is called perfect, or absolute, pitch.

When a violin plays middle C, there is no mistaking it for a piano playing the same note. The reason is that each instrument
produces a distinctive set of frequencies and intensities. We call our perception of these combinations of frequencies and
intensities the timbre of the sound. It is more difficult to quantify timbre than loudness or pitch. Timbre is more subjective.
Evocative adjectives such as dull, brilliant, warm, cold, pure, and rich are used to describe the timbre of a sound rather than
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quantities with units, which makes for a difficult topic to dissect with physics. So the consideration of timbre takes us into the
realm of perceptual psychology, where higher-level processes in the brain are dominant. This is also true for other perceptions of
sound, such as music and noise. But as a teenager, you are likely already aware that one person’s music may be another person’s
noise.

GRASP CHECK
If you turn up the volume of your stereo, will the pitch change? Why or why not?
a. No, because pitch does not depend on intensity.
b. Yes, because pitch is directly related to intensity.

Check Your Understanding
9. What is sound intensity?

a. Intensity is the energy per unit area carried by a wave.
b. Intensity is the energy per unit volume carried by a wave.
c. Intensity is the power per unit area carried by a wave.
d. Intensity is the power per unit volume carried by a wave.

10. How is power defined with reference to a sound wave?
a. Power is the rate at which energy is transferred by a sound wave.
b. Power is the rate at which mass is transferred by a sound wave.
c. Power is the rate at which amplitude of a sound wave changes.
d. Power is the rate at which wavelength of a sound wave changes.

11. What word or phrase is used to describe the loudness of sound?
a. frequency or oscillation
b. intensity level or decibel
c. timbre
d. pitch

12. What is the mathematical expression for sound intensity level ?
a.

b.

c.

d.

13. What is the range frequencies that humans are capable of hearing?
a.
b. to
c. to
d. to

14. How do humans change the pitch of their voice?
a. Relaxing or tightening their glottis
b. Relaxing or tightening their uvula
c. Relaxing or tightening their tongue
d. Relaxing or tightening their larynx

References
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14.3 Doppler Effect and Sonic Booms
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the Doppler effect of sound waves
• Explain a sonic boom
• Calculate the frequency shift of sound from a moving object by the Doppler shift formula, and calculate the

speed of an object by the Doppler shift formula

Section Key Terms

Doppler effect sonic boom

The Doppler Effect of Sound Waves
The Doppler effect is a change in the observed pitch of a sound, due to relative motion between the source and the observer. An
example of the Doppler effect due to the motion of a source occurs when you are standing still, and the sound of a siren coming
from an ambulance shifts from high-pitch to low-pitch as it passes by. The closer the ambulance is to you, the more sudden the
shift. The faster the ambulance moves, the greater the shift. We also hear this shift in frequency for passing race cars, airplanes,
and trains. An example of the Doppler effect with a stationary source and moving observer is if you ride a train past a stationary
warning bell, you will hear the bell’s frequency shift from high to low as you pass by.

What causes the Doppler effect? Let’s compare three different scenarios: Sound waves emitted by a stationary source (Figure
14.14), sound waves emitted by a moving source (Figure 14.15), and sound waves emitted by a stationary source but heard by
moving observers (Figure 14.16). In each case, the sound spreads out from the point where it was emitted.

If the source and observers are stationary, then observers on either side see the same wavelength and frequency as emitted by
the source. But if the source is moving and continues to emit sound as it travels, then the air compressions (crests) become
closer together in the direction in which it’s traveling and farther apart in the direction it’s traveling away from. Therefore, the
wavelength is shorter in the direction the source is moving (on the right in Figure 14.15), and longer in the opposite direction (on
the left in Figure 14.15).

Finally, if the observers move, as in Figure 14.16, the frequency at which they receive the compressions changes. The observer
moving toward the source receives them at a higher frequency (and therefore shorter wavelength), and the person moving away
from the source receives them at a lower frequency (and therefore longer wavelength).

Figure 14.14 Sounds emitted by a source spread out in spherical waves. Because the source, observers, and air are stationary, the

wavelength and frequency are the same in all directions and to all observers.

Figure 14.15 Sounds emitted by a source moving to the right spread out from the points at which they were emitted. The wavelength is
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reduced and, consequently, the frequency is increased in the direction of motion, so that the observer on the right hears a higher-pitch

sound. The opposite is true for the observer on the left, where the wavelength is increased and the frequency is reduced.

Figure 14.16 The same effect is produced when the observers move relative to the source. Motion toward the source increases frequency

as the observer on the right passes through more wave crests than she would if stationary. Motion away from the source decreases

frequency as the observer on the left passes through fewer wave crests than he would if stationary.

We know that wavelength and frequency are related by where v is the fixed speed of sound. The sound moves in a
medium and has the same speed v in that medium whether the source is moving or not. Therefore, f multiplied by is a
constant. Because the observer on the right in Figure 14.15 receives a shorter wavelength, the frequency she perceives must be
higher. Similarly, the observer on the left receives a longer wavelength and therefore perceives a lower frequency.

The same thing happens in Figure 14.16. A higher frequency is perceived by the observer moving toward the source, and a lower
frequency is perceived by an observer moving away from the source. In general, then, relative motion of source and observer
toward one another increases the perceived frequency. Relative motion apart decreases the perceived frequency. The greater the
relative speed is, the greater the effect.

WATCH PHYSICS

Introduction to the Doppler Effect
This video explains the Doppler effect visually.

Click to view content (https://www.openstax.org/l/28doppler)

GRASP CHECK
If you are standing on the sidewalk facing the street and an ambulance drives by with its siren blaring, at what point will the
frequency that you observe most closely match the actual frequency of the siren?
a. when it is coming toward you
b. when it is going away from you
c. when it is in front of you

For a stationary observer and a moving source of sound, the frequency (fobs) of sound perceived by the observer is

where fs is the frequency of sound from a source, vs is the speed of the source along a line joining the source and observer, and
vw is the speed of sound. The minus sign is used for motion toward the observer and the plus sign for motion away from the
observer.

TIPS FOR SUCCESS
Rather than just memorizing rules, which are easy to forget, it is better to think about the rules of an equation intuitively.
Using a minus sign in will decrease the denominator and increase the observed frequency, which is

consistent with the expected outcome of the Doppler effect when the source is moving toward the observer. Using a plus sign
will increase the denominator and decrease the observed frequency, consistent with what you would expect for the source

14.11
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moving away from the observer. This may be more helpful to keep in mind rather than memorizing the fact that “the minus
sign is used for motion toward the observer and the plus sign for motion away from the observer.”

Note that the greater the speed of the source, the greater the Doppler effect. Similarly, for a stationary source and moving
observer, the frequency perceived by the observer fobs is given by

where vobs is the speed of the observer along a line joining the source and observer. Here the plus sign is for motion toward the
source, and the minus sign is for motion away from the source.

Sonic Booms
What happens to the sound produced by a moving source, such as a jet airplane, that approaches or even exceeds the speed of
sound? Suppose a jet airplane is coming nearly straight at you, emitting a sound of frequency fs. The greater the plane’s speed,
vs, the greater the Doppler shift and the greater the value of fobs. Now, as vs approaches the speed of sound, vw, fobs approaches
infinity, because the denominator in approaches zero.

This result means that at the speed of sound, in front of the source, each wave is superimposed on the previous one because the
source moves forward at the speed of sound. The observer gets them all at the same instant, and so the frequency is theoretically
infinite. If the source exceeds the speed of sound, no sound is received by the observer until the source has passed, so that the
sounds from the source when it was approaching are stacked up with those from it when receding, creating a sonic boom. A
sonic boom is a constructive interference of sound created by an object moving faster than sound.

An aircraft creates two sonic booms, one from its nose and one from its tail (see Figure 14.17). During television coverage of
space shuttle landings, two distinct booms could often be heard. These were separated by exactly the time it would take the
shuttle to pass by a point. Observers on the ground often do not observe the aircraft creating the sonic boom, because it has
passed by before the shock wave reaches them. If the aircraft flies close by at low altitude, pressures in the sonic boom can be
destructive enough to break windows. Because of this, supersonic flights are banned over populated areas of the United States.

Figure 14.17 Two sonic booms, created by the nose and tail of an aircraft, are observed on the ground after the plane has passed by.

Solving Problems Using the Doppler Shift Formula

WATCH PHYSICS

Doppler Effect Formula for Observed Frequency
This video explains the Doppler effect formula for cases when the source is moving toward the observer.

Click to view content (https://www.openstax.org/l/28dopplerform)

GRASP CHECK
Let’s say that you have a rare phobia where you are afraid of the Doppler effect. If you see an ambulance coming your way,
what would be the best strategy to minimize the Doppler effect and soothe your Doppleraphobia?

14.12
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a. Stop moving and become stationary till it passes by.
b. Run toward the ambulance.
c. Run alongside the ambulance.

WATCH PHYSICS

Doppler Effect Formula When Source is Moving Away
This video explains the Doppler effect formula for cases when the source is moving away from the observer.

Click to view content (https://www.openstax.org/l/28doppleraway)

GRASP CHECK
Sal uses two different formulas for the Doppler effect-one for when the source is moving toward the observer and another for
when the source is moving away. However, in this textbook we use only one formula. Explain.
a. The combined formula that can be used is, Use ( ) when the source is moving toward the observer and ( ) when the

source is moving away from the observer.
b. The combined formula that can be used is, . Use ( ) when the source is moving away from the

observer and ( ) when the source is moving toward the observer.
c. The combined formula that can be used is, . Use ( ) when the source is moving toward the observer

and ( ) when the source is moving away from the observer.
d. The combined formula that can be used is, . Use ( ) when the source is moving away from the

observer and ( ) when the source is moving toward the observer.

WORKED EXAMPLE

Calculate Doppler Shift: A Train Horn
Suppose a train that has a 150 Hz horn is moving at 35 m/s in still air on a day when the speed of sound is 340 m/s. What
frequencies are observed by a stationary person at the side of the tracks as the train approaches and after it passes?
Strategy
To find the observed frequency, must be used because the source is moving. The minus sign is used for the

approaching train, and the plus sign for the receding train.

Solution
(1) Enter known values into to calculate the frequency observed by a stationary person as the train

approaches:

(2) Use the same equation but with the plus sign to find the frequency heard by a stationary person as the train recedes.

Discussion
The numbers calculated are valid when the train is far enough away that the motion is nearly along the line joining the train and
the observer. In both cases, the shift is significant and easily noticed. Note that the shift is approximately 20 Hz for motion
toward and approximately 10 Hz for motion away. The shifts are not symmetric.
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Practice Problems
15. What is the observed frequency when the source having frequency is moving towards the observer at a speed of

and the speed of sound is ?
a.
b.
c.
d.

16. A train is moving away from you at a speed of . If you are standing still and hear the whistle at a frequency of
, what is the actual frequency of the produced whistle? (Assume speed of sound to be .)

a.
b.
c.
d.

Check Your Understanding
17. What is the Doppler effect?

a. The Doppler effect is a change in the observed speed of a sound due to the relative motion between the source and the
observer.

b. The Doppler effect is a change in the observed frequency of a sound due to the relative motion between the source and
the observer.

c. The Doppler effect is a change in the observed intensity of a sound due to the relative motion between the source and
the observer.

d. The Doppler effect is a change in the observed timbre of a sound, due to the relative motion between the source and the
observer.

18. Give an example of the Doppler effect caused by motion of the source.
a. The sound of a vehicle horn shifts from low-pitch to high-pitch as we move towards it.
b. The sound of a vehicle horn shifts from low-pitch to high-pitch as we move away from it.
c. The sound of a vehicle horn shifts from low-pitch to high-pitch as it passes by.
d. The sound of a vehicle horn shifts from high-pitch to low-pitch as it passes by.

19. What is a sonic boom?
a. It is a destructive interference of sound created by an object moving faster than sound.
b. It is a constructive interference of sound created by an object moving faster than sound.
c. It is a destructive interference of sound created by an object moving slower than sound.
d. It is a constructive interference of sound created by an object moving slower than sound.

20. What is the relation between speed of source and value of observed frequency when the source is moving towards the
observer?
a. They are independent of each other.
b. The greater the speed, the greater the value of observed frequency.
c. The greater the speed, the smaller the value of observed frequency.
d. The speed of the sound is directly proportional to the square of the frequency observed.

14.4 Sound Interference and Resonance
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe resonance and beats
• Define fundamental frequency and harmonic series
• Contrast an open-pipe and closed-pipe resonator
• Solve problems involving harmonic series and beat frequency
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Section Key Terms

beat beat frequency damping fundamental harmonics

natural frequency overtones resonance resonate

Resonance and Beats
Sit in front of a piano sometime and sing a loud brief note at it while pushing down on the sustain pedal. It will sing the same
note back at you—the strings that have the same frequencies as your voice, are resonating in response to the forces from the
sound waves that you sent to them. This is a good example of the fact that objects—in this case, piano strings—can be forced to
oscillate but oscillate best at their natural frequency.

A driving force (such as your voice in the example) puts energy into a system at a certain frequency, which is not necessarily the
same as the natural frequency of the system. Over time the energy dissipates, and the amplitude gradually reduces to zero- this
is called damping. The natural frequency is the frequency at which a system would oscillate if there were no driving and no
damping force. The phenomenon of driving a system with a frequency equal to its natural frequency is called resonance, and a
system being driven at its natural frequency is said to resonate.

Most of us have played with toys where an object bobs up and down on an elastic band, something like the paddle ball suspended
from a finger in Figure 14.18. At first you hold your finger steady, and the ball bounces up and down with a small amount of
damping. If you move your finger up and down slowly, the ball will follow along without bouncing much on its own. As you
increase the frequency at which you move your finger up and down, the ball will respond by oscillating with increasing
amplitude. When you drive the ball at its natural frequency, the ball’s oscillations increase in amplitude with each oscillation for
as long as you drive it. As the driving frequency gets progressively higher than the resonant or natural frequency, the amplitude
of the oscillations becomes smaller, until the oscillations nearly disappear and your finger simply moves up and down with little
effect on the ball.

Figure 14.18 The paddle ball on its rubber band moves in response to the finger supporting it. If the finger moves with the natural

frequency of the ball on the rubber band, then a resonance is achieved, and the amplitude of the ball’s oscillations increases dramatically.

At higher and lower driving frequencies, energy is transferred to the ball less efficiently, and it responds with lower-amplitude oscillations.

Another example is that when you tune a radio, you adjust its resonant frequency so that it oscillates only at the desired station’s
broadcast (driving) frequency. Also, a child on a swing is driven (pushed) by a parent at the swing’s natural frequency to reach
the maximum amplitude (height). In all of these cases, the efficiency of energy transfer from the driving force into the oscillator
is best at resonance.
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Figure 14.19 Some types of headphones use the phenomena of constructive and destructive interference to cancel out outside noises.

All sound resonances are due to constructive and destructive interference. Only the resonant frequencies interfere
constructively to form standing waves, while others interfere destructively and are absent. From the toot made by blowing over a
bottle to the recognizability of a great singer’s voice, resonance and standing waves play a vital role in sound.

Interference happens to all types of waves, including sound waves. In fact, one way to support that something is a wave is to
observe interference effects. Figure 14.19 shows a set of headphones that employs a clever use of sound interference to cancel
noise. To get destructive interference, a fast electronic analysis is performed, and a second sound is introduced with its maxima
and minima exactly reversed from the incoming noise.

In addition to resonance, superposition of waves can also create beats. Beats are produced by the superposition of two waves
with slightly different frequencies but the same amplitude. The waves alternate in time between constructive interference and
destructive interference, giving the resultant wave an amplitude that varies over time. (See the resultant wave in Figure 14.20).

This wave fluctuates in amplitude, or beats, with a frequency called the beat frequency. The equation for beat frequency is

where f1 and f2 are the frequencies of the two original waves. If the two frequencies of sound waves are similar, then what we
hear is an average frequency that gets louder and softer at the beat frequency.

TIPS FOR SUCCESS
Don’t confuse the beat frequency with the regular frequency of a wave resulting from superposition. While the beat
frequency is given by the formula above, and describes the frequency of the beats, the actual frequency of the wave resulting
from superposition is the average of the frequencies of the two original waves.

Figure 14.20 Beats are produced by the superposition of two waves of slightly different frequencies but identical amplitudes. The waves

alternate in time between constructive interference and destructive interference, giving the resulting wave a time-varying amplitude.

14.13

Virtual Physics

Wave Interference
Click to view content (https://www.openstax.org/l/28interference)
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Fundamental Frequency and Harmonics
Suppose we hold a tuning fork near the end of a tube that is closed at the other end, as shown in Figure 14.21, Figure 14.22, and
Figure 14.23. If the tuning fork has just the right frequency, the air column in the tube resonates loudly, but at most frequencies
it vibrates very little. This means that the air column has only certain natural frequencies. The figures show how a resonance at
the lowest of these natural frequencies is formed. A disturbance travels down the tube at the speed of sound and bounces off the
closed end. If the tube is just the right length, the reflected sound arrives back at the tuning fork exactly half a cycle later, and it
interferes constructively with the continuing sound produced by the tuning fork. The incoming and reflected sounds form a
standing wave in the tube as shown.

Figure 14.21 Resonance of air in a tube closed at one end, caused by a tuning fork. A disturbance moves down the tube.

Figure 14.22 Resonance of air in a tube closed at one end, caused by a tuning fork. The disturbance reflects from the closed end of the

tube.

Figure 14.23 Resonance of air in a tube closed at one end, caused by a tuning fork. If the length of the tube L is just right, the disturbance

gets back to the tuning fork half a cycle later and interferes constructively with the continuing sound from the tuning fork. This interference

forms a standing wave, and the air column resonates.

The standing wave formed in the tube has its maximum air displacement (an antinode) at the open end, and no displacement (a

For this activity, switch to the Sound tab. Turn on the Sound option, and experiment with changing the frequency and
amplitude, and adding in a second speaker and a barrier.

GRASP CHECK
According to the graph, what happens to the amplitude of pressure over time. What is this phenomenon called, and
what causes it ?
a. The amplitude decreases over time. This phenomenon is called damping. It is caused by the dissipation of energy.
b. The amplitude increases over time. This phenomenon is called feedback. It is caused by the gathering of energy.
c. The amplitude oscillates over time. This phenomenon is called echoing. It is caused by fluctuations in energy.
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node) at the closed end. Recall from the last chapter on waves that motion is unconstrained at the antinode, and halted at the
node. The distance from a node to an antinode is one-fourth of a wavelength, and this equals the length of the tube; therefore,

. This same resonance can be produced by a vibration introduced at or near the closed end of the tube, as shown in
Figure 14.24.

Figure 14.24 The same standing wave is created in the tube by a vibration introduced near its closed end.

Since maximum air displacements are possible at the open end and none at the closed end, there are other, shorter wavelengths
that can resonate in the tube see Figure 14.25). Here the standing wave has three-fourths of its wavelength in the tube, or

, so that . There is a whole series of shorter-wavelength and higher-frequency sounds that resonate
in the tube.

We use specific terms for the resonances in any system. The lowest resonant frequency is called the fundamental, while all
higher resonant frequencies are called overtones. All resonant frequencies are multiples of the fundamental, and are called
harmonics. The fundamental is the first harmonic, the first overtone is the second harmonic, and so on. Figure 14.26 shows the
fundamental and the first three overtones (the first four harmonics) in a tube closed at one end.

Figure 14.25 Another resonance for a tube closed at one end. This has maximum air displacements at the open end, and none at the closed

end. The wavelength is shorter, with three-fourths equaling the length of the tube, so that . This higher-frequency vibration is

the first overtone.

Figure 14.26 The fundamental and three lowest overtones for a tube closed at one end. All have maximum air displacements at the open

end and none at the closed end.

The fundamental and overtones can be present at the same time in a variety of combinations. For example, the note middle C on
a trumpet sounds very different from middle C on a clarinet, even though both instruments are basically modified versions of a
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tube closed at one end. The fundamental frequency is the same (and usually the most intense), but the overtones and their mix
of intensities are different. This mix is what gives musical instruments (and human voices) their distinctive characteristics,
whether they have air columns, strings, or drumheads. In fact, much of our speech is determined by shaping the cavity formed
by the throat and mouth and positioning the tongue to adjust the fundamental and combination of overtones.

Open-Pipe and Closed-Pipe Resonators
The resonant frequencies of a tube closed at one end (known as a closed-pipe resonator) are

where f1 is the fundamental, f3 is the first overtone, and so on. Note that the resonant frequencies depend on the speed of sound
v and on the length of the tube L.

Another type of tube is one that is open at both ends (known as an open-pipe resonator). Examples are some organ pipes, flutes,
and oboes. The air columns in tubes open at both ends have maximum air displacements at both ends. (See Figure 14.27).
Standing waves form as shown.

Figure 14.27 The resonant frequencies of a tube open at both ends are shown, including the fundamental and the first three overtones. In

all cases the maximum air displacements occur at both ends of the tube, giving it different natural frequencies than a tube closed at one

end.

The resonant frequencies of an open-pipe resonator are

where f1 is the fundamental, f2 is the first overtone, f3 is the second overtone, and so on. Note that a tube open at both ends has a
fundamental frequency twice what it would have if closed at one end. It also has a different spectrum of overtones than a tube
closed at one end. So if you had two tubes with the same fundamental frequency but one was open at both ends and the other
was closed at one end, they would sound different when played because they have different overtones.

Middle C, for example, would sound richer played on an open tube since it has more overtones. An open-pipe resonator has
more overtones than a closed-pipe resonator because it has even multiples of the fundamental as well as odd, whereas a closed
tube has only odd multiples.

In this section we have covered resonance and standing waves for wind instruments, but vibrating strings on stringed
instruments also resonate and have fundamentals and overtones similar to those for wind instruments.

Solving Problems Involving Harmonic Series and Beat Frequency

WORKED EXAMPLE

Finding the Length of a Tube for a Closed-Pipe Resonator
If sound travels through the air at a speed of 344 m/s, what should be the length of a tube closed at one end to have a
fundamental frequency of 128 Hz?
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Strategy
The length L can be found by rearranging the equation .

Solution
(1) Identify knowns.

• The fundamental frequency is 128 Hz.
• The speed of sound is 344 m/s.

(2) Use to find the fundamental frequency (n = 1).

(3) Solve this equation for length.

(4) Enter the values of the speed of sound and frequency into the expression for L.

Discussion
Many wind instruments are modified tubes that have finger holes, valves, and other devices for changing the length of the
resonating air column and therefore, the frequency of the note played. Horns producing very low frequencies, such as tubas,
require tubes so long that they are coiled into loops.

WORKED EXAMPLE

Finding the Third Overtone in an Open-Pipe Resonator
If a tube that’s open at both ends has a fundamental frequency of 120 Hz, what is the frequency of its third overtone?
Strategy
Since we already know the value of the fundamental frequency (n = 1), we can solve for the third overtone (n = 4) using the
equation .

Solution
Since fundamental frequency (n = 1) is

and

Discussion
To solve this problem, it wasn’t necessary to know the length of the tube or the speed of the air because of the relationship
between the fundamental and the third overtone. This example was of an open-pipe resonator; note that for a closed-pipe
resonator, the third overtone has a value of n = 7 (not n = 4).

WORKED EXAMPLE

Using Beat Frequency to Tune a Piano
Piano tuners use beats routinely in their work. When comparing a note with a tuning fork, they listen for beats and adjust the
string until the beats go away (to zero frequency). If a piano tuner hears two beats per second, and the tuning fork has a

14.14
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frequency of 256 Hz, what are the possible frequencies of the piano?
Strategy
Since we already know that the beat frequency fB is 2, and one of the frequencies (let’s say f2) is 256 Hz, we can use the equation

to solve for the frequency of the piano f1.

Solution
Since ,

we know that either or .

Solving for f1,

Substituting in values,

So,

Discussion
The piano tuner might not initially be able to tell simply by listening whether the frequency of the piano is too high or too low
and must tune it by trial and error, making an adjustment and then testing it again. If there are even more beats after the
adjustment, then the tuner knows that he went in the wrong direction.

Practice Problems
21. Two sound waves have frequencies and . What is the beat frequency produced by their superposition?

a.
b.
c.
d.

22. What is the length of a pipe closed at one end with fundamental frequency ? (Assume the speed of sound in air is
.)

a.
b.
c.
d.

Check Your Understanding
23. What is damping?

a. Over time the energy increases and the amplitude gradually reduces to zero. This is called damping.
b. Over time the energy dissipates and the amplitude gradually increases. This is called damping.
c. Over time the energy increases and the amplitude gradually increases. This is called damping.
d. Over time the energy dissipates and the amplitude gradually reduces to zero. This is called damping.

24. What is resonance? When can you say that the system is resonating?
a. The phenomenon of driving a system with a frequency equal to its natural frequency is called resonance, and a system

being driven at its natural frequency is said to resonate.
b. The phenomenon of driving a system with a frequency higher than its natural frequency is called resonance, and a

system being driven at its natural frequency does not resonate.
c. The phenomenon of driving a system with a frequency equal to its natural frequency is called resonance, and a system

being driven at its natural frequency does not resonate.
d. The phenomenon of driving a system with a frequency higher than its natural frequency is called resonance, and a

system being driven at its natural frequency is said to resonate.

14.19

14.20
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25. In the tuning fork and tube experiment, in case a standing wave is formed, at what point on the tube is the maximum
disturbance from the tuning fork observed? Recall that the tube has one open end and one closed end.
a. At the midpoint of the tube
b. Both ends of the tube
c. At the closed end of the tube
d. At the open end of the tube

26. In the tuning fork and tube experiment, when will the air column produce the loudest sound?
a. If the tuning fork vibrates at a frequency twice that of the natural frequency of the air column.
b. If the tuning fork vibrates at a frequency lower than the natural frequency of the air column.
c. If the tuning fork vibrates at a frequency higher than the natural frequency of the air column.
d. If the tuning fork vibrates at a frequency equal to the natural frequency of the air column.

27. What is a closed-pipe resonator?
a. A pipe or cylindrical air column closed at both ends
b. A pipe with an antinode at the closed end
c. A pipe with a node at the open end
d. A pipe or cylindrical air column closed at one end

28. Give two examples of open-pipe resonators.
a. piano, violin
b. drum, tabla
c. rlectric guitar, acoustic guitar
d. flute, oboe
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KEY TERMS
amplitude the amount that matter is disrupted during a

sound wave, as measured by the difference in height
between the crests and troughs of the sound wave.

beat a phenomenon produced by the superposition of two
waves with slightly different frequencies but the same
amplitude

beat frequency the frequency of the amplitude fluctuations
of a wave

damping the reduction in amplitude over time as the
energy of an oscillation dissipates

decibel a unit used to describe sound intensity levels
Doppler effect an alteration in the observed frequency of a

sound due to relative motion between the source and the
observer

fundamental the lowest-frequency resonance
harmonics the term used to refer to the fundamental and

its overtones
hearing the perception of sound

loudness the perception of sound intensity
natural frequency the frequency at which a system would

oscillate if there were no driving and no damping forces
overtones all resonant frequencies higher than the

fundamental
pitch the perception of the frequency of a sound
rarefaction a low-pressure region in a sound wave
resonance the phenomenon of driving a system with a

frequency equal to the system's natural frequency
resonate to drive a system at its natural frequency
sonic boom a constructive interference of sound created by

an object moving faster than sound
sound a disturbance of matter that is transmitted from its

source outward by longitudinal waves
sound intensity the power per unit area carried by a sound

wave
sound intensity level the level of sound relative to a fixed

standard related to human hearing

SECTION SUMMARY
14.1 Speed of Sound, Frequency,
and Wavelength

• Sound is one type of wave.
• Sound is a disturbance of matter that is transmitted

from its source outward in the form of longitudinal
waves.

• The relationship of the speed of sound v, its frequency f,
and its wavelength is given by , which is the
same relationship given for all waves.

• The speed of sound depends upon the medium through
which the sound wave is travelling.

• In a given medium at a specific temperature (or
density), the speed of sound v is the same for all
frequencies and wavelengths.

14.2 Sound Intensity and Sound
Level

• The intensity of a sound is proportional to its amplitude
squared.

• The energy of a sound wave is also proportional to its
amplitude squared.

• Sound intensity level in decibels (dB) is more relevant
for how humans perceive sounds than sound intensity
(in W/m2), even though sound intensity is the SI unit.

• Sound intensity level is not the same as sound
intensity—it tells you the level of the sound relative to a
reference intensity rather than the actual intensity.

• Hearing is the perception of sound and involves that
transformation of sound waves into vibrations of parts
within the ear. These vibrations are then transformed

into neural signals that are interpreted by the brain.
• People create sounds by pushing air up through their

lungs and through elastic folds in the throat called vocal
cords.

14.3 Doppler Effect and Sonic
Booms

• The Doppler effect is a shift in the observed frequency of
a sound due to motion of either the source or the
observer.

• The observed frequency is greater than the actual
source’s frequency when the source and the observer are
moving closer together, either by the source moving
toward the observer or the observer moving toward the
source.

• A sonic boom is constructive interference of sound
created by an object moving faster than sound.

14.4 Sound Interference and
Resonance

• A system’s natural frequency is the frequency at which
the system will oscillate if not affected by driving or
damping forces.

• A periodic force driving a harmonic oscillator at its
natural frequency produces resonance. The system is
said to resonate.

• Beats occur when waves of slightly different frequencies
are superimposed.

• In air columns, the lowest-frequency resonance is called
the fundamental, whereas all higher resonant
frequencies are called overtones. Collectively, they are
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called harmonics.
• The resonant frequencies of a tube closed at one end are

, where f1 is the fundamental

and L is the length of the tube.
• The resonant frequencies of a tube open at both ends

are

KEY EQUATIONS
14.1 Speed of Sound, Frequency,
and Wavelength

speed of sound

14.2 Sound Intensity and Sound
Level

intensity

sound intensity

sound intensity level

14.3 Doppler Effect and Sonic
Booms

Doppler effect observed
frequency (moving source)

Doppler effect observed
frequency (moving
observer)

14.4 Sound Interference and
Resonance

beat frequency

resonant frequencies of a
closed-pipe resonator

resonant frequencies of an
open-pipe resonator

CHAPTER REVIEW
Concept Items
14.1 Speed of Sound, Frequency, and
Wavelength
1. What is the amplitude of a sound wave perceived by the

human ear?
a. loudness
b. pitch
c. intensity
d. timbre

2. The compressibility of air and hydrogen is almost the
same. Which factor is the reason that sound travels faster
in hydrogen than in air?
a. Hydrogen is more dense than air.
b. Hydrogen is less dense than air.
c. Hydrogen atoms are heavier than air molecules.
d. Hydrogen atoms are lighter than air molecules.

14.2 Sound Intensity and Sound Level
3. What is the mathematical relationship between intensity,

power, and area?

a.

b.
c.
d.

4. How does the "decibel" get its name?
a. The meaning of deci is “hundred” and the number of

decibels is one-hundredth of the logarithm to base
10 of the ratio of two sound intensities.

b. The meaning of deci is "ten" and the number of
decibels is one-tenth of the logarithm to base 10 of
the ratio of two sound intensities.

c. The meaning of deci is “one-hundredth” and the
number of decibels is hundred times the logarithm
to base 10 of the ratio of two sound intensities.

d. The meaning of deci is “one-tenth” and the number
of decibels is ten times the logarithm to base 10 of
the ratio of two sound intensities.

5. What is “timbre” of sound?
a. Timbre is the quality of the sound that distinguishes

it from other sound
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b. Timbre is the loudness of the sound that
distinguishes it from other sound.

c. Timbre is the pitch of the sound that distinguishes it
from other sound.

d. Timbre is the wavelength of the sound that
distinguishes it from other sound.

14.3 Doppler Effect and Sonic Booms
6. Two sources of sound producing the same frequency are

moving towards you at different speeds. Which one
would sound more high-pitched?
a. the one moving slower
b. the one moving faster

7. When the speed of the source matches the speed of
sound, what happens to the amplitude of the sound
wave? Why?
a. It approaches zero. This is because all wave crests

are superimposed on one another through
constructive interference.

b. It approaches infinity. This is because all wave crests
are superimposed on one another through
constructive interference.

c. It approaches zero, because all wave crests are
superimposed on one another through destructive
interference.

d. It approaches infinity, because all wave crests are
superimposed on one another through destructive
interference.

8. What is the mathematical expression for the frequency
perceived by the observer in the case of a stationary
observer and a moving source?
a.

b.

c.

d.

14.4 Sound Interference and Resonance
9. When does a yo-yo travel the farthest from the finger?

a. when the amplitude of the finger moving up and

down is greater than the amplitude of the yo-yo
b. when the amplitude of the finger moving up and

down is less than the amplitude of the yo-yo
c. when the frequency of the finger moving up and

down is equal to the resonant frequency of the yo-yo
d. when the frequency of the finger moving up and

down is different from the resonant frequency of the
yo-yo

10. What is the difference between harmonics and
overtones?
a. Harmonics are all multiples of the fundamental

frequency. The first overtone is actually the first
harmonic.

b. Harmonics are all multiples of the fundamental
frequency. The first overtone is actually the second
harmonic.

c. Harmonics are all multiples of the fundamental
frequency. The second overtone is actually the first
harmonic.

d. Harmonics are all multiples of the fundamental
frequency. The third overtone is actually the second
harmonic.

11. What kind of waves form in pipe resonators?
a. damped waves
b. propagating waves
c. high-frequency waves
d. standing waves

12. What is the natural frequency of a system?
a. The natural frequency is the frequency at which a

system oscillates when it undergoes forced
vibration.

b. The natural frequency is the frequency at which a
system oscillates when it undergoes damped
oscillation.

c. The natural frequency is the frequency at which a
system oscillates when it undergoes free vibration
without a driving force or damping.

d. The natural frequency is the frequency at which a
system oscillates when it undergoes forced
vibration with damping.

Critical Thinking Items
14.1 Speed of Sound, Frequency, and
Wavelength
13. What can be said about the frequency of a monotonous

sound?
a. It decreases with time.
b. It decreases with distance.
c. It increases with distance.

d. It remains constant.

14. A scientist notices that a sound travels faster through a
solid material than through the air. Which of the
following can explain this?
a. Solid materials are denser than air.
b. Solid materials are less dense than air.
c. A solid is more rigid than air.
d. A solid is easier to compress than air.
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14.2 Sound Intensity and Sound Level
15. Which property of the wave is related to its intensity?

How?
a. The frequency of the wave is related to the intensity

of the sound. The larger-frequency oscillations
indicate greater pressure maxima and minima, and
the pressure is higher in greater-intensity sound.

b. The wavelength of the wave is related to the
intensity of the sound. The longer-wavelength
oscillations indicate greater pressure maxima and
minima, and the pressure is higher in greater-
intensity sound.

c. The amplitude of the wave is related to the intensity
of the sound. The larger-amplitude oscillations
indicate greater pressure maxima and minima, and
the pressure is higher in greater-intensity sound.

d. The speed of the wave is related to the intensity of
the sound. The higher-speed oscillations indicate
greater pressure maxima and minima, and the
pressure is higher in greater-intensity sound.

16. Why is decibel (dB) used to describe loudness of sound?
a. Because, human ears have an inverse response to

the amplitude of sound.
b. Because, human ears have an inverse response to

the intensity of sound.
c. Because, the way our ears perceive sound can be

more accurately described by the amplitude of a
sound rather than the intensity of a sound directly.

d. Because, the way our ears perceive sound can be
more accurately described by the logarithm of the
intensity of a sound rather than the intensity of a
sound directly.

17. How can humming while shooting a gun reduce ear
damage?
a. Humming can trigger those two muscles in the

outer ear that react to intense sound produced
while shooting and reduce the force transmitted to
the cochlea.

b. Humming can trigger those three muscles in the
outer ear that react to intense sound produced
while shooting and reduce the force transmitted to
the cochlea.

c. Humming can trigger those two muscles in the
middle ear that react to intense sound produced
while shooting and reduce the force transmitted to
the cochlea.

d. Humming can trigger those three muscles in the
middle ear that react to intense sound produced
while shooting and reduce the force transmitted to
the cochlea.

18. A particular sound, S1, has an intensity times that of

another sound, S2. What is the difference in sound
intensity levels measured in decibels?
a.
b.
c.
d.

14.3 Doppler Effect and Sonic Booms
19. When the source of sound is moving through the air,

does the speed of sound change with respect to a
stationary person standing nearby?
a. Yes
b. No

20. Why is no sound heard by the observer when an object
approaches him at a speed faster than that of sound?
a. If the source exceeds the speed of sound, then

destructive interference occurs and no sound is
heard by the observer when an object approaches
him.

b. If the source exceeds the speed of sound, the
frequency of sound produced is beyond the audible
range of sound.

c. If the source exceeds the speed of sound, all the
sound waves produced approach minimum
intensity and no sound is heard by the observer
when an object approaches him.

d. If the source exceeds the speed of sound, all the
sound waves produced are behind the source.
Hence, the observer hears the sound only after the
source has passed.

21. Does the Doppler effect occur when the source and
observer are both moving towards each other? If so, how
would this affect the perceived frequency?
a. Yes, the perceived frequency will be even lower in

this case than if only one of the two were moving.
b. No, the Doppler effect occurs only when an

observer is moving towards a source.
c. No, the Doppler effect occurs only when a source is

moving towards an observer.
d. Yes, the perceived frequency will be even higher in

this case than if only one of the two were moving.

14.4 Sound Interference and Resonance
22. When does the amplitude of an oscillating system

become maximum?
a. When two sound waves interfere destructively.
b. When the driving force produces a transverse wave

in the system.
c. When the driving force of the oscillator to the

oscillating system is at a maximum amplitude.
d. When the frequency of the oscillator equals the
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natural frequency of the oscillating system.

23. How can a standing wave be formed with the help of a
tuning fork and a closed-end tube of appropriate
length?
a. If the tube is just the right length, the reflected

sound arrives back at the tuning fork exactly half a
cycle later, and it interferes constructively with the
continuing sound produced by the tuning fork.

b. If the tube is just the right length, the reflected
sound arrives back at the tuning fork exactly half a
cycle later, and it interferes destructively with the
continuing sound produced by the tuning fork.

c. If the tube is just the right length, the reflected
sound arrives back at the tuning fork exactly one

full cycle later, and it interferes constructively with
the continuing sound produced by the tuning fork.

d. If the tube is just the right length, the reflected
sound arrives back at the tuning fork exactly one
full cycle later, and it interferes destructively with
the continuing sound produced by the tuning fork.

24. A tube open at both ends has a fundamental frequency
of . What will the frequency be if one end is
closed?
a.
b.
c.
d.

Problems
14.1 Speed of Sound, Frequency, and
Wavelength
25. A bat produces a sound at and wavelength

. What is the speed of the sound?
a.
b.
c.
d.

26. A sound wave with frequency of is traveling
through air at . By how much will its wavelength
change when it enters aluminum?
a.
b.
c.
d.

14.2 Sound Intensity and Sound Level
27. Calculate the sound intensity for a sound wave traveling

through air at 15° C and having a pressure amplitude of
0.80 Pa. (Hint—Speed of sound in air at 15° C is 340 m/s
.)
a. 9.6×10−3 W / m2

b. 7.7×10−3 W / m2

c. 9.6×10−4 W / m2

d. 7.7×10−4 W / m2

28. The sound level in dB of a sound traveling through air at
is . Calculate its pressure amplitude.

a.
b.
c.
d.

14.3 Doppler Effect and Sonic Booms
29. An ambulance is moving away from you. You are

standing still and you hear its siren at a frequency of
. You know that the actual frequency of the siren

is . What is the speed of the ambulance?
(Assume the speed of sound to be .)
a.
b.
c.
d.

30. An ambulance passes you at a speed of . If its
siren has a frequency of , what is difference in
the frequencies you perceive before and after it passes
you? (Assume the speed of sound in air is .)
a.
b.
c.
d.

14.4 Sound Interference and Resonance
31. What is the length of an open-pipe resonator with a

fundamental frequency of ? (Assume the
speed of sound is .)
a.
b.
c.
d.

32. An open-pipe resonator has a fundamental frequency of
. By how much would its length have to be

changed to get a fundamental frequency of ?
(Assume the speed of sound is .)
a.
b.
c.
d.
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Performance Task
14.4 Sound Interference and Resonance
33. Design and make an open air resonator capable of

playing at least three different pitches (frequencies) of
sound using a selection of bamboo of varying widths
and lengths, which can be obtained at a local hardware
store. Choose a piece of bamboo for creating a musical

pipe. Calculate the length required for a certain
frequency to resonate and then mark the locations
where holes should be placed in the pipe to achieve their
desired pitches. Use a simple hand drill or ask your
wood shop department for help drilling holes. Use
tuning forks to test and calibrate your instrument.
Demonstrate your pipe for the class.

TEST PREP
Multiple Choice
14.1 Speed of Sound, Frequency, and
Wavelength
34. What properties does a loud, shrill whistle have?

a. high amplitude, high frequency
b. high amplitude, low frequency
c. low amplitude, high frequency
d. low amplitude, low frequency

35. What is the speed of sound in fresh water at degrees
Celsius?
a.
b.
c.
d.

36. A tuning fork oscillates at a frequency of ,
creating sound waves. How many waves will reach the
eardrum of a person near that fork in seconds?
a.
b.
c.
d.

37. Why does the amplitude of a sound wave decrease with
distance from its source?
a. The amplitude of a sound wave decreases with

distance from its source, because the frequency of
the sound wave decreases.

b. The amplitude of a sound wave decreases with
distance from its source, because the speed of the
sound wave decreases.

c. The amplitude of a sound wave decreases with
distance from its source, because the wavelength of
the sound wave increases.

d. The amplitude of a sound wave decreases with
distance from its source, because the energy of the
wave is spread over a larger and larger area.

38. Does the elasticity of the medium affect the speed of
sound? How?
a. No, there is no relationship that exists between the

speed of sound and elasticity of the medium.

b. Yes. When particles are more easily compressed in
a medium, sound does not travel as quickly
through the medium.

c. Yes. When the particles in a medium do not
compress much, sound does not travel as quickly
through the medium.

d. No, the elasticity of a medium affects frequency
and wavelength, not wave speed.

14.2 Sound Intensity and Sound Level
39. Which of the following terms is a useful quantity to

describe the loudness of a sound?
a. intensity
b. frequency
c. pitch
d. wavelength

40. What is the unit of sound intensity level?
a. decibels
b. hertz
c. watts

41. If a particular sound S1 is times more intense than
another sound S2, then what is the difference in sound
intensity levels in dB for these two sounds?
a.
b.
c.

42. By what minimum amount should frequencies vary for
humans to be able to distinguish two separate sounds?
a.
b.
c.
d.

43. Why is I0 chosen as the reference for sound intensity?
a. Because, it is the highest intensity of sound a

person with normal hearing can perceive at a
frequency of 100 Hz.

b. Because, it is the lowest intensity of sound a person
with normal hearing can perceive at a frequency of
100 Hz.
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c. Because, it is the highest intensity of sound a
person with normal hearing can perceive at a
frequency of 1000 Hz.

d. Because, it is the lowest intensity of sound a person
with normal hearing can perceive at a frequency of
1000 Hz.

14.3 Doppler Effect and Sonic Booms
44. In which of the following situations is the Doppler effect

absent?
a. The source and the observer are moving towards

each other.
b. The observer is moving toward the source.
c. The source is moving away from the observer.
d. Neither the source nor the observer is moving

relative to one another.

45. What does the occurrence of the sonic boom depend on?
a. speed of the source
b. frequency of source
c. amplitude of source
d. distance of observer from the source

46. What is the observed frequency when the observer is
moving away from the source at ? The source
frequency is and the speed of sound is
.
a.
b.
c.
d.

47. How will your perceived frequency change if the source
is moving towards you?

a. The frequency will become lower.
b. The frequency will become higher.

14.4 Sound Interference and Resonance
48. Observation of which phenomenon can be considered

proof that something is a wave?
a. interference
b. noise
c. reflection
d. conduction

49. Which of the resonant frequencies has the greatest
amplitude?
a. The first harmonic
b. The second harmonic
c. The first overtone
d. The second overtone

50. What is the fundamental frequency of an open-pipe
resonator?
a.
b.
c.
d.

51. What is the beat frequency produced by the
superposition of two waves with frequencies
and ?
a.
b.
c.
d.

Short Answer
14.1 Speed of Sound, Frequency, and
Wavelength
52. What component of a longitudinal sound wave is

analogous to a trough of a transverse wave?
a. compression
b. rarefaction
c. node
d. antinode

53. What is the frequency of a sound wave as perceived by
the human ear?
a. timbre
b. loudness
c. intensity
d. pitch

54. What properties of a solid determine the speed of sound
traveling through it?

a. mass and density
b. rigidity and density
c. volume and density
d. shape and rigidity

55. Does the density of a medium affect the speed of sound?
a. No
b. Yes

56. Does a bat make use of the properties of sound waves to
locate its prey?
a. No
b. Yes

57. Do the properties of a sound wave change when it
travels from one medium to another?
a. No
b. Yes
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14.2 Sound Intensity and Sound Level
58. When a passing driver has his stereo turned up, you

cannot even hear what the person next to you is saying.
Why is this so?
a. The sound from the passing car’s stereo has a

higher amplitude and hence higher intensity
compared to the intensity of the sound coming
from the person next to you. The higher intensity
corresponds to greater loudness, so the first sound
dominates the second.

b. The sound from the passing car’s stereo has a
higher amplitude and hence lower intensity
compared to the intensity of the sound coming
from the person next to you. The lower intensity
corresponds to greater loudness, so the first sound
dominates the second.

c. The sound from the passing car’s stereo has a
higher frequency and hence higher intensity
compared to the intensity of the sound coming
from the person next to you. The higher frequency
corresponds to greater loudness so the first sound
dominates the second.

d. The sound from the passing car’s stereo has a lower
frequency and hence higher intensity compared to
the intensity of the sound coming from the person
next to you. The lower frequency corresponds to
greater loudness, so the first sound dominates the
second.

59. For a constant area, what is the relationship between
intensity of a sound wave and power?
a. The intensity is inversely proportional to the power

transmitted by the wave, for a constant area.
b. The intensity is inversely proportional to the square

of the power transmitted by the wave, for a
constant area.

c. The intensity is directly proportional to the square
of the power transmitted by the wave, for a
constant area.

d. The intensity is directly proportional to the power
transmitted by the wave, for a constant area.

60. What does stand for in the equation
? What is its unit?

a. Yes, is the sound intensity in watts per meter
squared in the equation, .

b. is the sound illuminance and its unit is lumen
per meter squared.

c. is the sound intensity and its unit is watts per
meter cubed.

d. is the sound intensity and its unit is watts per

meter squared.

61. Why is the reference intensity ?
a. The upper limit of human hearing is decibels,

i.e. . For ,
.

b. The lower threshold of human hearing is
decibels, i.e. . For ,

c. The upper limit of human hearing is decibels,
i.e. . For ,

d. The lower threshold of human hearing is decibels,
i.e., . For ,

62. Given that the sound intensity level of a particular wave
is , what will be the sound intensity for that wave?
a.
b.
c.
d.

63. For a sound wave with intensity ,
calculate the pressure amplitude given that the sound
travels through air at .
a.
b.
c.
d.

64. Which nerve carries auditory information to the brain?
a. buccal nerve
b. peroneal nerve
c. cochlear nerve
d. mandibular nerve

65. Why do some smaller instruments, such as piccolos,
produce higher-pitched sounds than larger
instruments, such as tubas?
a. Smaller instruments produce sounds with shorter

wavelengths, and thus higher frequencies.
b. Smaller instruments produce longer wavelength,

and thus higher amplitude, sounds.
c. Smaller instruments produce lower amplitude, and

thus longer wavelength sounds.
d. Smaller instruments produce higher amplitude,

and thus lower frequency, sounds.

14.3 Doppler Effect and Sonic Booms
66. How will your perceived frequency change if you move

away from a stationary source of sound?
a. The frequency will become lower.
b. The frequency will be doubled.
c. The frequency will be tripled.
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d. The frequency will become higher.

67. True or false—The Doppler effect also occurs with waves
other than sound waves.
a. False
b. True

68. A source of sound is moving towards you. How will what
you hear change if the speed of the source increases?
a. The sound will become more high-pitched.
b. The sound will become more low-pitched.
c. The pitch of the sound will not change.

69. Do sonic booms continue to be created when an object is
traveling at supersonic speeds?
a. No, a sonic boom is created only when the source

exceeds the speed of sound.
b. Yes, sonic booms continue to be created when an

object is traveling at supersonic speeds.

70. Suppose you are driving at a speed of and you
hear the sound of a bell at a frequency of .
What is the actual frequency of the bell if the speed of
sound is ?
a.
b.
c.
d.

71. What is the frequency of a stationary sound source if you
hear it at 1200.0 Hz while moving towards it at a speed
of 50.0 m/s? (Assume speed of sound to be 331 m/s.)
a. 1410 Hz
b. 1380 Hz
c. 1020 Hz
d. 1042 Hz

14.4 Sound Interference and Resonance
72. What is the actual frequency of the wave produced as a

result of superposition of two waves?
a. It is the average of the frequencies of the two

original waves that were superimposed.
b. It is the difference between the frequencies of the

two original waves that were superimposed.
c. It is the product of the frequencies of the two

original waves that were superimposed.
d. It is the sum of the frequencies of the two original

waves that were superimposed.

73. Can beats be produced through a phenomenon different
from resonance? How?
a. No, beats can be produced only by resonance.
b. Yes, beats can be produced by superimposition of

any two waves having slightly different frequencies.

74. How is human speech produced?

a. Human speech is produced by shaping the cavity
formed by the throat and mouth, the vibration of
vocal cords, and using the tongue to adjust the
fundamental frequency and combination of
overtones.

b. Human speech is produced by shaping the cavity
formed by the throat and mouth into a closed pipe
and using tongue to adjust the fundamental
frequency and combination of overtones.

c. Human speech is produced only by the vibrations
of the tongue.

d. Human speech is produced by elongating the vocal
cords.

75. What is the possible number of nodes and antinodes
along one full wavelength of a standing wave?
a. nodes and antinodes or antinodes and

nodes.
b. nodes and antinodes or antinodes and

nodes.
c. nodes and antinodes or antinodes and

nodes.
d. nodes and antinodes or antinodes and

nodes.

76. In a pipe resonator, which frequency will be the least
intense of those given below?
a. second overtone frequency
b. first overtone frequency
c. fundamental frequency
d. third overtone frequency

77. A flute is an open-pipe resonator. If a flute is
long, what is the longest wavelength it can produce?
a.
b.
c.
d.

78. What is the frequency of the second overtone of a
closed-pipe resonator with a length of ?
(Assume the speed of sound is .)
a.
b.
c.
d.

79. An open-pipe resonator has a fundamental frequency of
when the speed of sound is . What will

its fundamental frequency be when the speed of sound
is ?
a.
b.
c.
d.
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Extended Response
14.1 Speed of Sound, Frequency, and
Wavelength
80. How is a human able to hear sounds?

a. Sound waves cause the eardrum to vibrate. A
complicated mechanism converts the vibrations to
nerve impulses, which are perceived by the person
as sound.

b. Sound waves cause the ear canal to vibrate. A
complicated mechanism converts the vibrations to
nerve impulses, which are perceived by the person
as sound.

c. Sound waves transfer electrical impulses to the
eardrum. A complicated mechanism converts the
electrical impulses to sound.

d. Sound waves transfer mechanical vibrations to the
ear canal, and the eardrum converts them to
electrical impulses.

81. Why does sound travel faster in iron than in air even
though iron is denser than air?
a. The density of iron is greater than that of air.

However, the rigidity of iron is much greater than
that of air. Hence, sound travels faster in it.

b. The density of iron is greater than that of air.
However, the rigidity of iron is much less than that
of air. Hence, sound travels faster in it.

c. The density of iron is greater than that of air.
However, the rigidity of iron is equal to that of air.
Hence, sound travels faster in it.

d. The mass of iron is much less than that of air and
the rigidity of iron is much greater than that of air.
Hence, sound travels faster in it.

82. Is the speed of sound dependent on its frequency?
a. No
b. Yes

14.2 Sound Intensity and Sound Level
83. Why is the sound from a tire burst louder than that from

a finger snap?
a. The sound from the tire burst has higher pressure

amplitudes, hence it can exert smaller force on the
eardrum.

b. The sound from the tire burst has lower pressure
amplitudes, hence it can exert smaller force on the
eardrum.

c. The sound from the tire burst has lower pressure
amplitudes, hence it can exert larger force on the
ear drum.

d. The sound from the tire burst has higher pressure
amplitudes, hence it can exert larger force on the

eardrum.

84. Sound A is times more intense than Sound B.
What will be the difference in decibels in their sound
intensity levels?
a.
b.
c.
d.

85. The ratio of the pressure amplitudes of two sound waves
traveling through water at is . What will be the
difference in their sound intensity levels in dB?
a.
b.
c.
d.

86. Which of the following most closely models how sound
is produced by the vocal cords?
a. A person plucks a string.
b. A person blows over the mouth of a half-filled glass

bottle.
c. A person strikes a hammer against a hard surface.
d. A person blows through a small slit in a wide,

stretched rubber band.

14.3 Doppler Effect and Sonic Booms
87. True or false—The Doppler effect occurs only when the

sound source is moving.
a. False
b. True

88. True or false—The observed frequency becomes infinite
when the source is moving at the speed of sound.
a. False
b. True

89. You are driving alongside a train. You hear its horn at a
pitch that is lower than the actual frequency. What
should you do to match the speed of the train? Why?
a. In order to match the speed of the train, one would

need to increase or decrease the speed of his/her
car because a lower pitch means that either the
train (the source) is moving away or that you (the
observer) are moving away.

b. In order to match the speed of the train, one would
need to drive at a constant speed because a lower
pitch means that the train and the car are at the
same speed.

14.4 Sound Interference and Resonance
90. How are the beat frequency and the regular frequency of

a wave resulting from superposition of two waves
different?
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a. Beat frequency is the sum of two frequencies and
regular frequency is the difference between
frequencies of two original waves.

b. Beat frequency is the difference between the
constituent frequencies, but the regular frequency
is the average of the frequencies of the two original
waves.

c. Beat frequency is the sum of two frequencies and
regular frequency is the average of frequencies of
two original waves.

d. Beat frequency is the average of frequencies of two
original waves and regular frequency is the sum of
two original frequencies.

91. In the tuning fork and tube experiment, if resonance is
formed for , where is the length of the tube
and is the wavelength of the sound wave, can
resonance also be formed for a wavelength ?
Why?
a. The frequency formed is a harmonic and first

overtone so resonance will occur.
b. The frequency formed is a harmonic and second

overtone so resonance will occur.
c. The frequency formed is a harmonic and third

overtone so resonance will occur.
d. The frequency formed is a harmonic and fourth

overtone so resonance will occur.

92. True or false—An open-pipe resonator has more
overtones than a closed-pipe resonator.
a. False
b. True

93. A flute has finger holes for changing the length of the
resonating air column, and therefore, the frequency of
the note played. How far apart are two holes that, when
closed, play two frequencies that are apart, if
the first hole is away from the mouthpiece of
the flute?
a.
b.
c.
d.
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INTRODUCTION

CHAPTER 15
Light

15.1 The Electromagnetic Spectrum

15.2 The Behavior of Electromagnetic Radiation

The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken
bone, even microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic
waves, ranging from radio transmission waves to nuclear gamma-ray (γ-ray) emissions, is interesting in itself.

Even more intriguing is that all of these different phenomena are manifestations of the same thing—electromagnetic waves (see
Figure 15.1). What are electromagnetic waves? How are they created, and how do they travel? How can we understand their
widely varying properties? What is the relationship between electric and magnetic effects? These and other questions will be
explored.

15.1 The Electromagnetic Spectrum
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Define the electromagnetic spectrum, and describe it in terms of frequencies and wavelengths
• Describe and explain the differences and similarities of each section of the electromagnetic spectrum and the

applications of radiation from those sections

Section Key Terms

electric field electromagnetic radiation (EMR) magnetic field Maxwell’s equations

Figure 15.1 Human eyes detect these orange sea goldie fish swimming over a coral reef in the blue waters of the
Gulf of Eilat, in the Red Sea, using visible light. (credit: David Darom, Wikimedia Commons)
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The Electromagnetic Spectrum
We generally take light for granted, but it is a truly amazing and mysterious form of energy. Think about it: Light travels to Earth
across millions of kilometers of empty space. When it reaches us, it interacts with matter in various ways to generate almost all
the energy needed to support life, provide heat, and cause weather patterns. Light is a form of electromagnetic radiation
(EMR). The term light usually refers to visible light, but this is not the only form of EMR. As we will see, visible light occupies a
narrow band in a broad range of types of electromagnetic radiation.

Electromagnetic radiation is generated by a moving electric charge, that is, by an electric current. As you will see when you
study electricity, an electric current generates both an electric field, E, and a magnetic field, B. These fields are perpendicular to
each other. When the moving charge oscillates, as in an alternating current, an EM wave is propagated. Figure 15.2 shows how
an electromagnetic wave moves away from the source—indicated by the ~ symbol.

WATCH PHYSICS

Electromagnetic Waves and the Electromagnetic Spectrum
This video, link below, is closely related to the following figure. If you have questions about EM wave properties, the EM
spectrum, how waves propagate, or definitions of any of the related terms, the answers can be found in this video
(http://www.openstax.org/l/28EMWaves) .

Click to view content (https://www.openstax.org/l/28EMWaves)

GRASP CHECK
In an electromagnetic wave, how are the magnetic field, the electric field, and the direction of propagation oriented to each
other?
a. All three are parallel to each other and are along the x-axis.
b. All three are mutually perpendicular to each other.
c. The electric field and magnetic fields are parallel to each other and perpendicular to the direction of propagation.
d. The magnetic field and direction of propagation are parallel to each other along the y-axis and perpendicular to the

electric field.

Virtual Physics

Radio Waves and Electromagnetic Fields
Click to view content (https://www.openstax.org/l/28Radiowaves)
This simulation demonstrates wave propagation. The EM wave is propagated from the broadcast tower on the left, just as in
Figure 15.2. You can make the wave yourself or allow the animation to send it. When the wave reaches the antenna on the
right, it causes an oscillating current. This is how radio and television signals are transmitted and received.

GRASP CHECK
Where do radio waves fall on the electromagnetic spectrum?
a. Radio waves have the same wavelengths as visible light.
b. Radio waves fall on the high-frequency side of visible light.
c. Radio waves fall on the short-wavelength side of visible light.
d. Radio waves fall on the low-frequency side of visible light.
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Figure 15.2 A part of the electromagnetic wave sent out from an oscillating charge at one instant in time. The electric and magnetic fields

(E and B) are in phase, and they are perpendicular to each other and to the direction of propagation. For clarity, the waves are shown only

along one direction, but they propagate out in other directions too.

From your study of sound waves, recall these features that apply to all types of waves:

• Wavelength—The distance between two wave crests or two wave troughs, expressed in various metric measures of distance
• Frequency—The number of wave crests that pass a point per second, expressed in hertz (Hz or s–1)
• Amplitude: The height of the crest above the null point

As mentioned, electromagnetic radiation takes several forms. These forms are characterized by a range of frequencies. Because
frequency is inversely proportional to wavelength, any form of EMR can also be represented by its range of wavelengths. Figure
15.3 shows the frequency and wavelength ranges of various types of EMR. With how many of these types are you familiar?

Figure 15.3 The electromagnetic spectrum, showing the major categories of electromagnetic waves. The range of frequencies and

wavelengths is remarkable. The dividing line between some categories is distinct, whereas other categories overlap.

Take a few minutes to study the positions of the various types of radiation on the EM spectrum, above. Sometimes all radiation
with frequencies lower than those of visible light are referred to as infrared (IR) radiation. This includes radio waves, which
overlap with the frequencies used for media broadcasts of TV and radio signals. The microwave radiation that you see on the
diagram is the same radiation that is used in a microwave oven. What we feel as radiant heat is also a form of low-frequency
EMR.

All the high-frequency radiation to the right of visible light is sometimes referred to as ultraviolet (UV) radiation. This includes
X-rays and gamma (γ) rays. The narrow band that is visible light extends from lower-frequency red light to higher-frequency
violet light, thus the terms are infrared (below red) and ultraviolet (beyond violet).

BOUNDLESS PHYSICS

Maxwell’s Equations
The Scottish physicist James Clerk Maxwell (1831–1879) is regarded widely to have been the greatest theoretical physicist of the
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nineteenth century. Although he died young, Maxwell not only formulated a complete electromagnetic theory, represented by
Maxwell’s equations, he also developed the kinetic theory of gases, and made significant contributions to the understanding of
color vision and the nature of Saturn’s rings.

Maxwell brought together all the work that had been done by brilliant physicists, such as Ørsted, Coulomb, Ampere, Gauss, and
Faraday, and added his own insights to develop the overarching theory of electromagnetism. Maxwell’s equations are
paraphrased here in words because their mathematical content is beyond the level of this text. However, the equations illustrate
how apparently simple mathematical statements can elegantly unite and express a multitude of concepts—why mathematics is
the language of science.

Maxwell’s Equations

1. Electric field lines originate on positive charges and terminate on negative charges. The electric field is defined as the force
per unit charge on a test charge, and the strength of the force is related to the electric constant, ε0.

2. Magnetic field lines are continuous, having no beginning or end. No magnetic monopoles are known to exist. The strength
of the magnetic force is related to the magnetic constant, μ0.

3. A changing magnetic field induces an electromotive force (emf) and, hence, an electric field. The direction of the emf
opposes the change, changing direction of the magnetic field.

4. Magnetic fields are generated by moving charges or by changing electric fields.

Maxwell’s complete theory shows that electric and magnetic forces are not separate, but different manifestations of the same
thing—the electromagnetic force. This classical unification of forces is one motivation for current attempts to unify the four
basic forces in nature—the gravitational, electromagnetic, strong nuclear, and weak nuclear forces. The weak nuclear and
electromagnetic forces have been unified, and further unification with the strong nuclear force is expected; but, the unification
of the gravitational force with the other three has proven to be a real head-scratcher.

One final accomplishment of Maxwell was his development in 1855 of a process that could produce color photographic images.
In 1861, he and photographer Thomas Sutton worked together on this process. The color image was achieved by projecting red,
blue, and green light through black-and-white photographs of a tartan ribbon, each photo itself exposed in different-colored
light. The final image was projected onto a screen (see Figure 15.4).

Figure 15.4 Maxwell and Sutton’s photograph of a colored ribbon. This was the first durable color photograph. The plaid tartan of the Scots

made a colorful photographic subject.

GRASP CHECK
Describe electromagnetic force as explained by Maxwell’s equations.
a. According to Maxwell’s equations, electromagnetic force gives rise to electric force and magnetic force.
b. According to Maxwell’s equations, electric force and magnetic force are different manifestations of electromagnetic

force.
c. According to Maxwell’s equations, electric force is the cause of electromagnetic force.
d. According to Maxwell’s equations, magnetic force is the cause of electromagnetic force.

Characteristics of Electromagnetic Radiation
All the EM waves mentioned above are basically the same form of radiation. They can all travel across empty space, and they all
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travel at the speed of light in a vacuum. The basic difference between types of radiation is their differing frequencies. Each
frequency has an associated wavelength. As frequency increases across the spectrum, wavelength decreases. Energy also
increases with frequency. Because of this, higher frequencies penetrate matter more readily. Some of the properties and uses of
the various EM spectrum bands are listed in Table 15.1.

Types of
EM Waves

Production Applications
Life Sciences

Aspect
Issues

Radio and
TV

Accelerating charges
Communications, remote
controls

MRI
Requires controls for
band use

Microwaves
Accelerating charges &
thermal agitation

Communications,
microwave ovens, radar

Deep heating Cell phone use

Infrared
Thermal agitation &
electronic transitions

Thermal imaging, heating
Absorption by
atmosphere

Greenhouse effect

Visible Light
Thermal agitation &
electronic transitions

All pervasive
Photosynthesis,
human vision

Ultraviolet
Thermal agitation &
electronic transitions

Sterilization, slowing
abnormal growth of cells

Vitamin D
production

Ozone depletion,
causes cell damage

X-rays
Inner electronic
transitions & fast
collisions

Medical, security
Medical diagnosis,
cancer therapy

Causes cell damage

Gamma
Rays

Nuclear decay Nuclear medicine, security
Medical diagnosis,
cancer therapy

Causes cell damage,
radiation damage

Table 15.1 Electromagnetic Waves This table shows how each type of EM radiation is produced, how it is applied, as well as
environmental and health issues associated with it.

The narrow band of visible light is a combination of the colors of the rainbow. Figure 15.5 shows the section of the EM spectrum
that includes visible light. The frequencies corresponding to these wavelengths are at the red end to

at the violet end. This is a very narrow range, considering that the EM spectrum spans about 20 orders of
magnitude.

Figure 15.5 A small part of the electromagnetic spectrum that includes its visible components. The divisions between infrared, visible, and

ultraviolet are not perfectly distinct, nor are the divisions between the seven rainbow colors

TIPS FOR SUCCESS
Wavelengths of visible light are often given in nanometers, nm. One nm equals m. For example, yellow light has a
wavelength of about 600 nm, or m.

15.1 • The Electromagnetic Spectrum 459



As a child, you probably learned the color wheel, shown on the left in Figure 15.6. It helps if you know what color results when
you mix different colors of paint together. Mixing two of the primary pigment colors—magenta, yellow, or cyan—together
results in a secondary color. For example, mixing cyan and yellow makes green. This is called subtractive color mixing. Mixing
different colors of light together is quite different. The diagram on the right shows additive color mixing. In this case, the
primary colors are red, green, and blue, and the secondary colors are cyan, magenta, and yellow. Mixing pigments and mixing
light are different because materials absorb light by a different set of rules than does the perception of light by the eye. Notice
that, when all colors are subtracted, the result is no color, or black. When all colors are added, the result is white light. We see
the reverse of this when white sunlight is separated into the visible spectrum by a prism or by raindrops when a rainbow appears
in the sky.

Figure 15.6 Mixing colored pigments follows the subtractive color wheel, and mixing colored light follows the additive color wheel.

LINKS TO PHYSICS

Animal Color Perception
The physics of color perception has interesting links to zoology. Other animals have very different views of the world than
humans, especially with respect to which colors can be seen. Color is detected by cells in the eye called cones. Humans have
three cones that are sensitive to three different ranges of electromagnetic wavelengths. They are called red, blue, and green
cones, although these colors do not correspond exactly to the centers of the three ranges. The ranges of wavelengths that each
cone detects are red, 500 to 700 nm; green, 450 to 630 nm; and blue, 400 to 500 nm.

Most primates also have three kinds of cones and see the world much as we do. Most mammals other than primates only have
two cones and have a less colorful view of things. Dogs, for example see blue and yellow, but are color blind to red and green. You
might think that simpler species, such as fish and insects, would have less sophisticated vision, but this is not the case. Many
birds, reptiles, amphibians, and insects have four or five different cones in their eyes. These species don’t have a wider range of
perceived colors, but they see more hues, or combinations of colors. Also, some animals, such as bees or rattlesnakes, see a

Virtual Physics

Color Vision
Click to view content (https://www.openstax.org/l/28Colorvision)
This video demonstrates additive color and color filters. Try all the settings except Photons.

GRASP CHECK
Explain why only light from a blue bulb passes through the blue filter.
a. A blue filter absorbs blue light.
b. A blue filter reflects blue light.
c. A blue filter absorbs all visible light other than blue light.
d. A blue filter reflects all of the other colors of light and absorbs blue light.
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range of colors that is as broad as ours, but shifted into the ultraviolet or infrared.

These differences in color perception are generally adaptations that help the animals survive. Colorful tropical birds and fish
display some colors that are too subtle for us to see. These colors are believed to play a role in the species mating rituals. Figure
15.7 shows the colors visible and the color range of vision in humans, bees, and dogs.

Figure 15.7 Humans, bees, and dogs see colors differently. Dogs see fewer colors than humans, and bees see a different range of colors.

GRASP CHECK
The belief that bulls are enraged by seeing the color red is a misconception. What did you read in this Links to Physics that
shows why this belief is incorrect?
a. Bulls are color-blind to every color in the spectrum of colors.
b. Bulls are color-blind to the blue colors in the spectrum of colors.
c. Bulls are color-blind to the red colors in the spectrum of colors.
d. Bulls are color-blind to the green colors in the spectrum of colors.

Humans have found uses for every part of the electromagnetic spectrum. We will take a look at the uses of each range of
frequencies, beginning with visible light. Most of our uses of visible light are obvious; without it our interaction with our
surroundings would be much different. We might forget that nearly all of our food depends on the photosynthesis process in
plants, and that the energy for this process comes from the visible part of the spectrum. Without photosynthesis, we would also
have almost no oxygen in the atmosphere.

The low-frequency, infrared region of the spectrum has many applications in media broadcasting. Television, radio, cell phone,
and remote-control devices all broadcast and/or receive signals with these wavelengths. AM and FM radio signals are both low-
frequency radiation. They are in different regions of the spectrum, but that is not their basic difference. AM and FM are
abbreviations for amplitude modulation and frequency modulation. Information in AM signals has the form of changes in
amplitude of the radio waves; information in FM signals has the form of changes in wave frequency.

Another application of long-wavelength radiation is found in microwave ovens. These appliances cook or warm food by
irradiating it with EM radiation in the microwave frequency range. Most kitchen microwaves use a frequency of
Hz. These waves have the right amount of energy to cause polar molecules, such as water, to rotate faster. Polar molecules are
those that have a partial charge separation. The rotational energy of these molecules is given up to surrounding matter as heat.
The first microwave ovens were called Radaranges because they were based on radar technology developed during World War II.

Radar uses radiation with wavelengths similar to those of microwaves to detect the location and speed of distant objects, such as
airplanes, weather formations, and motor vehicles. Radar information is obtained by receiving and analyzing the echoes of
microwaves reflected by an object. The speed of the object can be measured using the Doppler shift of the returning waves. This
is the same effect you learned about when you studied sound waves. Like sound waves, EM waves are shifted to higher
frequencies by an object moving toward an observer, and to lower frequencies by an object moving away from the observer.
Astronomers use this same Doppler effect to measure the speed at which distant galaxies are moving away from us. In this case,
the shift in frequency is called the red shift, because visible frequencies are shifted toward the lower-frequency, red end of the
spectrum.
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Exposure to any radiation with frequencies greater than those of visible light carries some health hazards. All types of radiation
in this range are known to cause cell damage. The danger is related to the high energy and penetrating ability of these EM waves.
The likelihood of being harmed by any of this radiation depends largely on the amount of exposure. Most people try to reduce
exposure to UV radiation from sunlight by using sunscreen and protective clothing. Physicians still use X-rays to diagnose
medical problems, but the intensity of the radiation used is extremely low. Figure 15.8 shows an X-ray image of a patient’s chest
cavity.

One medical-imaging technique that involves no danger of exposure is magnetic resonance imaging (MRI). MRI is an important
imaging and research tool in medicine, producing highly detailed two- and three-dimensional images. Radio waves are
broadcast, absorbed, and reemitted in a resonance process that is sensitive to the density of nuclei, usually hydrogen
nuclei—protons.

Figure 15.8 This shadow X-ray image shows many interesting features, such as artificial heart valves, a pacemaker, and wires used to close

the sternum. (credit: P.P. Urone)

Check Your Understanding
1. Identify the fields produced by a moving charged particle.

a. Both an electric field and a magnetic field will be produced.
b. Neither a magnetic field nor an electric field will be produced.
c. A magnetic field, but no electric field will be produced.
d. Only the electric field, but no magnetic field will be produced.

2. X-rays carry more energy than visible light. Compare the frequencies and wavelengths of these two types of EM radiation.
a. Visible light has higher frequencies and shorter wavelengths than X-rays.
b. Visible light has lower frequencies and shorter wavelengths than X-rays.
c. Visible light has higher frequencies and longer wavelengths than X-rays.
d. Visible light has lower frequencies and longer wavelengths than X-rays.

3. How does wavelength change as frequency increases across the EM spectrum?
a. The wavelength increases.
b. The wavelength first increases and then decreases.
c. The wavelength first decreases and then increases.
d. The wavelength decreases.

4. Why are X-rays used in imaging of broken bones, rather than radio waves?
a. X-rays have higher penetrating energy than radio waves.
b. X-rays have lower penetrating energy than radio waves.
c. X-rays have a lower frequency range than radio waves.
d. X-rays have longer wavelengths than radio waves.

5. Identify the fields that make up an electromagnetic wave.
a. both an electric field and a magnetic field
b. neither a magnetic field nor an electric field
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c. only a magnetic field, but no electric field
d. only an electric field, but no magnetic field

15.2 The Behavior of Electromagnetic Radiation
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the behavior of electromagnetic radiation
• Solve quantitative problems involving the behavior of electromagnetic radiation

Section Key Terms

illuminance interference lumens luminous flux lux polarized light

Types of Electromagnetic Wave Behavior
In a vacuum, all electromagnetic radiation travels at the same incredible speed of 3.00 × 108 m/s, which is equal to 671 million
miles per hour. This is one of the fundamental physical constants. It is referred to as the speed of light and is given the symbol c.
The space between celestial bodies is a near vacuum, so the light we see from the Sun, stars, and other planets has traveled here
at the speed of light. Keep in mind that all EM radiation travels at this speed. All the different wavelengths of radiation that leave
the Sun make the trip to Earth in the same amount of time. That trip takes 8.3 minutes. Light from the nearest star, besides the
Sun, takes 4.2 years to reach Earth, and light from the nearest galaxy—a dwarf galaxy that orbits the Milky Way—travels 25,000
years on its way to Earth. You can see why we call very long distances astronomical.

When light travels through a physical medium, its speed is always less than the speed of light. For example, light travels in water
at three-fourths the value of c. In air, light has a speed that is just slightly slower than in empty space: 99.97 percent of c.
Diamond slows light down to just 41 percent of c. When light changes speeds at a boundary between media, it also changes
direction. The greater the difference in speeds, the more the path of light bends. In other chapters, we look at this bending,
called refraction, in greater detail. We introduce refraction here to help explain a phenomenon called thin-film interference.

Have you ever wondered about the rainbow colors you often see on soap bubbles, oil slicks, and compact discs? This occurs when
light is both refracted by and reflected from a very thin film. The diagram shows the path of light through such a thin film. The
symbols n1, n2, and n3 indicate that light travels at different speeds in each of the three materials. Learn more about this topic in
the chapter on diffraction and interference.

Figure 15.9 shows the result of thin film interference on the surface of soap bubbles. Because ray 2 travels a greater distance, the
two rays become out of phase. That is, the crests of the two emerging waves are no longer moving together. This causes
interference, which reinforces the intensity of the wavelengths of light that create the bands of color. The color bands are
separated because each color has a different wavelength. Also, the thickness of the film is not uniform, and different thicknesses
cause colors of different wavelengths to interfere in different places. Note that the film must be very, very thin—somewhere in
the vicinity of the wavelengths of visible light.
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Figure 15.9 Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is partially

reflected at the bottom surface and emerges as ray 2. These rays will interfere in a way that depends on the thickness of the film and the

indices of refraction of the various media.

You have probably experienced how polarized sunglasses reduce glare from the surface of water or snow. The effect is caused by
the wave nature of light. Looking back at , we see that the electric field moves in only one direction perpendicular to the
direction of propagation. Light from most sources vibrates in all directions perpendicular to propagation. Light with an electric
field that vibrates in only one direction is called polarized. A diagram of polarized light would look like .

Polarized glasses are an example of a polarizing filter. These glasses absorb most of the horizontal light waves and transmit the
vertical waves. This cuts down glare, which is caused by horizontal waves. Figure 15.10 shows how waves traveling along a rope
can be used as a model of how a polarizing filter works. The oscillations in one rope are in a vertical plane and are said to be
vertically polarized. Those in the other rope are in a horizontal plane and are horizontally polarized. If a vertical slit is placed on
the first rope, the waves pass through. However, a vertical slit blocks the horizontally polarized waves. For EM waves, the
direction of the electric field oscillation is analogous to the disturbances on the ropes.

Figure 15.10 The transverse oscillations in one rope are in a vertical plane, and those in the other rope are in a horizontal plane. The first is

said to be vertically polarized, and the other is said to be horizontally polarized. Vertical slits pass vertically polarized waves and block

horizontally polarized waves.

Light can also be polarized by reflection. Most of the light reflected from water, glass, or any highly reflective surface is polarized
horizontally. Figure 15.11 shows the effect of a polarizing lens on light reflected from the surface of water.
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Figure 15.11 These two photographs of a river show the effect of a polarizing filter in reducing glare in light reflected from the surface of

water. Part (b) of this figure was taken with a polarizing filter and part (a) was taken without. As a result, the reflection of clouds and sky

observed in part (a) is not observed in part (b). Polarizing sunglasses are particularly useful on snow and water.

WATCH PHYSICS

Polarization of Light, Linear and Circular
This video explains the polarization of light in great detail. Before viewing the video, look back at the drawing of an
electromagnetic wave from the previous section. Try to visualize the two-dimensional drawing in three dimensions.

Click to view content (https://www.openstax.org/l/28Polarization)

GRASP CHECK
How do polarized glasses reduce glare reflected from the ocean?
a. They block horizontally polarized and vertically polarized light.
b. They are transparent to horizontally polarized and vertically polarized light.
c. They block horizontally polarized rays and are transparent to vertically polarized rays.
d. They are transparent to horizontally polarized light and block vertically polarized light.

Snap Lab

Polarized Glasses
• EYE SAFETY—Looking at the Sun directly can cause permanent eye damage. Avoid looking directly at the Sun.

• two pairs of polarized sunglasses
OR

• two lenses from one pair of polarized sunglasses

Procedure
1. Look through both or either polarized lens and record your observations.
2. Hold the lenses, one in front of the other. Hold one lens stationary while you slowly rotate the other lens. Record your

observations, including the relative angles of the lenses when you make each observation.
3. Find a reflective surface on which the Sun is shining. It could be water, glass, a mirror, or any other similar smooth

surface. The results will be more dramatic if the sunlight strikes the surface at a sharp angle.
4. Observe the appearance of the surface with your naked eye and through one of the polarized lenses.
5. Observe any changes as you slowly rotate the lens, and note the angles at which you see changes.
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GRASP CHECK
If you buy sunglasses in a store, how can you be sure that they are polarized?
a. When one pair of sunglasses is placed in front of another and rotated in the plane of the body, the light passing through

the sunglasses will be blocked at two positions due to refraction of light.
b. When one pair of sunglasses is placed in front of another and rotated in the plane of the body, the light passing through

the sunglasses will be blocked at two positions due to reflection of light.
c. When one pair of sunglasses is placed in front of another and rotated in the plane of the body, the light passing through

the sunglasses will be blocked at two positions due to the polarization of light.
d. When one pair of sunglasses is placed in front of another and rotated in the plane of the body, the light passing through

the sunglasses will be blocked at two positions due to the bending of light waves.

Quantitative Treatment of Electromagnetic Waves
We can use the speed of light, c, to carry out several simple but interesting calculations. If we know the distance to a celestial
object, we can calculate how long it takes its light to reach us. Of course, we can also make the reverse calculation if we know the
time it takes for the light to travel to us. For an object at a very great distance from Earth, it takes many years for its light to reach
us. This means that we are looking at the object as it existed in the distant past. The object may, in fact, no longer exist. Very
large distances in the universe are measured in light years. One light year is the distance that light travels in one year, which is

kilometers or miles (…and 1012 is a trillion!).

A useful equation involving c is

where f is frequency in Hz, and is wavelength in meters.

WORKED EXAMPLE

Frequency and Wavelength Calculation
For example, you can calculate the frequency of yellow light with a wavelength of m.
STRATEGY
Rearrange the equation to solve for frequency.

Solution
Substitute the values for the speed of light and wavelength into the equation.

Discussion
Manipulating exponents of 10 in a fraction can be tricky. Be sure you keep track of the + and – exponents correctly. Checking
back to the diagram of the electromagnetic spectrum in the previous section shows that 1014 is a reasonable order of magnitude
for the frequency of yellow light.

The frequency of a wave is proportional to the energy the wave carries. The actual proportionality constant will be discussed in a
later chapter. Since frequency is inversely proportional to wavelength, we also know that wavelength is inversely proportional to
energy. Keep these relationships in mind as general rules.

The rate at which light is radiated from a source is called luminous flux, P, and it is measured in lumens (lm). Energy-saving
light bulbs, which provide more luminous flux for a given use of electricity, are now available. One of these bulbs is called a
compact fluorescent lamp; another is an LED (light-emitting diode) bulb. If you wanted to replace an old incandescent bulb with
an energy saving bulb, you would want the new bulb to have the same brightness as the old one. To compare bulbs accurately,
you would need to compare the lumens each one puts out. Comparing wattage—that is, the electric power used—would be

15.1

15.2

15.3
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misleading. Both wattage and lumens are stated on the packaging.

The luminous flux of a bulb might be 2,000 lm. That accounts for all the light radiated in all directions. However, what we really
need to know is how much light falls on an object, such as a book, at a specific distance. The number of lumens per square meter
is called illuminance, and is given in units of lux (lx). Picture a light bulb in the middle of a sphere with a 1-m radius. The total
surface of the sphere equals 4πr2 m2. The illuminance then is given by

What happens if the radius of the sphere is increased 2 m? The illuminance is now only one-fourth as great, because the r2 term
in the denominator is 4 instead of 1. Figure 15.12 shows how illuminance decreases with the inverse square of the distance.

Figure 15.12 The diagram shows why the illuminance varies inversely with the square of the distance from a source of light.

WORKED EXAMPLE

Calculating Illuminance
A woman puts a new bulb in a floor lamp beside an easy chair. If the luminous flux of the bulb is rated at 2,000 lm, what is the
illuminance on a book held 2.00 m from the bulb?
STRATEGY
Choose the equation and list the knowns.

Equation:

P = 2,000 lm

π = 3.14

r = 2.00 m

Solution
Substitute the known values into the equation.

Discussion
Try some other distances to illustrate how greatly light fades with distance from its source. For example, at 3 m the illuminance
is only 17.7 lux. Parents often scold children for reading in light that is too dim. Instead of shouting, “You’ll ruin your eyes!” it
might be better to explain the inverse square law of illuminance to the child.

15.4

15.2 • The Behavior of Electromagnetic Radiation 467



Practice Problems
6. Red light has a wavelength of 7.0 × 10−7 m and a frequency of 4.3 × 1014 Hz. Use these values to calculate the speed of light in

a vacuum.
a. 3 × 1020 m/s
b. 3 × 1015 m/s
c. 3 × 1014 m/s
d. 3 × 108 m/s

7. A light bulb has a luminous flux of 942 lumens. What is the illuminance on a surface from the bulb when it is lit?
a.
b.
c.
d.

Check Your Understanding
8. Give an example of a place where light travels at the speed of 3.00 × 108 m/s.

a. outer space
b. water
c. Earth’s atmosphere
d. quartz glass

9. Explain in terms of distances and the speed of light why it is currently very unlikely that humans will visit planets that circle
stars other than our Sun.
a. The spacecrafts used for travel are very heavy and thus very slow.
b. Spacecrafts do not have a constant source of energy to run them.
c. If a spacecraft could attain a maximum speed equal to that of light, it would still be too slow to cover astronomical

distances.
d. Spacecrafts can attain a maximum speed equal to that of light, but it is difficult to locate planets around stars.
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KEY TERMS
electric field a field that tells us the force per unit charge at

all locations in space around a charge distribution
electromagnetic radiation (EMR) radiant energy that

consists of oscillating electric and magnetic fields
illuminance number of lumens per square meter, given in

units of lux (lx)
interference increased or decreased light intensity caused

by the phase differences between waves
lumens unit of measure for luminous flux
luminous flux rate at which light is radiated from a source

lux unit of measure for illuminance
magnetic field the directional lines around a magnetic

material that indicates the direction and magnitude of
the magnetic force

Maxwell’s equations equations that describe the
interrelationship between electric and magnetic fields,
and how these fields combine to form electromagnetic
radiation

polarized light light whose electric field component
vibrates in a specific plane

SECTION SUMMARY
15.1 The Electromagnetic Spectrum

• The electromagnetic spectrum is made up of a broad
range of frequencies of electromagnetic radiation.

• All frequencies of EM radiation travel at the same speed
in a vacuum and consist of an electric field and a
magnetic field. The types of EM radiation have different
frequencies and wavelengths, and different energies
and penetrating ability.

15.2 The Behavior of
Electromagnetic Radiation

• EM radiation travels at different speeds in different
media, produces colors on thin films, and can be
polarized to oscillate in only one direction.

• Calculations can be based on the relationship among
the speed, frequency, and wavelength of light, and on
the relationship among luminous flux, illuminance, and
distance.

KEY EQUATIONS
15.2 The Behavior of
Electromagnetic Radiation

frequency and wavelength

illuminance

CHAPTER REVIEW
Concept Items
15.1 The Electromagnetic Spectrum
1. Use the concepts on which Maxwell’s equations are based

to explain why a compass needle is deflected when the
compass is brought near a wire that is carrying an electric
current.
a. The charges in the compass needle and the charges

in the electric current have interacting electric fields,
causing the needle to deflect.

b. The electric field from the moving charges in the
current interacts with the magnetic field of the
compass needle, causing the needle to deflect.

c. The magnetic field from the moving charges in the
current interacts with the electric field of the
compass needle, causing the needle to deflect.

d. The moving charges in the current produce a
magnetic field that interacts with the compass

needle’s magnetic field, causing the needle to
deflect.

2. Consider these colors of light: yellow, blue, and red. Part
A. Put these light waves in order according to
wavelength, from shortest wavelength to longest
wavelength. Part B. Put these light waves in order
according to frequency, from lowest frequency to highest
frequency.
a. wavelength: blue, yellow, red

frequency: blue, yellow, red
b. wavelength: red, yellow, blue

frequency: red, yellow, blue
c. wavelength: red, yellow, blue

frequency: blue, yellow, red
d. wavelength: blue, yellow, red

frequency: red, yellow, blue

3. Describe the location of gamma rays on the
electromagnetic spectrum.
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a. At the high-frequency and long-wavelength end of
the spectrum

b. At the high-frequency and short-wavelength end of
the spectrum

c. At the low-frequency and long-wavelength end of
the spectrum

d. At the low-frequency and short-wavelength end of
the spectrum

4. In which region of the electromagnetic spectrum would
you find radiation that is invisible to the human eye and
has low energy?
a. Long-wavelength and high-frequency region
b. Long-wavelength and low-frequency region
c. Short-wavelength and high-frequency region
d. Short-wavelength and low-frequency region

15.2 The Behavior of Electromagnetic
Radiation
5. Light travels at different speeds in different media. Put

these media in order, from the slowest light speed to the
fastest light speed: air, diamond, vacuum, water.
a. diamond, water, air, vacuum
b. vacuum, diamond, air, water
c. diamond, air, water, vacuum
d. air, diamond, water, vacuum

6. Visible light has wavelengths in the range of about 400 to
800 nm. What does this indicate about the approximate

thickness of the wall of a soap bubble? Explain your
answer.
a. The thickness of the bubble wall is ten times that of

the wavelength of light.
b. The thickness of the bubble wall is similar to that of

the wavelength of light.
c. The thickness of the bubble wall is half the

wavelength of light.
d. The thickness of the bubble wall equals the cube of

the wavelength of light.

7. Bright sunlight is reflected from an icy pond. You look at
the glare of the reflected light through polarized glasses.
When you take the glasses off, rotate them 90°, and look
through one of the lenses again, the light you see
becomes brighter. Explain why the light you see changes.
a. The glass blocks horizontally polarized light, and the

light reflected from the icy pond is, in part,
polarized horizontally.

b. The glass blocks vertically polarized light, and the
light reflected from the icy pond is, in part,
polarized vertically.

c. The glass allows horizontally polarized light to pass,
and the light reflected from the icy pond is, in part,
polarized vertically.

d. The glass allows horizontally polarized light to pass,
and the light reflected from the icy pond is, in part,
polarized horizontally.

Critical Thinking Items
15.1 The Electromagnetic Spectrum
8. Standing in front of a fire, we can sense both its heat and

its light. How are the light and heat radiated by the fire
the same, and how are they different?
a. Both travel as waves, but only light waves are a form

of electromagnetic radiation.
b. Heat and light are both forms of electromagnetic

radiation, but light waves have higher frequencies.
c. Heat and light are both forms of electromagnetic

radiation, but heat waves have higher frequencies.
d. Heat and light are both forms of electromagnetic

radiation, but light waves have higher wavelengths.

9. Light shines on a picture of the subtractive color wheel.
The light is a mixture of red, blue, and green light.
Part A—Which part of the color wheel will look blue?
Explain in terms of absorbed and reflected light.
Part B—Which part of the color wheel will look yellow?
Explain in terms of absorbed and reflected light.
a. A. The yellow section of the wheel will look blue

because it will reflect blue light and absorb red

and green.
B. The blue section of the wheel will look yellow

because it will reflect red and green light and
absorb blue.

b. A. The blue section of the wheel will look blue
because it will absorb blue light and reflect red
and green.

B. The yellow section of the wheel will look yellow
because it will absorb red and green light and
reflect blue.

c. A. The yellow section of the wheel will look blue
because it will absorb blue light and reflect red
and green.

B. The blue section of the wheel will look yellow
because it will absorb red and green light and
reflect blue.

d. A. The blue section of the wheel will look blue
because it will reflect blue light and absorb red
and green.

B. The yellow section of the wheel will look yellow
because it will reflect red and green light and
absorb blue.
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10. Part A. When you stand in front of an open fire, you can
sense light waves with your eyes. You sense another type
of electromagnetic radiation as heat. What is this other
type of radiation?
Part B. How is this other type of radiation different front
light waves?
a. A. X-rays

B. The X-rays have higher frequencies and shorter
wavelengths than the light waves.

b. A. X-rays
B. The X-rays have lower frequencies and longer

wavelengths than the light waves.

c. A. infrared rays
B. The infrared rays have higher frequencies and

shorter wavelengths than the light waves.

d. A. infrared rays
B. The infrared rays have lower frequencies and

longer wavelengths than the light waves.

11. Overexposure to this range of EM radiation is
dangerous, and yet it is used by doctors to diagnose
medical problems.
Part A—Identify the type of radiation.
Part B—Locate the position of this radiation on the EM
spectrum by comparing its frequency and wavelength to
visible light.
Part C—Explain why this radiation is both dangerous
and therapeutic in terms of its energy, based on your
answer to Part B.
a. A. X-rays

B. X-rays have shorter wavelengths (1 × 10–8 – 5 ×
10–12 m) and higher frequencies (3 × 1016 – 6 × 1019

Hz) than visible light (7.5 × 10–7 – 4.0 × 10–7 m; 4.0 ×
1014 – 7.5 × 1014 Hz).
C. X-rays have low energies because of their high
frequencies, and so can penetrate matter to greater
depths.

b. A. X-rays
B. X-rays have shorter wavelengths (1 × 10–8 – 5 ×
10–12 m) and higher frequencies (3 × 1010 – 6 × 1013

Hz) than visible light (7.5 × 10–7 – 4.0 × 10–7 m; 4.0 ×
1014 – 7.5 × 1014 Hz).
C. X-rays have low energies because of their low
frequencies, and so can penetrate matter to greater
depths.

c. A. X-rays B. X-rays have longer wavelengths (1 ×
10–6 – 5 × 10–7 m) and higher frequencies (3 × 1015 –
6 × 1015 Hz) than visible light (7.5 × 10–7 – 4.0 × 10–7

m; 4.0 × 1014 – 7.5 × 1014 Hz).
C. X-rays have high energies because of their high

frequencies, and therefore can penetrate matter to
greater depths.

d. A. X-rays
B. X-rays have shorter wavelengths (1 × 10–8 – 5 ×
10–12 m) and higher frequencies (3 × 1016 – 6 × 1019

Hz) than visible light (7.5 × 10–7 – 4.0 × 10–7 m; 4.0 ×
1014 – 7.5 × 1014 Hz).
C. X-rays have high energies because of their high
frequencies, and so can penetrate matter to greater
depths.

15.2 The Behavior of Electromagnetic
Radiation
12. Explain how thin-film interference occurs. Discuss in

terms of the meaning of interference and the pathways
of light waves.
a. For a particular thickness of film, light of a given

wavelength that reflects from the outer and inner
film surfaces is completely in phase, and so
undergoes constructive interference.

b. For a particular thickness of film, light of a given
wavelength that reflects from the outer and inner
surfaces is completely in phase, and so undergoes
destructive interference.

c. For a particular thickness of film, light of a given
wavelength that reflects from the outer and inner
film surfaces is completely out of phase, and so
undergoes constructive interference.

d. For a particular thickness of film, light of a given
wavelength that reflects from the outer and inner
film surfaces is completely out of phase, and so
undergoes no interference.

13. When you move a rope up and down, waves are created.
If the waves pass through a slot, they will be affected
differently, depending on the orientation of the slot.
Using the rope waves and the slot as a model, explain
how polarizing glasses affect light waves.
a. If the wave—electric field—is vertical and

slit—polarizing molecules in the glass—is
horizontal, the wave will pass.

b. If the wave—electric field— is vertical and
slit—polarizing molecules in the glass—is vertical,
the wave will not pass.

c. If the wave—electric field—is horizontal and
slit—polarizing molecules in the glass—is
horizontal, the wave will pass.

d. If the wave—electric field—is horizontal and
slit—polarizing molecules in the glass—is
horizontal, the wave will not pass.
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Problems
15.2 The Behavior of Electromagnetic
Radiation
14. Visible light has a range of wavelengths from about 400

nm to 800 nm . What is the range of frequencies for
visible light?
a. 3.75 × 106 Hz to 7.50 × 106 Hz
b. 3.75 Hz to 7.50 Hz
c. 3.75 × 10−7 Hz to 7.50 × 10−7 Hz
d. 3.75 × 1014 Hz to 7.50 × 1014 Hz

15. Light travels through the wall of a soap bubble that is
600 nm thick and is reflected from the inner surface
back into the air. Assume the bubble wall is mostly water
and that light travels in water at 75 percent of the speed
of light in vacuum. How many seconds behind will the
light reflected from the inner surface arrive compared to
the light that was reflected from the outer surface?
a. 4.0 × 10–8 s
b. 5.3 × 10–6 s
c. 2.65 × 10–15 s
d. 5.3 × 10–15 s

Performance Task
15.2 The Behavior of Electromagnetic
Radiation
16. Design an experiment to observe the phenomenon of

thin-film interference. Observe colors of visible light,
and relate each color to its corresponding wavelength.
Comparison with the magnitudes of visible light
wavelength will give an appreciation of just how very
thin a thin film is. Thin-film interference has a number
of practical applications, such as anti-reflection coatings
and optical filters. Thin films used in filters can be
designed to reflect or transmit specific wavelengths of
light. This is done by depositing a film one molecular
layer at a time from a vapor, thus allowing the thickness
of the film to be exactly controlled.

• EYE SAFETY—Chemicals in this lab are poisonous if
ingested. If chemicals are ingested, inform your
teacher immediately.

• FUMES—Certain chemicals or chemical reactions in
this lab create a vapor that is harmful if inhaled.
Follow your teacher's instructions for the use of fume
hoods and other safety apparatus designed to prevent
fume inhalation. Never smell or otherwise breath in
any chemicals or vapors in the lab.

• FLAMMABLE—Chemicals in this lab are highly
flammable and can ignite, especially if exposed to a
spark or open flame. Follow your teacher's

instructions carefully on how to handle flammable
chemicals. Do not expose any chemical to a flame or
other heat source unless specifically instructed by your
teacher.

• HAND WASHING—Some materials may be
hazardous if in extended contact with the skin. Be
sure to wash your hands with soap after handling and
disposing of these materials during the lab.

• WASTE—Some things in this lab are hazardous and
need to be disposed of properly. Follow your teacher's
instructions for disposal of all items.

• A large flat tray with raised sides, such as a baking tray
• Small volumes of motor oil, lighter fluid or a

penetrating oil of the type used to loosen rusty bolts,
and cooking oil

• Water
• A camera

a. Thin-film interference causes colors to appear on the
surface of a thin transparent layer. Do you expect to
see a pattern to the colors?

b. How could you make a permanent record of your
observations?

c. What data would you need to look up to help explain
any patterns that you see?

d. What could explain colors failing to appear under
some conditions?

TEST PREP
Multiple Choice
15.1 The Electromagnetic Spectrum
17. Which type of EM radiation has the shortest

wavelengths?
a. gamma rays
b. infrared waves
c. blue light
d. microwaves

18. Which form of EM radiation has the most penetrating
ability?
a. red light
b. microwaves
c. gamma rays
d. infrared radiation

19. Why are high-frequency gamma rays more dangerous to
humans than visible light?
a. Gamma rays have a lower frequency range than
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visible light.
b. Gamma rays have a longer wavelength range than

visible light.
c. Gamma rays have greater energy than visible light

for penetrating matter.
d. Gamma rays have less energy than visible light for

penetrating matter.

20. A dog would have a hard time stalking and catching a
red bird hiding in a field of green grass. Explain this in
terms of cone cells and color perception.
a. Dogs are red-green color-blind because they can

see only blue and yellow through two kinds of cone
cells present in their eyes.

b. Dogs are only red color-blind because they can see
only blue and yellow through two kinds of cones
cells present in their eyes.

c. Dogs are only green color-blind because they can
see only blue and yellow through two kinds of
cones cells present in their eyes.

d. Dogs are color-blind because they have only rods
and no cone cells present in their eyes.

15.2 The Behavior of Electromagnetic
Radiation
21. To compare the brightness of light bulbs for sale in a

store, you should look on the labels to see how they are
rated in terms of ____.
a. frequency
b. watts
c. amps
d. lumens

22. What is the wavelength of red light with a frequency of
4.00 × 1014 Hz?
a. 2.50 × 1014 m
b. 4.00 × 1015 m
c. 2.50 × 106 m
d. 4.00 × 10-7 m

23. What is the distance of one light year in kilometers?
a. 2.59 × 1010 km
b. 1.58 × 1011 km
c. 2.63 × 109 km
d. 9.46 × 1012 km

24. How does the illuminance of light change when the
distance from the light source is tripled? Cite the
relevant equation and explain how it supports your
answer.
a. if distance is tripled, then

the illuminance increases by 19 times.
b. if distance is tripled, then

the illuminance decreases by 13 times.
c. if distance is tripled,

then the illuminance decreases by 9 times.
d. if distance tripled, then

the illuminance increases by 3 times.

25. A light bulb has an illuminance of 19.9 lx at a distance of
2 m . What is the luminous flux of the bulb?
a. 500 lm
b. 320 lm
c. 250 lm
d. 1,000 lm

Short Answer
15.1 The Electromagnetic Spectrum
26. Describe one way in which heat waves—infrared

radiation—are different from sound waves.
a. Sound waves are transverse waves, whereas heat

waves—infrared radiation—are longitudinal
waves.

b. Sound waves have shorter wavelengths than heat
waves.

c. Sound waves require a medium, whereas heat
waves—infrared radiation—do not.

d. Sound waves have higher frequencies than heat
waves.

27. Describe the electric and magnetic fields that make up
an electromagnetic wave in terms of their orientation
relative to each other and their phases.
a. They are perpendicular to and out of phase with

each other.
b. They are perpendicular to and in phase with each

other.
c. They are parallel to and out of phase with each

other.
d. They are parallel to and in phase with each other.

28. Explain how X-radiation can be harmful and how it can
be a useful diagnostic tool.
a. Overexposure to X-rays can cause HIV, though

normal levels of X-rays can be used for sterilizing
needles.

b. Overexposure to X-rays can cause cancer, though in
limited doses X-rays can be used for imaging
internal body parts.

c. Overexposure to X-rays causes diabetes, though
normal levels of X-rays can be used for imaging
internal body parts.

d. Overexposure to X-rays causes cancer, though
normal levels of X-rays can be used for reducing
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cholesterol in the blood.

29. Explain how sunlight is the original source of the energy
in the food we eat.
a. Sunlight is converted into chemical energy by

plants; this energy is released when we digest food.
b. Sunlight is converted into chemical energy by

animals; this energy is released when we digest
food.

c. Sunlight is converted into chemical energy by fish;
this energy is released when we digest food.

d. Sunlight is converted into chemical energy by
humans; this energy is released when we digest
food.

15.2 The Behavior of Electromagnetic
Radiation
30. Describe what happens to the path of light when the

light slows down as it passes from one medium to
another?
a. The path of the light remains the same.
b. The path of the light becomes circular.
c. The path of the light becomes curved.
d. The path of the light changes.

31. What is it about the nature of light reflected from snow
that causes skiers to wear polarized sunglasses?
a. The reflected light is polarized in the vertical

direction.
b. The reflected light is polarized in the horizontal

direction.
c. The reflected light has less intensity than the

incident light.
d. The reflected light has triple the intensity of the

incident light.

32. How many lumens are radiated from a candle which has
an illuminance of 3.98 lx at a distance of 2.00 m?
a. 400 lm
b. 100 lm
c. 50 lm
d. 200 lm

33. Saturn is 1.43×1012 m from the Sun. How many minutes
does it take the Sun’s light to reach Saturn?
a. 7.94 × 109 minutes
b. 3.4 × 104 minutes
c. 3.4 × 10–6 minutes
d. 79.4 minutes

Extended Response
15.1 The Electromagnetic Spectrum
34. A frequency of red light has a wavelength of 700 nm.

Part A—Compare the wavelength and frequency of
violet light to red light.
Part B—Identify a type of radiation that has lower
frequencies than red light.
Part C—Identify a type of radiation that has shorter
wavelengths than violet light.
a. A. Violet light has a lower frequency and longer

wavelength than red light.
B. ultraviolet radiation
C. infrared radiation

b. A. Violet light has a lower frequency and longer
wavelength than red light.

B. infrared radiation
C. ultraviolet radiation

c. A. Violet light has a higher frequency and shorter
wavelength than red light.

B. ultraviolet radiation
C. infrared radiation

d. A. Violet light has a higher frequency and shorter
wavelength than red light.

B. infrared radiation

C. ultraviolet radiation

35. A mixture of red and green light is shone on each of the
subtractive colors.
Part A—Which of these colors of light are reflected from
magenta?
Part B—Which of these colors of light are reflected from
yellow?
Part C—Which these colors of light are reflected from
cyan?
a. Part A. red and green

Part B. green
Part C. red

b. Part A. red and green
Part B. red
Part C. green

c. Part A. green
Part B. red and green
Part C. red

d. Part A. red
Part B. red and green
Part C. green

15.2 The Behavior of Electromagnetic
Radiation
36. Explain why we see the colorful effects of thin-film

interference on the surface of soap bubbles and oil

474 Chapter 15 • Test Prep

Access for free at openstax.org.



slicks, but not on the surface of a window pane or clear
plastic bag.
a. The thickness of a window pane or plastic bag is

more than the wavelength of light, and interference
occurs for thicknesses smaller than the wavelength
of light.

b. The thickness of a window pane or plastic bag is
less than the wavelength of light, and interference
occurs for thicknesses similar to the wavelength of
light.

c. The thickness of a window pane or plastic bag is
more than the wavelength of light, and interference
occurs for thicknesses similar to the wavelength of
light.

d. The thickness of a window pane or plastic bag is

less than the wavelength of light, and interference
occurs for thicknesses larger than the wavelength
of light.

37. The Occupational Safety and Health Administration
(OSHA) recommends an illuminance of for
desktop lighting. An office space has lighting hung

above desktop level that provides only .
To what height would the lighting fixtures have to be
lowered to provide on desktops?
a.
b.
c.
d.
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INTRODUCTION

CHAPTER 16
Mirrors and Lenses

16.1 Reflection

16.2 Refraction

16.3 Lenses

“In another moment Alice was through the glass, and had jumped lightly down into the Looking-glass room.”

—Through the Looking Glass by Lewis Carol

Through the Looking Glass tells of the adventures of Alice after she steps from the real world, through a mirror, and into the
virtual world. In this chapter we examine the optical meanings of real and virtual, as well as other concepts that make up the
field of optics.

The light from this page or screen is formed into an image by the lens of your eyes, much as the lens of the camera that made the
photograph at the beginning of this chapter. Mirrors, like lenses, can also form images, which in turn are captured by your eyes.

Optics is the branch of physics that deals with the behavior of visible light and other electromagnetic waves. For now, we
concentrate on the propagation of light and its interaction with matter.

It is convenient to divide optics into two major parts based on the size of objects that light encounters. When light interacts with
an object that is several times as large as the light’s wavelength, its observable behavior is similar to a ray; it does not display its

Figure 16.1 Flat, smooth surfaces reflect light to form mirror images. (credit: NASA Goddard Photo and Video, via
Flickr)
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wave characteristics prominently. We call this part of optics geometric optics. This chapter focuses on situations for which
geometric optics is suited.

16.1 Reflection
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain reflection from mirrors, describe image formation as a consequence of reflection from mirrors, apply

ray diagrams to predict and interpret image and object locations, and describe applications of mirrors
• Perform calculations based on the law of reflection and the equations for curved mirrors

Section Key Terms

angle of incidence angle of reflection central axis concave mirror convex mirror

diffused focal length focal point geometric optics law of reflection

law of refraction ray real image specular virtual image

Characteristics of Mirrors
There are three ways, as shown in Figure 16.2, in which light can travel from a source to another location. It can come directly
from the source through empty space, such as from the Sun to Earth. Light can travel to an object through various media, such
as air and glass. Light can also arrive at an object after being reflected, such as by a mirror. In all these cases, light is modeled as
traveling in a straight line, called a ray. Light may change direction when it encounters the surface of a different material (such
as a mirror) or when it passes from one material to another (such as when passing from air into glass). It then continues in a
straight line—that is, as a ray. The word ray comes from mathematics. Here it means a straight line that originates from some
point. It is acceptable to visualize light rays as laser rays (or even science fiction depictions of ray guns).

Figure 16.2 Three methods for light to travel from a source to another location are shown. (a) Light reaches the upper atmosphere of Earth

by traveling through empty space directly from the source (the Sun). (b) This light can reach a person in one of two ways. It can travel

through a medium, such as air or glass, and typically travels from one medium to another. It can also reflect from an object, such as a

mirror.

Because light moves in straight lines, that is, as rays, and changes directions when it interacts with matter, it can be described
through geometry and trigonometry. This part of optics, described by straight lines and angles, is therefore called geometric
optics. There are two laws that govern how light changes direction when it interacts with matter: the law of reflection, for
situations in which light bounces off matter; and the law of refraction, for situations in which light passes through matter. In
this section, we consider the geometric optics of reflection.

Whenever we look into a mirror or squint at sunlight glinting from a lake, we are seeing a reflection. How does the reflected
light travel from the object to your eyes? The law of reflection states: The angle of reflection, , equals the angle of incidence,
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. This law governs the behavior of all waves when they interact with a smooth surface, and therefore describe the behavior of
light waves as well. The reflection of light is simplified when light is treated as a ray. This concept is illustrated in Figure 16.3,
which also shows how the angles are measured relative to the line perpendicular to the surface at the point where the light ray
strikes it. This perpendicular line is also called the normal line, or just the normal. Light reflected in this way is referred to as
specular (from the Latin word for mirror: speculum).

We expect to see reflections from smooth surfaces, but Figure 16.4, illustrates how a rough surface reflects light. Because the
light is reflected from different parts of the surface at different angles, the rays go in many different directions, so the reflected
light is diffused. Diffused light allows you to read a printed page from almost any angle because some of the rays go in different
directions. Many objects, such as people, clothing, leaves, and walls, have rough surfaces and can be seen from many angles. A
mirror, on the other hand, has a smooth surface and reflects light at specific angles.

Figure 16.3 The law of reflection states that the angle of reflection, θr, equals the angle of incidence, θi. The angles are measured relative

to the line perpendicular to the surface at the point where the ray strikes the surface. The incident and reflected rays, along with the

normal, lie in the same plane.

Figure 16.4 Light is diffused when it reflects from a rough surface. Here, many parallel rays are incident, but they are reflected at many

different angles because the surface is rough.

When we see ourselves in a mirror, it appears that our image is actually behind the mirror. We see the light coming from a
direction determined by the law of reflection. The angles are such that our image is exactly the same distance behind the mirror,
di, as the distance we stand away from the mirror, do. Although these mirror images make objects appear to be where they
cannot be (such as behind a solid wall), the images are not figments of our imagination. Mirror images can be photographed and
videotaped by instruments and look just as they do to our eyes, which are themselves optical instruments. An image in a mirror
is said to be a virtual image, as opposed to a real image. A virtual image is formed when light rays appear to diverge from a
point without actually doing so.

Figure 16.5 helps illustrate how a flat mirror forms an image. Two rays are shown emerging from the same point, striking the
mirror, and reflecting into the observer’s eye. The rays can diverge slightly, and both still enter the eye. If the rays are
extrapolated backward, they seem to originate from a common point behind the mirror, allowing us to locate the image. The
paths of the reflected rays into the eye are the same as if they had come directly from that point behind the mirror. Using the law
of reflection—the angle of reflection equals the angle of incidence—we can see that the image and object are the same distance
from the mirror. This is a virtual image, as defined earlier.
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Figure 16.5 When two sets of rays from common points on an object are reflected by a flat mirror into the eye of an observer, the reflected

rays seem to originate from behind the mirror, which determines the position of the virtual image.

FUN IN PHYSICS

Mirror Mazes
Figure 16.6 is a chase scene from an old silent film called The Circus, starring Charlie Chaplin. The chase scene takes place in a
mirror maze. You may have seen such a maze at an amusement park or carnival. Finding your way through the maze can be very
difficult. Keep in mind that only one image in the picture is real—the others are virtual.

Figure 16.6 Charlie Chaplin is in a mirror maze. Which image is real?

One of the earliest uses of mirrors for creating the illusion of space is seen in the Palace of Versailles, the former home of French
royalty. Construction of the Hall of Mirrors (Figure 16.7) began in 1678. It is still one of the most popular tourist attractions at
Versailles.

Figure 16.7 Tourists love to wander in the Hall of Mirrors at the Palace of Versailles. (credit: Michal Osmenda, Flickr)

GRASP CHECK
Only one Charlie in this image (Figure 16.8) is real. The others are all virtual images of him. Can you tell which is real?
Hint—His hat is tilted to one side.
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Figure 16.8

a. The virtual images have their hats tilted to the right.
b. The virtual images have their hats tilted to the left.
c. The real images have their hats tilted to the right.
d. The real images have their hats tilted to the left.

WATCH PHYSICS

Virtual Image
This video explains the creation of virtual images in a mirror. It shows the location and orientation of the images using ray
diagrams, and relates the perception to the human eye.

Click to view content (https://openstax.org/l/28Virtualimage)
Compare the distance of an object from a mirror to the apparent distance of its virtual image behind the mirror.
a. The distances of the image and the object from the mirror are the same.
b. The distances of the image and the object from the mirror are always different.
c. The image is formed at infinity if the object is placed near the mirror.
d. The image is formed near the mirror if the object is placed at infinity.

Some mirrors are curved instead of flat. A mirror that curves inward is called a concave mirror, whereas one that curves
outward is called a convex mirror. Pick up a well-polished metal spoon and you can see an example of each type of curvature.
The side of the spoon that holds the food is a concave mirror; the back of the spoon is a convex mirror. Observe your image on
both sides of the spoon.

TIPS FOR SUCCESS
You can remember the difference between concave and convex by thinking, Concave means caved in.

Ray diagrams can be used to find the point where reflected rays converge or appear to converge, or the point from which rays
appear to diverge. This is called the focal point, F. The distance from F to the mirror along the central axis (the line
perpendicular to the center of the mirror’s surface) is called the focal length, f. Figure 16.9 shows the focal points of concave and
convex mirrors.
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Figure 16.9 (a, b) The focal length for the concave mirror in (a), formed by converging rays, is in front of the mirror, and has a positive value.

The focal length for the convex mirror in (b), formed by diverging rays, appears to be behind the mirror, and has a negative value.

Images formed by a concave mirror vary, depending on which side of the focal point the object is placed. For any object placed
on the far side of the focal point with respect to the mirror, the rays converge in front of the mirror to form a real image, which
can be projected onto a surface, such as a screen or sheet of paper However, for an object located inside the focal point with
respect to the concave mirror, the image is virtual. For a convex mirror the image is always virtual—that is, it appears to be
behind the mirror. The ray diagrams in Figure 16.10 show how to determine the nature of the image formed by concave and
convex mirrors.

Figure 16.10 (a) The image of an object placed outside the focal point of a concave mirror is inverted and real. (b) The image of an object
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placed inside the focal point of a concave mirror is erect and virtual. (c) The image of an object formed by a convex mirror is erect and

virtual.

The information in Figure 16.10 is summarized in Table 16.1.

Type of Mirror Object to Mirror Distance, do Image Characteristics

Concave Real and inverted

Concave Virtual and erect

Convex Virtual and erect

Table 16.1 Curved Mirror Images This table details the type and orientation of
images formed by concave and convex mirrors.

WATCH PHYSICS

Parabolic Mirrors and Real Images
This video uses ray diagrams to show the special feature of parabolic mirrors that makes them ideal for either projecting light
energy in parallel rays, with the source being at the focal point of the parabola, or for collecting at the focal point light energy
from a distant source.

Click to view content (https://www.openstax.org/l/28Parabolic)
Explain why using a parabolic mirror for a car headlight throws much more light on the highway than a flat mirror.
a. The rays do not polarize after reflection.
b. The rays are dispersed after reflection.
c. The rays are polarized after reflection.
d. The rays become parallel after reflection.

You should be able to notice everyday applications of curved mirrors. One common example is the use of security mirrors in
stores, as shown in Figure 16.11.

Snap Lab

Concave and Convex Mirrors
• Silver spoon and silver polish, or a new spoon made of any shiny metal

Instructions

Procedure
1. Choose any small object with a top and a bottom, such as a short nail or tack, or a coin, such as a quarter. Observe the

object’s reflection on the back of the spoon.
2. Observe the reflection of the object on the front (bowl side) of the spoon when held away from the spoon at a distance of

several inches.
3. Observe the image while slowly moving the small object toward the bowl of the spoon. Continue until the object is all

the way inside the bowl of the spoon.
4. You should see one point where the object disappears and then reappears. This is the focal point.
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Figure 16.11 Security mirrors are convex, producing a smaller, upright image. Because the image is smaller, a larger area is imaged

compared with what would be observed for a flat mirror; hence, security is improved. (credit: Laura D’Alessandro, Flickr)

Some telescopes also use curved mirrors and no lenses (except in the eyepieces) both to magnify images and to change the path
of light. Figure 16.12 shows a Schmidt-Cassegrain telescope. This design uses a spherical primary concave mirror and a convex
secondary mirror. The image is projected onto the focal plane by light passing through the perforated primary mirror. The
effective focal length of such a telescope is the focal length of the primary mirror multiplied by the magnification of the
secondary mirror. The result is a telescope with a focal length much greater than the length of the telescope itself.

Figure 16.12 This diagram shows the design of a Schmidt–Cassegrain telescope.

A parabolic concave mirror has the very useful property that all light from a distant source, on reflection by the mirror surface, is
directed to the focal point. Likewise, a light source placed at the focal point directs all the light it emits in parallel lines away
from the mirror. This case is illustrated by the ray diagram in Figure 16.13. The light source in a car headlight, for example, is
located at the focal point of a parabolic mirror.

Figure 16.13 The bulb in this ray diagram of a car headlight is located at the focal point of a parabolic mirror.

Parabolic mirrors are also used to collect sunlight and direct it to a focal point, where it is transformed into heat, which in turn
can be used to generate electricity. This application is shown in Figure 16.14.

Figure 16.14 Parabolic trough collectors are used to generate electricity in southern California. (credit: kjkolb, Wikimedia Commons)
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Using a concave mirror, you look at the reflection of a faraway object. The image size changes if you move the object closer to the
mirror. Why does the image disappear entirely when the object is at the mirror's focal point?
a. The height of the image became infinite.
b. The height of the object became zero.
c. The intensity of intersecting light rays became zero.
d. The intensity of intersecting light rays increased.

The Application of the Curved Mirror Equations
Curved mirrors and the images they create involve a fairly small number of variables: the mirror’s radius of curvature, R; the
focal length, f; the distances of the object and image from the mirror, do and di, respectively; and the heights of the object and
image, ho and hi, respectively. The signs of these values indicate whether the image is inverted, erect (upright), real, or virtual.
We now look at the equations that relate these variables and apply them to everyday problems.

Figure 16.15 shows the meanings of most of the variables we will use for calculations involving curved mirrors.

Figure 16.15 Look for the variables, do, di, ho, hi, and f in this figure.

The basic equation that describes both lenses and mirrors is the lens/mirror equation

This equation can be rearranged several ways. For example, it may be written to solve for focal length.

Magnification, m, is the ratio of the size of the image, hi, to the size of the object, ho. The value of m can be calculated in two
ways.

This relationship can be written to solve for any of the variables involved. For example, the height of the image is given by

We saved the simplest equation for last. The radius of curvature of a curved mirror, R, is simply twice the focal length.

We can learn important information from the algebraic sign of the result of a calculation using the previous equations:

• A negative di indicates a virtual image; a positive value indicates a real image
• A negative hi indicates an inverted image; a positive value indicates an erect image
• For concave mirrors, f is positive; for convex mirrors, f is negative

Now let’s apply these equations to solve some problems.
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WORKED EXAMPLE

Calculating Focal Length
A person standing 6.0 m from a convex security mirror forms a virtual image that appears to be 1.0 m behind the mirror. What
is the focal length of the mirror?
STRATEGY
The person is the object, so do = 6.0 m. We know that, for this situation, do is positive. The image is virtual, so the value for the
image distance is negative, so di = –1.0 m.

Now, use the appropriate version of the lens/mirror equation to solve for focal length by substituting the known values.

Solution

Discussion
The negative result is expected for a convex mirror. This indicates the focal point is behind the mirror.

WORKED EXAMPLE

Calculating Object Distance
Electric room heaters use a concave mirror to reflect infrared (IR) radiation from hot coils. Note that IR radiation follows the
same law of reflection as visible light. Given that the mirror has a radius of curvature of 50.0 cm and produces an image of the
coils 3.00 m in front of the mirror, where are the coils with respect to the mirror?
STRATEGY
We are told that the concave mirror projects a real image of the coils at an image distance di = 3.00 m. The coils are the object,
and we are asked to find their location—that is, to find the object distance do. We are also given the radius of curvature of the
mirror, so that its focal length is f = R/2 = 25.0 cm (a positive value, because the mirror is concave, or converging). We can use the
lens/mirror equation to solve this problem.

Solution
Because di and f are known, the lens/mirror equation can be used to find do.

Rearranging to solve for do, we have

Entering the known quantities gives us

Discussion
Note that the object (the coil filament) is farther from the mirror than the mirror’s focal length. This is a case 1 image (do > f and f
positive), consistent with the fact that a real image is formed. You get the most concentrated thermal energy directly in front of
the mirror and 3.00 m away from it. In general, this is not desirable because it could cause burns. Usually, you want the rays to
emerge parallel, and this is accomplished by having the filament at the focal point of the mirror.

Note that the filament here is not much farther from the mirror than the focal length, and that the image produced is
considerably farther away.

16.1
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Practice Problems
1. A concave mirror has a radius of curvature of . What is the focal length of the mirror?

a.
b.
c.
d.

2. What is the focal length of a makeup mirror that produces a magnification of 1.50 when a person’s face is 12.0 cm away?
Construct a ray diagram using paper, a pencil and a ruler to confirm your calculation.
a. –36.0 cm
b. –7.20 cm
c. 7.20 cm
d. 36.0 cm

Check Your Understanding
3. How does the object distance, do, compare with the focal length, f, for a concave mirror that produces an image that is real

and inverted?
a. do > f, where do and f are object distance and focal length, respectively.
b. do < f, where do and f are object distance and focal length, respectively.
c. do = f, where do and f are object distance and focal length, respectively.
d. do = 0, where do is the object distance.

4. Use the law of reflection to explain why it is not a good idea to polish a mirror with sandpaper.
a. The surface becomes smooth, and a smooth surface produces a sharp image.
b. The surface becomes irregular, and an irregular surface produces a sharp image.
c. The surface becomes smooth, and a smooth surface transmits light, but does not reflect it.
d. The surface becomes irregular, and an irregular surface produces a blurred image.

5. An object is placed in front of a concave mirror at a distance that is greater than the focal length of the mirror. Will the image
produced by the mirror be real or virtual? Will it be erect or inverted?
a. It is real and erect.
b. It is real and inverted.
c. It is virtual and inverted.
d. It is virtual and erect.

16.2 Refraction
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain refraction at media boundaries, predict the path of light after passing through a boundary (Snell’s

law), describe the index of refraction of materials, explain total internal reflection, and describe applications of
refraction and total internal reflection

• Perform calculations based on the law of refraction, Snell’s law, and the conditions for total internal reflection

Section Key Terms

angle of refraction corner reflector critical angle dispersion incident ray

index of refraction refracted ray Snell’s law total internal reflection

The Law of Refraction
You may have noticed some odd optical phenomena when looking into a fish tank. For example, you may see the same fish
appear to be in two different places (Figure 16.16). This is because light coming to you from the fish changes direction when it
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leaves the tank and, in this case, light rays traveling along two different paths both reach our eyes. The changing of a light ray’s
direction (loosely called bending) when it passes a boundary between materials of different composition, or between layers in
single material where there are changes in temperature and density, is called refraction. Refraction is responsible for a
tremendous range of optical phenomena, from the action of lenses to voice transmission through optical fibers.

Figure 16.16 Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions when

it passes from water to air. In this case, light rays traveling on two different paths change direction as they travel from water to air, and so

reach the observer. Consequently, the fish appears to be in two different places. This bending of light is called refraction and is responsible

for many optical phenomena.

Why does light change direction when passing from one material (medium) to another? It is because light changes speed when
going from one material to another. This behavior is typical of all waves and is especially easy to apply to light because light
waves have very small wavelengths, and so they can be treated as rays. Before we study the law of refraction, it is useful to
discuss the speed of light and how it varies between different media.

The speed of light is now known to great precision. In fact, the speed of light in a vacuum, c, is so important, and is so precisely
known, that it is accepted as one of the basic physical quantities, and has the fixed value

where the approximate value of 3.00 108 m/s is used whenever three-digit precision is sufficient. The speed of light through
matter is less than it is in a vacuum, because light interacts with atoms in a material. The speed of light depends strongly on the
type of material, given that its interaction with different atoms, crystal lattices, and other substructures varies. We define the
index of refraction, n, of a material to be

where v is the observed speed of light in the material. Because the speed of light is always less than c in matter and equals c only
in a vacuum, the index of refraction (plural: indices of refraction) is always greater than or equal to one.

Table 16.2 lists the indices of refraction in various common materials.

Medium n

Gases at 0 °C and 1 atm

Table 16.2 Indices of Refraction The
table lists the indices of refraction for
various materials that are transparent
to light. Note, that light travels the
slowest in the materials with the
greatest indices of refraction.

16.4

488 Chapter 16 • Mirrors and Lenses

Access for free at openstax.org.



Medium n

Air 1.000293

Carbon dioxide 1.00045

Hydrogen 1.000139

Oxygen 1.000271

Liquids at 20 °C

Benzene 1.501

Carbon disulfide 1.628

Carbon tetrachloride 1.461

Ethanol 1.361

Glycerin 1.473

Water, fresh 1.333

Solids at 20 °C

Diamond 2.419

Fluorite 1.434

Glass, crown 1.52

Glass, flint 1.66

Ice at 0 °C 1.309

Plexiglas 1.51

Polystyrene 1.49

Quartz, crystalline 1.544

Quartz, fused 1.458

Sodium chloride 1.544

Table 16.2 Indices of Refraction The
table lists the indices of refraction for
various materials that are transparent
to light. Note, that light travels the
slowest in the materials with the
greatest indices of refraction.
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Medium n

Zircon 1.923

Table 16.2 Indices of Refraction The
table lists the indices of refraction for
various materials that are transparent
to light. Note, that light travels the
slowest in the materials with the
greatest indices of refraction.

Figure 16.17 provides an analogy for and a description of how a ray of light changes direction when it passes from one medium to
another. As in the previous section, the angles are measured relative to a perpendicular to the surface at the point where the
light ray crosses it. The change in direction of the light ray depends on how the speed of light changes. The change in the speed
of light is related to the indices of refraction of the media involved. In the situations shown in Figure 16.17, medium 2 has a
greater index of refraction than medium 1. This difference in index of refraction means that the speed of light is less in medium
2 than in medium 1. Note that, in Figure 16.17(a), the path of the ray moves closer to the perpendicular when the ray slows down.
Conversely, in Figure 16.17(b), the path of the ray moves away from the perpendicular when the ray speeds up. The path is exactly
reversible. In both cases, you can imagine what happens by thinking about pushing a lawn mower from a footpath onto grass,
and vice versa. Going from the footpath to grass, the right front wheel is slowed and pulled to the side as shown. This is the same
change in direction for light when it goes from a fast medium to a slow one. When going from the grass to the footpath, the left
front wheel moves faster than the others, and the mower changes direction as shown. This, too, is the same change in direction
as light going from slow to fast.

Figure 16.17 The change in direction of a light ray depends on how the speed of light changes when it crosses from one medium to another.

For the situations shown here, the speed of light is greater in medium 1 than in medium 2. (a) A ray of light moves closer to the

perpendicular when it slows down. This is analogous to what happens when a lawnmower goes from a footpath (medium 1) to grass

(medium 2). (b) A ray of light moves away from the perpendicular when it speeds up. This is analogous to what happens when a lawnmower

goes from grass (medium 2) to the footpath (medium 1). The paths are exactly reversible.

Snap Lab

Bent Pencil
A classic observation of refraction occurs when a pencil is placed in a glass filled halfway with water. Do this and observe the
shape of the pencil when you look at it sideways through air, glass, and water.

• A full-length pencil
• A glass half full of water

Instructions

Procedure
1. Place the pencil in the glass of water.
2. Observe the pencil from the side.
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The amount that a light ray changes direction depends both on the incident angle and the amount that the speed changes. For a
ray at a given incident angle, a large change in speed causes a large change in direction, and thus a large change in the angle of
refraction. The exact mathematical relationship is the law of refraction, or Snell’s law, which is stated in equation form as

In terms of speeds, Snell’s law becomes

Here, n1 and n2 are the indices of refraction for media 1 and 2, respectively, and θ1 and θ2 are the angles between the rays and the
perpendicular in the respective media 1 and 2, as shown in Figure 16.17. The incoming ray is called the incident ray and the
outgoing ray is called the refracted ray. The associated angles are called the angle of incidence and the angle of refraction. Later,
we apply Snell’s law to some practical situations.

Dispersion is defined as the spreading of white light into the wavelengths of which it is composed. This happens because the
index of refraction varies slightly with wavelength. Figure 16.18 shows how a prism disperses white light into the colors of the
rainbow.

3. Explain your observations.

Virtual Physics

Bending Light
Click to view content (https://www.openstax.org/l/28Bendinglight)
The Bending Light simulation in allows you to show light refracting as it crosses the boundaries between various media
(download animation first to view). It also shows the reflected ray. You can move the protractor to the point where the light
meets the boundary and measure the angle of incidence, the angle of refraction, and the angle of reflection. You can also
insert a prism into the beam to view the spreading, or dispersion, of white light into colors, as discussed later in this
section. Use the ray option at the upper left.

A light ray moving upward strikes a horizontal boundary at an acute angle relative to the perpendicular and enters the
medium above the boundary. What must be true for the light to bend away from the perpendicular?
a. The medium below the boundary must have a greater index of refraction than the medium above.
b. The medium below the boundary must have a lower index of refraction than the medium above.
c. The medium below the boundary must have an index of refraction of zero.
d. The medium above the boundary must have an infinite index of refraction.

16.5
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Figure 16.18 (a) A pure wavelength of light ( ) falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the prism

(spread of light exaggerated). Because the index of refraction varies with wavelength, the angles of refraction vary with wavelength. A

sequence of red to violet is produced, because the index of refraction increases steadily with decreasing wavelength.

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only when
you turn your back to the Sun. Light enters a drop of water and is reflected from the back of the drop, as shown in Figure 16.19.
The light is refracted both as it enters and as it leaves the drop. Because the index of refraction of water varies with wavelength,
the light is dispersed and a rainbow is observed.

Figure 16.19 Part of the light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and

dispersed both as it enters and as it leaves the drop.

WATCH PHYSICS

Dispersion
This video explains how refraction disperses white light into its composite colors.

Click to view content (https://www.openstax.org/l/28Raindrop)
Which colors of the rainbow bend most when refracted?
a. Colors with a longer wavelength and higher frequency bend most when refracted.
b. Colors with a shorter wavelength and higher frequency bend most when refracted.
c. Colors with a shorter wavelength and lower frequency bend most when refracted.
d. Colors with a longer wavelength and a lower frequency bend most when refracted.

492 Chapter 16 • Mirrors and Lenses

Access for free at openstax.org.

https://www.openstax.org/l/28Raindrop


A good-quality mirror reflects more than 90 percent of the light that falls on it; the mirror absorbs the rest. But, it would be
useful to have a mirror that reflects all the light that falls on it. Interestingly, we can produce total reflection using an aspect of
refraction. Consider what happens when a ray of light strikes the surface between two materials, such as is shown in Figure
16.20(a). Part of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of
refraction for the second medium is less than the first, the ray bends away from the perpendicular. Because n1 > n2, the angle of
refraction is greater than the angle of incidence—that is, > . Now, imagine what happens as the incident angle is
increased. This causes to increase as well. The largest the angle of refraction, , can be is 90°, as shown in Figure 16.20(b).
The critical angle, , for a combination of two materials is defined to be the incident angle, , which produces an angle of
refraction of 90°. That is, is the incident angle for which = 90°. If the incident angle, , is greater than the critical angle,
as shown in Figure 16.20(c), then all the light is reflected back into medium 1, a condition called total internal reflection.

Figure 16.20 (a) A ray of light crosses a boundary where the speed of light increases and the index of refraction decreases—that is, n2 < n1.

The refracted ray bends away from the perpendicular. (b) The critical angle, , is the one for which the angle of refraction is 90°. (c) Total

internal reflection occurs when the incident angle is greater than the critical angle.

Recall that Snell’s law states the relationship between angles and indices of refraction. It is given by

When the incident angle equals the critical angle ( = ), the angle of refraction is 90° ( = 90°). Noting that sin 90° = 1,
Snell’s law in this case becomes

16.6
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The critical angle, , for a given combination of materials is thus

for n1 > n2.

Total internal reflection occurs for any incident angle greater than the critical angle, , and it can only occur when the second
medium has an index of refraction less than the first. Note that the previous equation is written for a light ray that travels in
medium 1 and reflects from medium 2, as shown in Figure 16.20.

There are several important applications of total internal reflection. Total internal reflection, coupled with a large index of
refraction, explains why diamonds sparkle more than other materials. The critical angle for a diamond-to-air surface is only
24.4°; so, when light enters a diamond, it has trouble getting back out (Figure 16.21). Although light freely enters the diamond at
different angles, it can exit only if it makes an angle less than 24.4° with the normal to a given surface. Facets on diamonds are
specifically intended to make this unlikely, so that the light can exit only in certain places. Diamonds with very few impurities
are very clear, so the light makes many internal reflections and is concentrated at the few places it can exit—hence the sparkle.

Figure 16.21 Light cannot escape a diamond easily because its critical angle with air is so small. Most reflections are total and the facets

are placed so that light can exit only in particular ways, thus concentrating the light and making the diamond sparkle.

A light ray that strikes an object that consists of two mutually perpendicular reflecting surfaces is reflected back exactly parallel
to the direction from which it came. This parallel reflection is true whenever the reflecting surfaces are perpendicular, and it is
independent of the angle of incidence. Such an object is called a corner reflector because the light bounces from its inside
corner. Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to return light in
the direction from which it originates. Corner reflectors are perfectly efficient when the conditions for total internal reflection
are satisfied. With common materials, it is easy to obtain a critical angle that is less than 45°. One use of these perfect mirrors is
in binoculars, as shown in Figure 16.22. Another application is for periscopes used in submarines.

Figure 16.22 These binoculars use corner reflectors with total internal reflection to get light to the observer’s eyes.

Fiber optics are one common application of total internal reflection. In communications, fiber optics are used to transmit
telephone, internet, and cable TV signals, and they use the transmission of light down fibers of plastic or glass. Because the
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fibers are thin, light entering one is likely to strike the inside surface at an angle greater than the critical angle and, thus, be
totally reflected (Figure 16.23). The index of refraction outside the fiber must be smaller than inside, a condition that is satisfied
easily by coating the outside of the fiber with a material that has an appropriate refractive index. In fact, most fibers have a
varying refractive index to allow more light to be guided along the fiber through total internal reflection. Rays are reflected
around corners as shown in the figure, making the fibers into tiny light pipes.

Figure 16.23 (a) Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal reflection,

even when fibers are in contact with one another. A single fiber with its cladding is shown. (b) Light entering a thin fiber may strike the

inside surface at large, or grazing, angles, and is completely reflected if these angles exceed the critical angle. Such rays continue down the

fiber, even following it around corners, because the angles of reflection and incidence remain large.

LINKS TO PHYSICS

Medicine: Endoscopes
A medical device called an endoscope is shown in Figure 16.24.

Figure 16.24 Endoscopes, such as the one drawn here, send light down a flexible fiber optic tube, which sends images back to a doctor in

charge of performing a medical procedure.

The word endoscope means looking inside. Doctors use endoscopes to look inside hollow organs in the human body and inside
body cavities. These devices are used to diagnose internal physical problems. Images may be transmitted to an eyepiece or sent
to a video screen. Another channel is sometimes included to allow the use of small surgical instruments. Such surgical
procedures include collecting biopsies for later testing, and removing polyps and other growths.

Identify the process that allows light and images to travel through a tube that is not straight.
a. The process is refraction of light.
b. The process is dispersion of light.
c. The process is total internal reflection of light.
d. The process is polarization of light.

Calculations with the Law of Refraction
The calculation problems that follow require application of the following equations:

16.8
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and

These are the equations for refractive index, the mathematical statement of the law of refraction (Snell’s law), and the equation
for the critical angle.

WATCH PHYSICS

Snell’s Law Example 1
This video leads you through calculations based on the application of the equation that represents Snell’s law.

Click to view content (https://www.openstax.org/l/28Snellslaw)
Which two types of variables are included in Snell’s law?
a. The two types of variables are density of a material and the angle made by the light ray with the normal.
b. The two types of variables are density of a material and the thickness of a material.
c. The two types of variables are refractive index and thickness of each material.
d. The two types of variables are refractive index of a material and the angle made by a light ray with the normal.

WORKED EXAMPLE

Calculating Index of Refraction from Speed
Calculate the index of refraction for a solid medium in which the speed of light is 2.012 108 m/s, and identify the most likely
substance, based on the previous table of indicies of refraction.
STRATEGY
We know the speed of light, c, is 3.00 108 m/s, and we are given v. We can simply plug these values into the equation for index
of refraction, n.

Solution

This value matches that of polystyrene exactly, according to the table of indices of refraction (Table 16.2).

Discussion
The three-digit approximation for c is used, which in this case is all that is needed. Many values in the table are only given to
three significant figures. Note that the units for speed cancel to yield a dimensionless answer, which is correct.

WORKED EXAMPLE

Calculating Index of Refraction from Angles
Suppose you have an unknown, clear solid substance immersed in water and you wish to identify it by finding its index of
refraction. You arrange to have a beam of light enter it at an angle of 45.00°, and you observe the angle of refraction to be 40.30°.
What are the index of refraction of the substance and its likely identity?
STRATEGY
We must use the mathematical expression for the law of refraction to solve this problem because we are given angle data, not
speed data.

The subscripts 1 and 2 refer to values for water and the unknown, respectively, where 1 represents the medium from which the
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light is coming and 2 is the new medium it is entering. We are given the angle values, and the table of indicies of refraction gives
us n for water as 1.333. All we have to do before solving the problem is rearrange the equation

Solution

The best match from Table 16.2 is fused quartz, with n = 1.458.

Discussion
Note the relative sizes of the variables involved. For example, a larger angle has a larger sine value. This checks out for the two
angles involved. Note that the smaller value of compared with indicates the ray has bent toward normal. This result is to
be expected if the unknown substance has a greater n value than that of water. The result shows that this is the case.

WORKED EXAMPLE

Calculating Critical Angle
Verify that the critical angle for light going from water to air is 48.6°. (See Table 16.2, the table of indices of refraction.)
STRATEGY
First, choose the equation for critical angle

Then, look up the n values for water, n1, and air, n2. Find the value of . Last, find the angle that has a sine equal to this value

and it compare with the given angle of 48.6°.

Solution
For water, n1 = 1.333; for air, n2 = 1.0003. So,

Discussion
Remember, when we try to find a critical angle, we look for the angle at which light can no longer escape past a medium
boundary by refraction. It is logical, then, to think of subscript 1 as referring to the medium the light is trying to leave, and
subscript 2 as where it is trying (unsuccessfully) to go. So water is 1 and air is 2.

Practice Problems
6. The refractive index of ethanol is 1.36. What is the speed of light in ethanol?

a. 2.25×108 m/s
b. 2.21×107 m/s
c. 2.25×109 m/s
d. 2.21×108 m/s

7. The refractive index of air is and the refractive index of crystalline quartz is . What is the critical angle for a ray
of light going from crystalline quartz into air?
a.
b.
c.
d.
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Check Your Understanding
8. Which law is expressed by the equation ?

a. This is Ohm’s law.
b. This is Wien’s displacement law.
c. This is Snell’s law.
d. This is Newton’s law.

9. Explain why the index of refraction is always greater than or equal to one.

a. The formula for index of refraction, , of a material is where , so is always

greater than one.

b. The formula for index of refraction, , of a material is where , so is always

greater than one.
c. The formula for index of refraction, , of a material is

where , , so is always greater
than one.

d. The formula for refractive index, , of a material is where

, so is always greater than one.

10. Write an equation that expresses the law of refraction.
a.

b.

c.

d.

16.3 Lenses
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe and predict image formation and magnification as a consequence of refraction through convex and

concave lenses, use ray diagrams to confirm image formation, and discuss how these properties of lenses
determine their applications

• Explain how the human eye works in terms of geometric optics
• Perform calculations, based on the thin-lens equation, to determine image and object distances, focal length,

and image magnification, and use these calculations to confirm values determined from ray diagrams

Section Key Terms

aberration chromatic aberration concave lens converging lens convex lens

diverging lens eyepiece objective ocular parfocal

Characteristics of Lenses
Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera’s zoom
lens. In this section, we use the law of refraction to explore the properties of lenses and how they form images.

Some of what we learned in the earlier discussion of curved mirrors also applies to the study of lenses. Concave, convex, focal
point F, and focal length f have the same meanings as before, except each measurement is made from the center of the lens
instead of the surface of the mirror. The convex lens shown in Figure 16.25 has been shaped so that all light rays that enter it
parallel to its central axis cross one another at a single point on the opposite side of the lens. The central axis, or axis, is defined
to be a line normal to the lens at its center. Such a lens is called a converging lens because of the converging effect it has on light
rays. An expanded view of the path of one ray through the lens is shown in Figure 16.25 to illustrate how the ray changes
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direction both as it enters and as it leaves the lens. Because the index of refraction of the lens is greater than that of air, the ray
moves toward the perpendicular as it enters and away from the perpendicular as it leaves. (This is in accordance with the law of
refraction.) As a result of the shape of the lens, light is thus bent toward the axis at both surfaces.

Figure 16.25 Rays of light entering a convex, or converging, lens parallel to its axis converge at its focal point, F. Ray 2 lies on the axis of the

lens. The distance from the center of the lens to the focal point is the focal length, ƒ, of the lens. An expanded view of the path taken by ray

1 shows the perpendiculars and the angles of incidence and refraction at both surfaces.

Note that rays from a light source placed at the focal point of a converging lens emerge parallel from the other side of the lens.
You may have heard of the trick of using a converging lens to focus rays of sunlight to a point. Such a concentration of light
energy can produce enough heat to ignite paper.

Figure 16.26 shows a concave lens and the effect it has on rays of light that enter it parallel to its axis (the path taken by ray 2 in
the figure is the axis of the lens). The concave lens is a diverging lens because it causes the light rays to bend away (diverge) from
its axis. In this case, the lens has been shaped so all light rays entering it parallel to its axis appear to originate from the same
point, F, defined to be the focal point of a diverging lens. The distance from the center of the lens to the focal point is again called
the focal length, or “ƒ,” of the lens. Note that the focal length of a diverging lens is defined to be negative. An expanded view of
the path of one ray through the lens is shown in Figure 16.26 to illustrate how the shape of the lens, together with the law of
refraction, causes the ray to follow its particular path and diverge.

Figure 16.26 Rays of light enter a concave, or diverging, lens parallel to its axis diverge and thus appear to originate from its focal point, F.

The dashed lines are not rays; they indicate the directions from which the rays appear to come. The focal length, ƒ, of a diverging lens is

negative. An expanded view of the path taken by ray 1 shows the perpendiculars and the angles of incidence and refraction at both

surfaces.

The power, P, of a lens is very easy to calculate. It is simply the reciprocal of the focal length, expressed in meters

The units of power are diopters, D, which are expressed in reciprocal meters. If the focal length is negative, as it is for the
diverging lens in Figure 16.26, then the power is also negative.

In some circumstances, a lens forms an image at an obvious location, such as when a movie projector casts an image onto a
screen. In other cases, the image location is less obvious. Where, for example, is the image formed by eyeglasses? We use ray
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tracing for thin lenses to illustrate how they form images, and we develop equations to describe the image-formation
quantitatively. These are the rules for ray tracing:

1. A ray entering a converging lens parallel to its axis passes through the focal point, F, of the lens on the other side
2. A ray entering a diverging lens parallel to its axis seems to come from the focal point, F, on the side of the entering ray
3. A ray passing through the center of either a converging or a diverging lens does not change direction
4. A ray entering a converging lens through its focal point exits parallel to its axis
5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis

Consider an object some distance away from a converging lens, as shown in Figure 16.27. To find the location and size of the
image formed, we trace the paths of select light rays originating from one point on the object. In this example, the originating
point is the top of a woman’s head. Figure 16.27 shows three rays from the top of the object that can be traced using the ray-
tracing rules just listed. Rays leave this point traveling in many directions, but we concentrate on only a few, which have paths
that are easy to trace. The first ray is one that enters the lens parallel to its axis and passes through the focal point on the other
side (rule 1). The second ray passes through the center of the lens without changing direction (rule 3). The third ray passes
through the nearer focal point on its way into the lens and leaves the lens parallel to its axis (rule 4). All rays that come from the
same point on the top of the person’s head are refracted in such a way as to cross at the same point on the other side of the lens.
The image of the top of the person’s head is located at this point. Rays from another point on the object, such as the belt buckle,
also cross at another common point, forming a complete image, as shown. Although three rays are traced in Figure 16.27, only
two are necessary to locate the image. It is best to trace rays for which there are simple ray-tracing rules. Before applying ray
tracing to other situations, let us consider the example shown in Figure 16.27 in more detail.

500 Chapter 16 • Mirrors and Lenses

Access for free at openstax.org.



Figure 16.27 Ray tracing is used to locate the image formed by a lens. Rays originating from the same point on the object are traced. The

three chosen rays each follow one of the rules for ray tracing, so their paths are easy to determine. The image is located at the point where

the rays cross. In this case, a real image—one that can be projected on a screen—is formed.

The image formed in Figure 16.27 is a real image—meaning, it can be projected. That is, light rays from one point on the object
actually cross at the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye.

In Figure 16.27, the object distance, do, is greater than f. Now we consider a ray diagram for a convex lens where do< f, and
another diagram for a concave lens.
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Type Formed When Image Type di M

Case 1 f positive, do > f Real Positive Negative m >, <, or = ‒1

Case 2 f positive, do < f Virtual Negative Positive m > 1

Case 3 f negative Virtual Negative Positive m < 1

Table 16.3 Three Types of Images Formed by Lenses

The examples in Figure 16.27 and Figure 16.28 represent the three possible cases—case 1, case 2, and case 3—summarized in
Table 16.3. In the table, m is magnification; the other symbols have the same meaning as they did for curved mirrors.

Figure 16.28 (a) The image is virtual and larger than the object. (b) The image is virtual and smaller than the object.

Virtual Physics

Geometric Optics
Click to view content (https://www.openstax.org/l/28Geometric)
This animation shows you how the image formed by a convex lens changes as you change object distance, curvature radius,
refractive index, and diameter of the lens. To begin, choose Principal Rays in the upper left menu and then try varying some
of the parameters indicated at the upper center. Show Help supplies a few helpful labels.

How does the focal length, , change with an increasing radius of curvature? How does change with an increasing
refractive index?
a. The focal length increases in both cases: when the radius of curvature and the refractive index increase.
b. The focal length decreases in both cases: when the radius of curvature and the refractive index increase.
c. The focal length increases when the radius of curvature increases; it decreases when the refractive index increases.
d. The focal length decreases when the radius of curvature increases; it increases in when the refractive index increases.
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Image formation by lenses can also be calculated from simple equations. We learn how these calculations are carried out near
the end of this section.

Some common applications of lenses with which we are all familiar are magnifying glasses, eyeglasses, cameras, microscopes,
and telescopes. We take a look at the latter two examples, which are the most complex. We have already seen the design of a
telescope that uses only mirrors in . Figure 16.29 shows the design of a telescope that uses two lenses. Part (a) of the figure shows
the design of the telescope used by Galileo. It produces an upright image, which is more convenient for many applications. Part
(b) shows an arrangement of lenses used in many astronomical telescopes. This design produces an inverted image, which is less
of a problem when viewing celestial objects.

Snap Lab

Focal Length
• Temperature extremes—Very hot or very cold temperatures are encountered in this lab that can cause burns. Use

protective mitts, eyewear, and clothing when handling very hot or very cold objects. Notify your teacher immediately of
any burns.

• EYE SAFETY—Looking at the Sun directly can cause permanent eye damage. Do not look at the Sun through any lens.

• Several lenses
• A sheet of white paper
• A ruler or tape measure

Instructions

Procedure
1. Find several lenses and determine whether they are converging or diverging. In general, those that are thicker near the

edges are diverging and those that are thicker near the center are converging.
2. On a bright, sunny day take the converging lenses outside and try focusing the sunlight onto a sheet of white paper.
3. Determine the focal lengths of the lenses. Have one partner slowly move the lens toward and away from the paper until

you find the distance at which the light spot is at its brightest. Have the other partner measure the distance from the
lens to the bright spot. Be careful, because the paper may start to burn, depending on the type of lens.

True or false—The bright spot that appears in focus on the paper is an image of the Sun.

a. True
b. False
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Figure 16.29 (a) Galileo made telescopes with a convex objective and a concave eyepiece. They produce an upright image and are used in

spyglasses. (b) Most simple telescopes have two convex lenses. The objective forms a case 1 image, which is the object for the eyepiece.

The eyepiece forms a case 2 final image that is magnified.

Figure 16.30 shows the path of light through a typical microscope. Microscopes were first developed during the early 1600s by
eyeglass makers in the Netherlands and Denmark. The simplest compound microscope is constructed from two convex lenses,
as shown schematically in Figure 16.30. The first lens is called the objective lens; it has typical magnification values from 5 to
100 . In standard microscopes, the objectives are mounted such that when you switch between them, the sample remains in
focus. Objectives arranged in this way are described as parfocal. The second lens, the eyepiece, also referred to as the ocular,
has several lenses that slide inside a cylindrical barrel. The focusing ability is provided by the movement of both the objective
lens and the eyepiece. The purpose of a microscope is to magnify small objects, and both lenses contribute to the final
magnification. In addition, the final enlarged image is produced in a location far enough from the observer to be viewed easily
because the eye cannot focus on objects or images that are too close.
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Figure 16.30 A compound microscope composed of two lenses, an objective and an eyepiece. The objective forms a case 1 image that is

larger than the object. This first image is the object for the eyepiece. The eyepiece forms a case 2 final image that is magnified even further.

Real lenses behave somewhat differently from how they are modeled using rays diagrams or the thin-lens equations. Real lenses
produce aberrations. An aberration is a distortion in an image. There are a variety of aberrations that result from lens size,
material, thickness, and the position of the object. One common type of aberration is chromatic aberration, which is related to
color. Because the index of refraction of lenses depends on color, or wavelength, images are produced at different places and
with different magnifications for different colors. The law of reflection is independent of wavelength, so mirrors do not have this
problem. This result is another advantage for the use of mirrors in optical systems such as telescopes.

Figure 16.31(a) shows chromatic aberration for a single convex lens, and its partial correction with a two-lens system. The index
of refraction of the lens increases with decreasing wavelength, so violet rays are refracted more than red rays, and are thus
focused closer to the lens. The diverging lens corrects this in part, although it is usually not possible to do so completely. Lenses
made of different materials and with different dispersions may be used. For example, an achromatic doublet consisting of a
converging lens made of crown glass in contact with a diverging lens made of flint glass can reduce chromatic aberration
dramatically (Figure 16.31(b)).

Figure 16.31 (a) Chromatic aberration is caused by the dependence of a lens’s index of refraction on color (wavelength). The lens is more

powerful for violet (V) than for red (R), producing images with different colors, locations, and magnifications. (b) Multiple-lens systems can

correct chromatic aberrations in part, but they may require lenses of different materials and add to the expense of optical systems such as

cameras.
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Physics of the Eye
The eye is perhaps the most interesting of all optical instruments. It is remarkable in how it forms images and in the richness of
detail and color they eye can detect. However, our eyes commonly need some correction to reach what is called normal vision,
but should be called ideal vision instead. Image formation by our eyes and common vision correction are easy to analyze using
geometric optics. Figure 16.32 shows the basic anatomy of the eye. The cornea and lens form a system that, to a good
approximation, acts as a single thin lens. For clear vision, a real image must be projected onto the light-sensitive retina, which
lies at a fixed distance from the lens. The lens of the eye adjusts its power to produce an image on the retina for objects at
different distances. The center of the image falls on the fovea, which has the greatest density of light receptors and the greatest
acuity (sharpness) in the visual field. There are no receptors at the place where the optic nerve meets the eye, which is called the
blind spot. An image falling on this spot cannot be seen. The variable opening (or pupil) of the eye along with chemical
adaptation allows the eye to detect light intensities from the lowest observable to 1010 times greater (without damage). Ten
orders of magnitude is an incredible range of detection. Our eyes perform a vast number of functions, such as sense direction,
movement, sophisticated colors, and distance. Processing of visual nerve impulses begins with interconnections in the retina
and continues in the brain. The optic nerve conveys signals received by the eye to the brain.

Figure 16.32 The cornea and lens of an eye act together to form a real image on the light-sensing retina, which has its densest

concentration of receptors in the fovea, and a blind spot over the optic nerve. The power of the lens of an eye is adjustable to provide an

image on the retina for varying object distances.

Refractive indices are crucial to image formation using lenses. Table 16.4 shows refractive indices relevant to the eye. The biggest
change in the refractive index—and the one that causes the greatest bending of rays—occurs at the cornea rather than the lens.
The ray diagram in Figure 16.33 shows image formation by the cornea and lens of the eye. The rays bend according to the
refractive indices provided in Table 16.4. The cornea provides about two-thirds of the magnification of the eye because the speed
of light changes considerably while traveling from air into the cornea. The lens provides the remaining magnification needed to
produce an image on the retina. The cornea and lens can be treated as a single thin lens, although the light rays pass through
several layers of material (such as the cornea, aqueous humor, several layers in the lens, and vitreous humor), changing direction
at each interface. The image formed is much like the one produced by a single convex lens. This result is a case 1 image. Images
formed in the eye are inverted, but the brain inverts them once more to make them seem upright.

Material Index of Refraction

Water 1.33

Air 1.00

Cornea 1.38

Aqueous humor 1.34

*The index of refraction varies throughout the lens and is greatest at its center.

Table 16.4 Refractive Indices Relevant to the Eye
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Material Index of Refraction

Lens 1.41 average*

Vitreous humor 1.34

*The index of refraction varies throughout the lens and is greatest at its center.

Table 16.4 Refractive Indices Relevant to the Eye

Figure 16.33 An image is formed on the retina, with light rays converging most at the cornea and on entering and exiting the lens. Rays from

the top and bottom of the object are traced and produce an inverted real image on the retina. The distance to the object is drawn smaller

than scale.

As noted, the image must fall precisely on the retina to produce clear vision—that is, the image distance, di, must equal the lens-
to-retina distance. Because the lens-to-retina distance does not change, di must be the same for objects at all distances. The eye
manages to vary the distance by varying the power (and focal length) of the lens to accommodate for objects at various distances.
In Figure 16.33, you can see the small ciliary muscles above and below the lens that change the shape of the lens and, thus, the
focal length.

The need for some type of vision correction is very common. Common vision defects are easy to understand, and some are
simple to correct. Figure 16.34 illustrates two common vision defects. Nearsightedness, or myopia, is the inability to see distant
objects clearly while close objects are in focus. The nearsighted eye overconverges the nearly parallel rays from a distant object,
and the rays cross in front of the retina. More divergent rays from a close object are converged on the retina, producing a clear
image. Farsightedness, or hyperopia, is the inability to see close objects clearly whereas distant objects may be in focus. A
farsighted eye does not converge rays from a close object sufficiently to make the rays meet on the retina. Less divergent rays
from a distant object can be converged for a clear image.

Figure 16.34 (a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina; thus, they are diverging when they

strike the retina, and produce a blurry image. This divergence can be caused by the lens of the eye being too powerful (in other words, too

short a focal length) or the length of the eye being too great. (b) The farsighted (hyperopic) eye is unable to converge the rays from a close

object by the time they strike the retina and produce ... blurry close vision. This poor convergence can be caused by insufficient power (in
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other words, too long a focal length) in the lens or by the eye being too short.

Because the nearsighted eye overconverges light rays, the correction for nearsightedness involves placing a diverging spectacle
lens in front of the eye. This lens reduces the power of an eye that has too short a focal length (Figure 16.35(a)). Because the
farsighted eye underconverges light rays, the correction for farsightedness is to place a converging spectacle lens in front of the
eye. This lens increases the power of an eye that has too long a focal length (Figure 16.35(b)).

Figure 16.35 (a) Correction of nearsightedness requires a diverging lens that compensates for the overconvergence by the eye. The

diverging lens produces an image closer to the eye than the object so that the nearsighted person can see it clearly. (b) Correction of

farsightedness uses a converging lens that compensates for the underconvergence by the eye. The converging lens produces an image

farther from the eye than the object so that the farsighted person can see it clearly. In both (a) and (b), the rays that meet at the retina

represent corrected vision, and the other rays represent blurred vision without corrective lenses.

Calculations Using Lens Equations
As promised, there are no new equations to memorize. We can use equations already presented for solving problems involving
curved mirrors. Careful analysis allows you to apply these equations to lenses. Here are the equations you need

where P is power, expressed in reciprocal meters (m–1) rather than diopters (D), and f is focal length, expressed in meters (m).
You also need

where, as before, do and di are object distance and image distance, respectively. Remember, this equation is usually more useful
if rearranged to solve for one of the variables. For example,

The equations for magnification, m, are also the same as for mirrors

where hi and ho are the image height and object height, respectively. Remember, also, that a negative di value indicates a virtual
image and a negative hi value indicates an inverted image.

These are the steps to follow when solving a lens problem:

• Step 1. Examine the situation to determine that image formation by a lens is involved.
• Step 2. Determine whether ray tracing, the thin-lens equations, or both should be used. A sketch is very helpful even if ray

tracing is not specifically required by the problem. Write useful symbols and values on the sketch.
• Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).
• Step 4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is helpful to

determine whether the situation involves a case 1, 2, or 3 image. Although these are just names for types of images, they
have certain characteristics (given in Table 16.3) that can be of great use in solving problems.
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• Step 5. If ray tracing is required, use the ray-tracing rules listed earlier in this section.
• Step 6. Most quantitative problems require the use of the thin-lens equations. These equations are solved in the usual

manner by substituting knowns and solving for unknowns. Several worked examples were included earlier and can serve as
guides.

• Step 7. Check whether the answer is reasonable. Does it make sense? If you identified the type of image (case 1, 2, or 3)
correctly, you should assess whether your answer is consistent with the type of image, magnification, and so on.

All problems will be solved by one or more of the equations just presented, with ray tracing used only for general analysis of the
problem. The steps then simplify to the following:

1. Identify the unknown.
2. Identify the knowns.
3. Choose an equation, plug in the knowns, and solve for the unknown.

Here are some worked examples:

WORKED EXAMPLE

The Power of a Magnifying Glass
Strategy
The Sun is so far away that its rays are nearly parallel when they reach Earth. The magnifying glass is a convex (or converging)
lens, focusing the nearly parallel rays of sunlight. Thus, the focal length of the lens is the distance from the lens to the spot, and
its power, in diopters (D), is the inverse of this distance (in reciprocal meters).

Solution
The focal length of the lens is the distance from the center of the lens to the spot, which we know to be 8.00 cm. Thus,

To find the power of the lens, we must first convert the focal length to meters; then, we substitute this value into the equation for
power.

Discussion
This result demonstrates a relatively powerful lens. Remember that the power of a lens in diopters should not be confused with
the familiar concept of power in watts.

WORKED EXAMPLE

Image Formation by a Convex Lens
A clear glass light bulb is placed 0.75 m from a convex lens with a 0.50 m focal length, as shown in Figure 16.36. Use ray tracing to
get an approximate location for the image. Then, use the mirror/lens equations to calculate (a) the location of the image and (b)
its magnification. Verify that ray tracing and the thin-lens and magnification equations produce consistent results.

Figure 16.36 A light bulb placed 0.75 m from a lens with a 0.50 m focal length produces a real image on a poster board, as discussed in

the previous example. Ray tracing predicts the image location and size.

16.16

16.17

16.3 • Lenses 509



Strategy
Because the object is placed farther away from a converging lens than the focal length of the lens, this situation is analogous to
the one illustrated in the previous figure of a series of drawings showing a woman standing to the left of a lens. Ray tracing to
scale should produce similar results for di. Numerical solutions for di and m can be obtained using the thin-lens and
magnification equations, noting that do = 0.75 m and f = 0.50 m.

Solution
The ray tracing to scale in Figure 16.36 shows two rays from a point on the bulb’s filament crossing about 1.50 m on the far side of
the lens. Thus, the image distance, di, is about 1.50 m. Similarly, the image height based on ray tracing is greater than the object
height by about a factor of two, and the image is inverted. Thus, m is about –2. The minus sign indicates the image is inverted.
The lens equation can be rearranged to solve for di from the given information.

Now, we use to find m.

Discussion
Note that the minus sign causes the magnification to be negative when the image is inverted. Ray tracing and the use of the lens
equation produce consistent results. The thin-lens equation gives the most precise results, and is limited only by the accuracy of
the given information. Ray tracing is limited by the accuracy with which you draw, but it is highly useful both conceptually and
visually.

WORKED EXAMPLE

Image Formation by a Concave Lens
Suppose an object, such as a book page, is held 6.50 cm from a concave lens with a focal length of –10.0 cm. Such a lens could be
used in eyeglasses to correct pronounced nearsightedness. What magnification is produced?
Strategy
This example is identical to the preceding one, except that the focal length is negative for a concave or diverging lens. The
method of solution is therefore the same, but the results are different in important ways.

Solution

Now the magnification equation can be used to find the magnification, m, because both di and do are known. Entering their
values gives

Discussion
A number of results in this example are true of all case 3 images. Magnification is positive (as calculated), meaning the image is
upright. The magnification is also less than one, meaning the image is smaller than the object—in this case, a little more than
half its size. The image distance is negative, meaning the image is on the same side of the lens as the object. The image is virtual.
The image is closer to the lens than the object, because the image distance is smaller in magnitude than the object distance. The
location of the image is not obvious when you look through a concave lens. In fact, because the image is smaller than the object,
you may think it is farther away; however, the image is closer than the object—a fact that is useful in correcting nearsightedness.

16.18

16.19

16.20

16.21
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WATCH PHYSICS

The Lens Equation and Problem Solving
The video shows calculations for both concave and convex lenses. It also explains real versus virtual images, erect versus inverted
images, and the significance of negative and positive signs for the involved variables.

Click to view content (https://www.openstax.org/l/28Lenses)
If a lens has a magnification of , how does the image compare with the object in height and orientation?
a. The image is erect and is half as tall as the object.
b. The image is erect and twice as tall as the object.
c. The image is inverted and is half as tall as the object.
d. The image is inverted and is twice as tall as the object.

Practice Problems
11. A lens has a focal length of . What is the power of the lens?

a. The power of the lens is .
b. The power of the lens is .
c. The power of the lens is .
d. The power of the lens is .

12. If a lens produces a 5.00 -cm tall image of an 8.00 -cm -high object when placed 10.0 cm from the lens, what is the apparent
image distance? Construct a ray diagram using paper, a pencil, and a ruler to confirm your calculation.
a. −3.12 cm
b. −6.25 cm
c. 3.12 cm
d. 6.25 cm

Check Your Understanding
13. A lens has a magnification that is negative. What is the orientation of the image?

a. Negative magnification means the image is erect and real.
b. Negative magnification means the image is erect and virtual.
c. Negative magnification means the image is inverted and virtual.
d. Negative magnification means the image is inverted and real.

14. Which part of the eye controls the amount of light that enters?
a. the pupil
b. the iris
c. the cornea
d. the retina

15. An object is placed between the focal point and a convex lens. Describe the image that is formed in terms of its orientation,
and whether the image is real or virtual.
a. The image is real and erect.
b. The image is real and inverted.
c. The image is virtual and erect.
d. The image is virtual and inverted.

16. A farsighted person buys a pair of glasses to correct her farsightedness. Describe the main symptom of farsightedness and
the type of lens that corrects it.
a. Farsighted people cannot focus on objects that are far away, but they can see nearby objects easily. A convex lens is used

to correct this.
b. Farsighted people cannot focus on objects that are close up, but they can see far-off objects easily. A concave lens is

used to correct this.
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c. Farsighted people cannot focus on objects that are close up, but they can see distant objects easily. A convex lens is used
to correct this.

d. Farsighted people cannot focus on objects that are either close up or far away. A concave lens is used to correct this.
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KEY TERMS
aberration a distortion in an image produced by a lens
angle of incidence the angle, with respect to the normal, at

which a ray meets a boundary between media or a
reflective surface

angle of reflection the angle, with respect to the normal, at
which a ray leaves a reflective surface

angle of refraction the angle between the normal and the
refracted ray

central axis a line perpendicular to the center of a lens or
mirror extending in both directions

chromatic aberration an aberration related to color
concave lens a lens that causes light rays to diverge from

the central axis
concave mirror a mirror with a reflective side that is

curved inward
converging lens a convex lens
convex lens a lens that causes light rays to converge toward

the central axis
convex mirror a mirror with a reflective side that is curved

outward
critical angle an incident angle that produces an angle of

refraction of 90°
dispersion separation of white light into its component

wavelengths
diverging lens a concave lens
focal length the distance from the focal point to the mirror

focal point the point at which rays converge or appear to
converge

incident ray the incoming ray toward a medium boundary
or a reflective surface

index of refraction the speed of light in a vacuum divided
by the speed of light in a given material

law of reflection the law that indicates the angle of
reflection equals the angle of incidence

law of refraction the law that describes the relationship
between refractive indices of materials on both sides of a
boundary and the change in the path of light crossing the
boundary, as given by the equation n1 sin = n2 sin

ray light traveling in a straight line
real image an optical image formed when light rays

converge and pass through the image, producing an
image that can be projected onto a screen

refracted ray the light ray after it has been refracted
Snell’s law the law of refraction expressed mathematically

as
total internal reflection reflection of light traveling

through a medium with a large refractive index at a
boundary of a medium with a low refractive index under
conditions such that refraction cannot occur

virtual image the point from which light rays appear to
diverge without actually doing so

SECTION SUMMARY
16.1 Reflection

• The angle of reflection equals the angle of incidence.
• Plane mirrors and convex mirrors reflect virtual, erect

images. Concave mirrors reflect light to form real,
inverted images or virtual, erect images, depending on
the location of the object.

• Image distance, height, and other characteristics can be
calculated using the lens/mirror equation and the
magnification equation.

16.2 Refraction
• The index of refraction for a material is given by the

speed of light in a vacuum divided by the speed of light
in that material.

• Snell’s law states the relationship between indices of

refraction, the incident angle, and the angle of
refraction.

• The critical angle, , determines whether total internal
refraction can take place, and can be calculated
according to .

16.3 Lenses
• The characteristics of images formed by concave and

convex lenses can be predicted using ray tracing.
Characteristics include real versus virtual, inverted
versus upright, and size.

• The human eye and corrective lenses can be explained
using geometric optics.

• Characteristics of images formed by lenses can be
calculated using the mirror/lens equation.

KEY EQUATIONS
16.1 Reflection

lens/mirror equation (reciprocal
version)

lens/mirror equation (solved
version)
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magnification equation

radius/focal length equation R = 2f

16.2 Refraction

index of
Refraction

Snell’s law

>Snell’s law in
terms of
speed

critical angle

16.3 Lenses

power and focal length

mirror/lens (or thin-lens) equation

rearranged mirror/lens equation

magnification equation

CHAPTER REVIEW
Concept Items
16.1 Reflection
1. Part A. Can you see a virtual image? Part B. Can you

photograph one? Explain your answers.
a. A. yes; B. No, an image from a flat mirror cannot be

photographed.
b. A. no; B. Yes, an image from a flat mirror can be

photographed.
c. A. yes; B. Yes, an image from a flat mirror can be

photographed.
d. A. no; B. No, an image from a flat mirror cannot be

photographed.

2. State the law of reflection.
a. , where is the angle of reflection and

is the angle of incidence.
b. , where is the angle of reflection and

is the angle of incidence.
c. , where is the angle of reflection and

is the angle of incidence.
d. , where is the angle of reflection.

16.2 Refraction
3. Does light change direction toward or away from the

normal when it goes from air to water? Explain.
a. The light bends away from the normal because the

index of refraction of water is greater than that of
air.

b. The light bends away from the normal because the
index of refraction of air is greater than that of
water.

c. The light bends toward the normal because the index
of refraction of water is greater than that of air.

d. The light bends toward the normal because the index
of refraction of air is greater than that of water.

16.3 Lenses
4. An object is positioned in front of a lens with its base

resting on the principal axis. Describe two rays that could
be traced from the top of the object and through the lens
that would locate the top of an image.
a. A ray perpendicular to the axis and a ray through the

center of the lens
b. A ray parallel to the axis and a ray that does not pass

through the center of the lens
c. A ray parallel to the axis and a ray through the center

of the lens
d. A ray parallel to the axis and a ray that does not pass

through the focal point

5. A person timing the moonrise looks at her watch and
then at the rising moon. Describe what happened inside
her eyes that allowed her to see her watch clearly one
second and then see the moon clearly.
a. The shape of the lens was changed by the sclera, and

thus its focal length was also changed, so that each
of the images focused on the retina.

b. The shape of the lens was changed by the choroid,
and thus its focal length was also changed, so that
each of the images focused on the retina.

c. The shape of the lens was changed by the iris, and
thus its focal length was also changed, so that each
of the images focused on the retina.
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d. The shape of the lens was changed by the muscles,
and thus its focal length was also changed, so that
each of the images focused on the retina.

6. For a concave lens, if the image distance, di, is negative,
where does the image appear to be with respect to the
object?
a. The image always appears on the same side of the

lens.
b. The image appears on the opposite side of the lens.
c. The image appears on the opposite side of the lens

only if the object distance is greater than the focal
length.

d. The image appears on the same side of the lens only
if the object distance is less than the focal length.

Critical Thinking Items
16.1 Reflection
7. Why are diverging mirrors often used for rear-view

mirrors in vehicles? What is the main disadvantage of
using such a mirror compared with a flat one?
a. It gives a wide range of view. The image appears to

be closer than the actual object.
b. It gives a narrow range of view. The image appears

to be farther than the actual object.
c. It gives a narrow range of view. The image appears

to be closer than the actual object.
d. It gives a wide range of view. The image appears to

be farther than the actual object.

16.2 Refraction
8. A high-quality diamond may be quite clear and colorless,

transmitting all visible wavelengths with little
absorption. Explain how it can sparkle with flashes of
brilliant color when illuminated by white light.
a. Diamond and air have a small difference in their

refractive indices that results in a very small critical
angle. The light that enters a diamond may exit at
only a few points, and these points sparkle because
many rays have been directed toward them.

b. Diamond and air have a small difference in their
refractive indices that results in a very large critical
angle. The light that enters a diamond may exit at
only a few points, and these points sparkle because
many rays have been directed toward them.

c. Diamond has a high index of refraction with respect
to air, which results in a very small critical angle. The
light that enters a diamond may exit at only a few
points, and these points sparkle because many rays
have been directed toward them.

d. Diamond has a high index of refraction with respect
to air, which results in a very large critical angle. The
light that enters a diamond may exit at only a few
points, and these points sparkle because many rays
have been directed toward them.

9. The most common type of mirage is an illusion in which
light from far-away objects is reflected by a pool of water
that is not really there. Mirages are generally observed in

deserts, where there is a hot layer of air near the ground.
Given that the refractive index of air is less for air at
higher temperatures, explain how mirages can be
formed.
a. The hot layer of air near the ground is lighter than

the cooler air above it, but the difference in
refractive index is small, which results in a large
critical angle. The light rays coming from the
horizon strike the hot air at large angles, so they are
reflected as they would be from water.

b. The hot layer of air near the ground is lighter than
the cooler air above it, and the difference in
refractive index is large, which results in a large
critical angle. The light rays coming from the
horizon strike the hot air at large angles, so they are
reflected as they would be from water.

c. The hot layer of air near the ground is lighter than
the cooler air above it, but the difference in
refractive index is small, which results in a small
critical angle. The light rays coming from the
horizon strike the hot air at large angles, so they are
reflected as they would be from water.

d. The hot layer of air near the ground is lighter than
the cooler air above it, and the difference in the
refractive index is large, which results in a small
critical angle. The light rays coming from the
horizontal strike the hot air at large angles, so they
are reflected as they would be from water.

16.3 Lenses
10. When you focus a camera, you adjust the distance of the

lens from the film. If the camera lens acts like a thin
lens, why can it not be kept at a fixed distance from the
film for both near and distant objects?
a. To focus on a distant object, you need to increase

the image distance.
b. To focus on a distant object, you need to increase

the focal length of the lens.
c. To focus on a distant object, you need to decrease

the focal length of the lens.
d. To focus on a distant object, you may need to

increase or decrease the focal length of the lens.

11. Part A—How do the refractive indices of the cornea,
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aqueous humor, and the lens of the eye compare with the
refractive index of air?
Part B—How do the comparisons in part A explain how
images are focused on the retina?
a. (A) The cornea, aqueous humor, and lens of the eye

have smaller refractive indices than air.
(B) Rays entering the eye are refracted away from
the central axis, which causes them to meet at the
focal point on the retina.

b. (A) The cornea, aqueous humor, and lens of the eye
have greater refractive indices than air.
(B) Rays entering the eye are refracted away from

the central axis, which causes them to meet at the
focal point on the retina.

c. (A) The cornea, aqueous humor, and lens of the eye
have smaller refractive indices than air.
(B) Rays entering the eye are refracted toward the
central axis, which causes them to meet at the focal
point on the retina.

d. (A) The cornea, aqueous humor, and lens of the eye
have greater refractive indices than air.
(B) Rays entering the eye are refracted toward the
central axis, which causes them to meet at the focal
point on the retina.

Problems
16.1 Reflection
12. Some telephoto cameras use a mirror rather than a lens.

What radius of curvature is needed for a concave mirror
to replace a 0.800 -m focal-length telephoto lens?
a. 0.400 m
b. 1.60 m
c. 4.00 m
d. 16.0 m

13. What is the focal length of a makeup mirror that
produces a magnification of 2.00 when a person’s face is
8.00 cm away?
a. –16 cm
b. –5.3 cm
c. 5.3 cm
d. 16 cm

16.2 Refraction
14. An optical fiber uses flint glass (n = 1.66) clad with crown

glass (n = 1.52) . What is the critical angle?
a. 33.2°
b. 23.7°
c. 0.92 rad
d. 1.16 rad

15. Suppose this figure represents a ray of light going from
air (n = 1.0003) through crown glass (n = 1.52) into water,
similar to a beam of light going into a fish tank.

Calculate the amount the ray is displaced by the glass
(Δx), given that the incident angle is 40.0° and the glass
is 1.00 cm thick.
a. 0.839 cm
b. 0.619 cm
c. 0.466 cm
d. 0.373 cm

16.3 Lenses
16. A camera’s zoom lens has an adjustable focal length

ranging from 80.0 to 200 mm . What is its range of
powers?
a. The lowest power is 0.05 D and the highest power is

0.125 D.
b. The lowest power is 0.08 D and the highest power is

0.20 D.
c. The lowest power is 5.00 D and the highest power is

12.5 D.
d. The lowest power is 80 D and the highest power is

200 D.

17. Suppose a telephoto lens with a focal length of 200 mm
is being used to photograph mountains 10.0 km away.
(a) Where is the image? (b) What is the height of the
image of a 1,000-m-high cliff on one of the mountains?
a. (a) The image is 0.200 m on the same side of the

lens. (b) The height of the image is – 2.00 cm.
b. (a) The image is 0.200 m on the opposite side of the
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lens. (b) The height of the image is – 2.00 cm.
c. (a) The image is 0.200 m on the opposite side of the

lens. (b) The height of the image is +2.00 cm.

d. (a) The image is 0.100 m on the same side of the
lens. (b) The height of the image is +2.00 cm.

Performance Task
16.3 Lenses
18. In this performance task, you will investigate the lens-

like properties of a clear bottle.
• a water bottle or glass with a round cross-section

and smooth, vertical sides
• enough water to fill the bottle
• a meter stick or tape measure
• a bright light source with a small bulb, such as a

pen light
• a small bright object, such as a silver spoon.

Instructions

Procedure
1. Look through a clear glass or plastic bottle and

describe what you see.
2. Next, fill the bottle with water and describe what

you see.
3. Use the water bottle as a lens to produce the image

of a bright object.
4. Estimate the focal length of the water bottle lens.

a. How can you find the focal length of the lens
using the light and a blank wall?

b. How can you find the focal length of the lens
using the bright object?

c. Why did the water change the lens properties of
the bottle?

TEST PREP
Multiple Choice
16.1 Reflection
19. In geometric optics, a straight line emerging from a

point is called a (an) ________.
a. ray
b. focal point
c. image
d. object distance

20. An image of a 2.0 -cm object reflected from a mirror is
5.0 cm tall. What is the magnification of the mirror?
a. 0.4
b. 2.5
c. 3
d. 10

21. Can a virtual image be projected onto a screen with
additional lenses or mirrors? Explain your answer.
a. Yes, the rays actually meet behind the lens or

mirror.
b. No, the image is formed by rays that converge to a

point in front of the mirror or lens.
c. Yes, any image that can be seen can be manipulated

so that it can be projected onto a screen.
d. No, the image can only be perceived as being

behind the lens or mirror.

16.2 Refraction
22. What does c represent in the equation ?

a. the critical angle

b. the refractive index
c. the speed of light in a vacuum
d. the speed of light in a transparent material

23. What is the term for the minimum angle at which a light
ray is reflected back into a material and cannot pass into
the surrounding medium?
a. critical angle
b. incident angle
c. angle of refraction
d. angle of reflection

24. Consider these indices of refraction: glass: 1.52, air:
1.0003, water: 1.333. Put these materials in order from
the one in which the speed of light is fastest to the one
in which it is slowest.
a. The speed of light in water > the speed of light in

air > the speed of light in glass.
b. The speed of light in glass > the speed of light in

water > the speed of light in air.
c. The speed of light in air > the speed of light in

water > the speed of light in glass.
d. The speed of light in glass > the speed of light in air

> the speed of light in water.

25. Explain why an object in water always appears to be at a
depth that is more shallow than it actually is.
a. Because of the refraction of light, the light coming

from the object bends toward the normal at the
interface of water and air. This causes the object to
appear at a location that is above the actual
position of the object. Hence, the image appears to
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be at a depth that is more shallow than the actual
depth.

b. Because of the refraction of light, the light coming
from the object bends away from the normal at the
interface of water and air. This causes the object to
appear at a location that is above the actual
position of the object. Hence, the image appears to
be at a depth that is more shallow than the actual
depth.

c. Because of the refraction of light, the light coming
from the object bends toward the normal at the
interface of water and air. This causes the object to
appear at a location that is below the actual
position of the object. Hence, the image appears to
be at a depth that is more shallow than the actual
depth.

d. Because of the refraction of light, the light coming
from the object bends away from the normal at the
interface of water and air. This causes the object to
appear at a location that is below the actual
position of the object. Hence, the image appears to
be at a depth that is more shallow than the actual
depth.

16.3 Lenses
26. For a given lens, what is the height of the image divided

by the height of the object ( ) equal to?

a. power
b. focal length
c. magnification
d. radius of curvature

27. Which part of the eye has the greatest density of light
receptors?
a. the lens
b. the fovea
c. the optic nerve
d. the vitreous humor

28. What is the power of a lens with a focal length of 10 cm?
a. 10 m–1, or 10 D
b. 10 cm–1, or 10 D
c. 10 m, or 10 D
d. 10 cm, or 10 D

29. Describe the cause of chromatic aberration.
a. Chromatic aberration results from the dependence

of the frequency of light on the refractive index,
which causes dispersion of different colors of light
by a lens so that each color has a different focal
point.

b. Chromatic aberration results from the dispersion
of different wavelengths of light by a curved mirror
so that each color has a different focal point.

c. Chromatic aberration results from the dependence
of the reflection angle at a spherical mirror’s
surface on the distance of light rays from the
principal axis so that different colors have different
focal points.

d. Chromatic aberration results from the dependence
of the wavelength of light on the refractive index,
which causes dispersion of different colors of light
by a lens so that each color has a different focal
point.

Short Answer
16.1 Reflection
30. Distinguish between reflection and refraction in terms

of how a light ray changes when it meets the interface
between two media.
a. Reflected light penetrates the surface whereas

refracted light is bent as it travels from one
medium to the other.

b. Reflected light penetrates the surface whereas
refracted light travels along a curved path.

c. Reflected light bounces from the surface whereas
refracted light travels along a curved path.

d. Reflected light bounces from the surface whereas
refracted light is bent as it travels from one
medium to the other.

31. Sometimes light may be both reflected and refracted as
it meets the surface of a different medium. Identify a
material with a surface that when light travels through

the air it is both reflected and refracted. Explain how
this is possible.
a. Light passing through air is partially reflected and

refracted when it meets a glass surface. It is
reflected because glass has a smooth surface; it is
refracted while passing into the transparent glass.

b. Light passing through air is partially reflected and
refracted when it meets a glass surface. It is
reflected because glass has a rough surface, and it is
refracted while passing into the opaque glass.

c. Light passing through air is partially reflected and
refracted when it meets a glass surface. It is
reflected because glass has a smooth surface; it is
refracted while passing into the opaque glass.

d. Light passing through air is partially reflected and
refracted when it meets a glass surface. It is
reflected because glass has a rough surface; it is
refracted while passing into the transparent glass.

32. A concave mirror has a focal length of 5.00 cm. What is
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the image distance of an object placed 7.00 cm from the
center of the mirror?
a. −17.5 cm
b. −2.92 cm
c. 2.92 cm
d. 17.5 cm

33. An 8.0 -cm tall object is placed 6.0 cm from a concave
mirror with a magnification of –2.0. What are the
image height and the image distance?
a. hi = – 16 cm, di = – 12 cm
b. hi = – 16 cm, di = 12 cm
c. hi = 16 cm, di = – 12 cm
d. hi = 16 cm, di = 12 cm

16.2 Refraction
34. At what minimum angle does total internal reflection of

light occur if it travels from water toward
ice ?
a.
b.
c.
d.

35. Water floats on a liquid called carbon tetrachloride. The
two liquids do not mix. A light ray passing from water
into carbon tetrachloride has an incident angle of 45.0°
and an angle of refraction of 40.1°. If the index of
refraction of water is 1.33, what is the index of refraction
of carbon tetrachloride?
a. 1.60
b. 1.49
c. 1.21
d. 1.46

36. Describe what happens to a light ray when it is
refracted. Include in your explanation comparison of
angles, comparison of refractive indices, and the term
normal.
a. When a ray of light goes from one medium to

another medium with a different refractive index,
the ray changes its path as a result of interference.
The angle between the ray and the normal (the line
perpendicular to the surfaces of the two media) is
greater in the medium with the greater refractive
index.

b. When a ray of light goes from one medium to
another medium with a different refractive index,
the ray changes its path as a result of refraction.
The angle between the ray and the normal (the line
perpendicular to the surfaces of the two media) is
less in the medium with the greater refractive
index.

c. When a ray of light goes from one medium to

another medium with a different refractive index,
the ray does not change its path. The angle between
the ray and the normal (the line parallel to the
surfaces of the two media) is the same in both
media.

d. When a ray of light goes from one medium to
another medium with a different refractive index,
the ray changes its path as a result of refraction.
The angle between the ray and the normal (the line
perpendicular to the surfaces of the two media) is
less in the medium with the lower refractive index.

16.3 Lenses
37. What are two equivalent terms for a lens that always

causes light rays to bend away from the principal axis?
a. a diverging lens or a convex lens
b. a diverging lens or a concave lens
c. a converging lens or a concave lens
d. a converging lens or a convex lens

38. Define the term virtual image.
a. A virtual image is an image that cannot be

projected onto a screen.
b. A virtual image is an image that can be projected

onto a screen.
c. A virtual image is an image that is formed on the

opposite side of the lens from where the object is
placed.

d. A virtual image is an image that is always bigger
than the object.

39. Compare nearsightedness (myopia) and farsightedness
(hyperopia) in terms of focal point.
a. The eyes of a nearsighted person have focal points

beyond the retina. A farsighted person has eyes
with focal points between the lens and the retina.

b. A nearsighted person has eyes with focal points
between the lens and the retina. A farsighted
person has eyes with focal points beyond the retina.

c. A nearsighted person has eyes with focal points
between the lens and the choroid. A farsighted
person has eyes with focal points beyond the
choroid.

d. A nearsighted person has eyes with focal points
between the lens and the retina. A farsighted
person has eyes with focal points on the retina.

40. Explain how a converging lens corrects farsightedness.
a. A converging lens disperses the rays so they focus

on the retina.
b. A converging lens bends the rays closer together so

they do not focus on the retina.
c. A converging lens bends the rays closer together so

they focus on the retina.
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d. A converging lens disperses the rays so they do not
focus on the retina.

41. Solve the equation for in such a way

that it is not expressed as a reciprocal.

a.

b.

c.
d.

42. What is the magnification of a lens if it produces a
12-cm-high image of a 4 -cm -high object? The image is
virtual and erect.
a.
b.

c.
d.

Extended Response
16.1 Reflection
43. The diagram shows a lightbulb between two mirrors.

One mirror produces a beam of light with parallel rays;
the other keeps light from escaping without being put
into the beam.

Where is the light source in relation to the focal point or
radius of curvature of each mirror? Explain your answer.
a. The bulb is at the center of curvature of the small

mirror and at the focal point of the large mirror.
b. The bulb is at the focal point of the small mirror

and at the focal point of the large mirror.
c. The bulb is at the center of curvature of the small

mirror and at the center of curvature of the large
mirror.

d. The bulb is at the focal point of the small mirror
and at the center of curvature of the large mirror.

44. An object is placed in front of a mirror that has
a magnification of . What is the radius of curvature
of the mirror?
a.
b.
c.
d.

16.2 Refraction
45. A scuba diver training in a pool looks at his instructor,

as shown in this figure. The angle between the ray in the
water and the normal to the water is 25°.

What angle does the ray make from the instructor’s face
with the normal to the water (n = 1.33) at the point where
the ray enters? Assume n = 1.00 for air.
a. 68°
b. 25°
c. 19°
d. 34°

46. Describe total internal reflection. Include a definition of
the critical angle and how it is related to total internal
reflection. Also, compare the indices of refraction of the
interior material and the surrounding material.
a. When the interior material has a smaller index of

refraction than the surrounding material, the
incident ray may approach the boundary at an
angle (called the critical angle) such that the
refraction angle is 90° . The refracted ray cannot
leave the interior, so it is reflected back inside and
total internal reflection occurs.

b. When the interior material has a smaller index of
refraction than the surrounding material, the
incident ray may approach the boundary at an
angle (called the critical angle) such that the
refraction angle is less than 90° . The refracted ray
cannot leave the interior, so it is reflected back
inside and total internal reflection occurs.

c. When the interior material has the same index of
refraction as the surrounding material, the
incident ray approaches the boundary at an angle
(called the critical angle) such that the refraction
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angle is less than 90° . The refracted ray cannot
leave the interior, so it is reflected back inside and
total internal reflection occurs.

d. When the interior material has a greater index of
refraction than the surrounding material, the
incident ray may approach the boundary at an
angle (called the critical angle) such that the
refraction angle is 90° . The refracted ray cannot
leave the interior, so it is reflected back inside and
total internal reflection occurs.

16.3 Lenses
47. The muscles that change the shape of the lens in the eyes

have become weak, causing vision problems for a
person. In particular, the muscles cannot pull hard
enough on the edges of the lens to make it less convex.
Part A—What condition does inability cause?
Part B—Where are images focused with respect to the
retina?
Part C—Which type of lens corrects this person’s
problem? Explain.
a. Part A—This condition causes hyperopia.

Part B—Images are focused between the lens and
the retina.

Part C—A converging lens gathers the rays slightly
so they focus onto the retina.

b. Part A—This condition causes myopia.
Part B—Images are focused between the lens and
the retina.
Part C—A converging lens gathers the rays slightly
so they focus onto the retina.

c. Part A—This condition causes hyperopia.
Part B—Images are focused between the lens and
the retina.
Part C—A diverging lens spreads the rays slightly so
they focus onto the retina.

d. Part A—This condition causes myopia.
Part B—Images are focused between the lens and
the retina.
Part C—A diverging lens spreads the rays slightly so
they focus onto the retina.

48. If the lens-to-retina distance is , what is the
power of the eye when viewing an object away?
a.
b.
c.
d.
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INTRODUCTION

CHAPTER 17
Diffraction and Interference

17.1 Understanding Diffraction and Interference

17.2 Applications of Diffraction, Interference, and Coherence

Examine a compact disc under white light, noting the colors observed and their locations on the disc. Using
the CD, explore the spectra of a few light sources, such as a candle flame, an incandescent bulb, and fluorescent light. If you have
ever looked at the reds, blues, and greens in a sunlit soap bubble and wondered how straw-colored soapy water could produce
them, you have hit upon one of the many phenomena that can only be explained by the wave character of light. That and other
interesting phenomena, such as the dispersion of white light into a rainbow of colors when passed through a narrow slit, cannot
be explained fully by geometric optics. In such cases, light interacts with small objects and exhibits its wave characteristics. The
topic of this chapter is the branch of optics that considers the behavior of light when it exhibits wave characteristics.

17.1 Understanding Diffraction and Interference
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain wave behavior of light, including diffraction and interference, including the role of constructive and

destructive interference in Young’s single-slit and double-slit experiments
• Perform calculations involving diffraction and interference, in particular the wavelength of light using data

from a two-slit interference pattern

Section Key Terms

diffraction Huygens’s principle monochromatic wavefront

Figure 17.1 The colors reflected by this compact disc vary with angle and are not caused by pigments. Colors such
as these are direct evidence of the wave character of light. (credit: Reggie Mathalone)
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Diffraction and Interference
We know that visible light is the type of electromagnetic wave to which our eyes responds. As we have seen previously, light
obeys the equation

where m/s is the speed of light in vacuum, f is the frequency of the electromagnetic wave in Hz (or s–1), and
is its wavelength in m. The range of visible wavelengths is approximately 380 to 750 nm. As is true for all waves, light travels in
straight lines and acts like a ray when it interacts with objects several times as large as its wavelength. However, when it
interacts with smaller objects, it displays its wave characteristics prominently. Interference is the identifying behavior of a wave.

In Figure 17.2, both the ray and wave characteristics of light can be seen. The laser beam emitted by the observatory represents
ray behavior, as it travels in a straight line. Passing a pure, one-wavelength beam through vertical slits with a width close to the
wavelength of the beam reveals the wave character of light. Here we see the beam spreading out horizontally into a pattern of
bright and dark regions that are caused by systematic constructive and destructive interference. As it is characteristic of wave
behavior, interference is observed for water waves, sound waves, and light waves.

Figure 17.2 (a) The light beam emitted by a laser at the Paranal Observatory (part of the European Southern Observatory in Chile) acts like

a ray, traveling in a straight line. (credit: Yuri Beletsky, European Southern Observatory) (b) A laser beam passing through a grid of vertical

slits produces an interference pattern—characteristic of a wave. (credit: Shim’on and Slava Rybka, Wikimedia Commons)

That interference is a characteristic of energy propagation by waves is demonstrated more convincingly by water waves. Figure
17.3 shows water waves passing through gaps between some rocks. You can easily see that the gaps are similar in width to the
wavelength of the waves and that this causes an interference pattern as the waves pass beyond the gaps. A cross-section across
the waves in the foreground would show the crests and troughs characteristic of an interference pattern.

Figure 17.3 Incoming waves (at the top of the picture) pass through the gaps in the rocks and create an interference pattern (in the

foreground).

Light has wave characteristics in various media as well as in a vacuum. When light goes from a vacuum to some medium, such
as water, its speed and wavelength change, but its frequency, f, remains the same. The speed of light in a medium is ,
where n is its index of refraction. If you divide both sides of the equation by n, you get . Therefore,

, where is the wavelength in a medium, and
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where is the wavelength in vacuum and n is the medium’s index of refraction. It follows that the wavelength of light is smaller
in any medium than it is in vacuum. In water, for example, which has n = 1.333, the range of visible wavelengths is (380 nm)/1.333
to (760 nm)/1.333, or 285–570 nm. Although wavelengths change while traveling from one medium to another, colors do
not, since colors are associated with frequency.

The Dutch scientist Christiaan Huygens (1629–1695) developed a useful technique for determining in detail how and where
waves propagate. He used wavefronts, which are the points on a wave’s surface that share the same, constant phase (such as all
the points that make up the crest of a water wave). Huygens’s principle states, “Every point on a wavefront is a source of
wavelets that spread out in the forward direction at the same speed as the wave itself. The new wavefront is a line tangent to all
of the wavelets.”

Figure 17.4 shows how Huygens’s principle is applied. A wavefront is the long edge that moves; for example, the crest or the
trough. Each point on the wavefront emits a semicircular wave that moves at the propagation speed v. These are drawn later at a
time, t, so that they have moved a distance . The new wavefront is a line tangent to the wavelets and is where the wave is
located at time t. Huygens’s principle works for all types of waves, including water waves, sound waves, and light waves. It will
be useful not only in describing how light waves propagate, but also in how they interfere.

Figure 17.4 Huygens’s principle applied to a straight wavefront. Each point on the wavefront emits a semicircular wavelet that moves a

distance . The new wavefront is a line tangent to the wavelets.

What happens when a wave passes through an opening, such as light shining through an open door into a dark room? For light,
you expect to see a sharp shadow of the doorway on the floor of the room, and you expect no light to bend around corners into
other parts of the room. When sound passes through a door, you hear it everywhere in the room and, thus, you understand that
sound spreads out when passing through such an opening. What is the difference between the behavior of sound waves and
light waves in this case? The answer is that the wavelengths that make up the light are very short, so that the light acts like a ray.
Sound has wavelengths on the order of the size of the door, and so it bends around corners.

If light passes through smaller openings, often called slits, you can use Huygens’s principle to show that light bends as sound
does (see Figure 17.5). The bending of a wave around the edges of an opening or an obstacle is called diffraction. Diffraction is a
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wave characteristic that occurs for all types of waves. If diffraction is observed for a phenomenon, it is evidence that the
phenomenon is produced by waves. Thus, the horizontal diffraction of the laser beam after it passes through slits in Figure 17.2
is evidence that light has the properties of a wave.

Figure 17.5 Huygens’s principle applied to a straight wavefront striking an opening. The edges of the wavefront bend after passing through

the opening, a process called diffraction. The amount of bending is more extreme for a small opening, consistent with the fact that wave

characteristics are most noticeable for interactions with objects about the same size as the wavelength.

Once again, water waves present a familiar example of a wave phenomenon that is easy to observe and understand, as shown in
Figure 17.6.

Figure 17.6 Ocean waves pass through an opening in a reef, resulting in a diffraction pattern. Diffraction occurs because the opening is

similar in width to the wavelength of the waves.

WATCH PHYSICS

Single-Slit Interference
This video works through the math needed to predict diffraction patterns that are caused by single-slit interference.

Click to view content (https://www.openstax.org/l/28slit)
Which values of m denote the location of destructive interference in a single-slit diffraction pattern?

a. whole integers, excluding zero
b. whole integers
c. real numbers excluding zero
d. real numbers

The fact that Huygens’s principle worked was not considered enough evidence to prove that light is a wave. People were also
reluctant to accept light’s wave nature because it contradicted the ideas of Isaac Newton, who was still held in high esteem. The
acceptance of the wave character of light came after 1801, when the English physicist and physician Thomas Young (1773–1829)
did his now-classic double-slit experiment (see Figure 17.7).
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Figure 17.7 Young’s double-slit experiment. Here, light of a single wavelength passes through a pair of vertical slits and produces a

diffraction pattern on the screen—numerous vertical light and dark lines that are spread out horizontally. Without diffraction and

interference, the light would simply make two lines on the screen.

When light passes through narrow slits, it is diffracted into semicircular waves, as shown in Figure 17.8 (a). Pure constructive
interference occurs where the waves line up crest to crest or trough to trough. Pure destructive interference occurs where they
line up crest to trough. The light must fall on a screen and be scattered into our eyes for the pattern to be visible. An analogous
pattern for water waves is shown in Figure 17.8 (b). Note that regions of constructive and destructive interference move out from
the slits at well-defined angles to the original beam. Those angles depend on wavelength and the distance between the slits, as
you will see below.

Figure 17.8 Double slits produce two sources of waves that interfere. (a) Light spreads out (diffracts) from each slit, because the slits are

narrow. The waves overlap and interfere constructively (bright lines) and destructively (dark regions). You can only see the effect if the light

falls onto a screen and is scattered into your eyes. (b) The double-slit interference pattern for water waves is nearly identical to that for

light. Wave action is greatest in regions of constructive interference and least in regions of destructive interference. (c) When light that has

passed through double slits falls on a screen, we see a pattern such as this.

Virtual Physics

Wave Interference
Click to view content (https://www.openstax.org/l/28interference)
This simulation demonstrates most of the wave phenomena discussed in this section. First, observe interference between
two sources of electromagnetic radiation without adding slits. See how water waves, sound, and light all show interference
patterns. Stay with light waves and use only one source. Create diffraction patterns with one slit and then with two. You may
have to adjust slit width to see the pattern.
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Calculations Involving Diffraction and Interference
The fact that the wavelength of light of one color, or monochromatic light, can be calculated from its two-slit diffraction pattern
in Young’s experiments supports the conclusion that light has wave properties. To understand the basis of such calculations,
consider how two waves travel from the slits to the screen. Each slit is a different distance from a given point on the screen. Thus
different numbers of wavelengths fit into each path. Waves start out from the slits in phase (crest to crest), but they will end up
out of phase (crest to trough) at the screen if the paths differ in length by half a wavelength, interfering destructively. If the paths
differ by a whole wavelength, then the waves arrive in phase (crest to crest) at the screen, interfering constructively. More
generally, if the paths taken by the two waves differ by any half-integral number of wavelengths , then
destructive interference occurs. Similarly, if the paths taken by the two waves differ by any integral number of wavelengths

, then constructive interference occurs.

Figure 17.9 shows how to determine the path-length difference for waves traveling from two slits to a common point on a screen.
If the screen is a large distance away compared with the distance between the slits, then the angle between the path and a line
from the slits perpendicular to the screen (see the figure) is nearly the same for each path. That approximation and simple
trigonometry show the length difference, , to be , where d is the distance between the slits,

To obtain constructive interference for a double slit, the path-length difference must be an integral multiple of the wavelength,
or

Similarly, to obtain destructive interference for a double slit, the path-length difference must be a half-integral multiple of the
wavelength, or

The number m is the order of the interference. For example, m = 4 is fourth-order interference.

Figure 17.9 The paths from each slit to a common point on the screen differ by an amount , assuming the distance to the screen is

much greater than the distance between the slits (not to scale here).

Figure 17.10 shows how the intensity of the bands of constructive interference decreases with increasing angle.

Visually compare the slit width to the wavelength. When do you get the best-defined diffraction pattern?

a. when the slit width is larger than the wavelength
b. when the slit width is smaller than the wavelength
c. when the slit width is comparable to the wavelength
d. when the slit width is infinite
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Figure 17.10 The interference pattern for a double slit has an intensity that falls off with angle. The photograph shows multiple bright and

dark lines, or fringes, formed by light passing through a double slit.

Light passing through a single slit forms a diffraction pattern somewhat different from that formed by double slits. Figure 17.11
shows a single-slit diffraction pattern. Note that the central maximum is larger than those on either side, and that the intensity
decreases rapidly on either side.

Figure 17.11 (a) Single-slit diffraction pattern. Monochromatic light passing through a single slit produces a central maximum and many

smaller and dimmer maxima on either side. The central maximum is six times higher than shown. (b) The drawing shows the bright central

maximum and dimmer and thinner maxima on either side. (c) The location of the minima are shown in terms of and D.

The analysis of single-slit diffraction is illustrated in Figure 17.12. Assuming the screen is very far away compared with the size of
the slit, rays heading toward a common destination are nearly parallel. That approximation allows a series of trigonometric
operations that result in the equations for the minima produced by destructive interference.

or

When rays travel straight ahead, they remain in phase and a central maximum is obtained. However, when rays travel at an
angle relative to the original direction of the beam, each ray travels a different distance to the screen, and they can arrive in or
out of phase. Thus, a ray from the center travels a distance farther than the ray from the top edge of the slit, they arrive out
of phase, and they interfere destructively. Similarly, for every ray between the top and the center of the slit, there is a ray
between the center and the bottom of the slit that travels a distance farther to the common point on the screen, and so
interferes destructively. Symmetrically, there will be another minimum at the same angle below the direct ray.
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Figure 17.12 Equations for a single-slit diffraction pattern, where λ is the wavelength of light, D is the slit width, is the angle between a

line from the slit to a minimum and a line perpendicular to the screen, L is the distance from the slit to the screen, y is the distance from the

center of the pattern to the minimum, and m is a nonzero integer indicating the order of the minimum.

Below we summarize the equations needed for the calculations to follow.

The speed of light in a vacuum, c, the wavelength of the light, , and its frequency, f, are related as follows.

The wavelength of light in a medium, , compared to its wavelength in a vacuum, , is given by

To calculate the positions of constructive interference for a double slit, the path-length difference must be an integral multiple,
m, of the wavelength.

where d is the distance between the slits and is the angle between a line from the slits to the maximum and a line
perpendicular to the barrier in which the slits are located. To calculate the positions of destructive interference for a double slit,
the path-length difference must be a half-integral multiple of the wavelength:

For a single-slit diffraction pattern, the width of the slit, D, the distance of the first (m = 1) destructive interference minimum, y,
the distance from the slit to the screen, L, and the wavelength, , are given by

Also, for single-slit diffraction,

where is the angle between a line from the slit to the minimum and a line perpendicular to the screen, and m is the order of
the minimum.

WORKED EXAMPLE

Two-Slit Interference
Suppose you pass light from a He-Ne laser through two slits separated by 0.0100 mm, and you find that the third bright line on a
screen is formed at an angle of 10.95º relative to the incident beam. What is the wavelength of the light?
STRATEGY
The third bright line is due to third-order constructive interference, which means that m = 3. You are given d = 0.0100 mm and
= 10.95º. The wavelength can thus be found using the equation for constructive interference.

17.1
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Solution
The equation is . Solving for the wavelength, , gives

Substituting known values yields

Discussion
To three digits, 633 nm is the wavelength of light emitted by the common He-Ne laser. Not by coincidence, this red color is
similar to that emitted by neon lights. More important, however, is the fact that interference patterns can be used to measure
wavelength. Young did that for visible wavelengths. His analytical technique is still widely used to measure electromagnetic
spectra. For a given order, the angle for constructive interference increases with , so spectra (measurements of intensity versus
wavelength) can be obtained.

WORKED EXAMPLE

Single-Slit Diffraction
Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction minimum at an angle of 45.0° relative
to the incident direction of the light. What is the width of the slit?
STRATEGY
From the given information, and assuming the screen is far away from the slit, you can use the equation to find
D.

Solution
Quantities given are = 550 nm, m = 2, and = 45.0°. Solving the equation for D and substituting known values
gives

Discussion
You see that the slit is narrow (it is only a few times greater than the wavelength of light). That is consistent with the fact that
light must interact with an object comparable in size to its wavelength in order to exhibit significant wave effects, such as this
single-slit diffraction pattern.

Practice Problems
1. Monochromatic light from a laser passes through two slits separated by . The third bright line on a screen is

formed at an angle of relative to the incident beam. What is the wavelength of the light?
a.
b.
c.
d.

2. What is the width of a single slit through which 610-nm orange light passes to form a first diffraction minimum at an angle
of 30.0°?
a. 0.863 µm
b. 0.704 µm
c. 0.610 µm
d. 1.22 µm

17.2

17.3

17.4
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Check Your Understanding
3. Which aspect of a beam of monochromatic light changes when it passes from a vacuum into water, and how does it change?

a. The wavelength first decreases and then increases.
b. The wavelength first increases and then decreases.
c. The wavelength increases.
d. The wavelength decreases.

4. Go outside in the sunlight and observe your shadow. It has fuzzy edges, even if you do not. Is this a diffraction effect?
Explain.
a. This is a diffraction effect. Your whole body acts as the origin for a new wavefront.
b. This is a diffraction effect. Every point on the edge of your shadow acts as the origin for a new wavefront.
c. This is a refraction effect. Your whole body acts as the origin for a new wavefront.
d. This is a refraction effect. Every point on the edge of your shadow acts as the origin for a new wavefront.

5. Which aspect of monochromatic green light changes when it passes from a vacuum into diamond, and how does it change?
a. The wavelength first decreases and then increases.
b. The wavelength first increases and then decreases.
c. The wavelength increases.
d. The wavelength decreases.

17.2 Applications of Diffraction, Interference, and Coherence
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain behaviors of waves, including reflection, refraction, diffraction, interference, and coherence, and

describe applications based on these behaviors
• Perform calculations related to applications based on wave properties of light

Section Key Terms

differential interference contrast (DIC) diffraction grating iridescence laser

monochromator Rayleigh criterion resolution

Wave-Based Applications of Light
In 1917, Albert Einstein was thinking about photons and excited atoms. He considered an atom excited by a certain amount of
energy and what would happen if that atom were hit by a photon with the same amount of energy. He suggested that the atom
would emit a photon with that amount of energy, and it would be accompanied by the original photon. The exciting part is that
you would have two photons with the same energy and they would be in phase. Those photons could go on to hit other excited
atoms, and soon you would have a stream of in-phase photons. Such a light stream is said to be coherent. Some four decades
later, Einstein’s idea found application in a process called, light amplification by stimulated emission of radiation. Take the first
letters of all the words (except by and “of”) and write them in order. You get the word laser (see (a)), which is the name of the
device that produces such a beam of light.

Laser beams are directional, very intense, and narrow (only about 0.5 mm in diameter). These properties lead to a number of
applications in industry and medicine. The following are just a few examples:

• This chapter began with a picture of a compact disc (see ). Those audio and data-storage devices began replacing cassette
tapes during the 1990s. CDs are read by interpreting variations in reflections of a laser beam from the surface.

• Some barcode scanners use a laser beam.
• Lasers are used in industry to cut steel and other metals.
• Lasers are bounced off reflectors that astronauts left on the Moon. The time it takes for the light to make the round trip can

be used to make precise calculations of the Earth-Moon distance.
• Laser beams are used to produce holograms. The name hologram means entire picture (from the Greek holo-, as in
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holistic), because the image is three-dimensional. A viewer can move around the image and see it from different
perspectives. Holograms take advantage of the wave properties of light, as opposed to traditional photography which is
based on geometric optics. A holographic image is produced by constructive and destructive interference of a split laser
beam.

• One of the advantages of using a laser as a surgical tool is that it is accompanied by very little bleeding.
• Laser eye surgery has improved the vision of many people, without the need for corrective lenses. A laser beam is used to

change the shape of the lens of the eye, thus changing its focal length.

An interesting thing happens if you pass light through a large number of evenly-spaced parallel slits. Such an arrangement of
slits is called a diffraction grating. An interference pattern is created that is very similar to the one formed by double-slit
diffraction (see and ). A diffraction grating can be manufactured by scratching glass with a sharp tool to form a number of
precisely positioned parallel lines, which act like slits. Diffraction gratings work both for transmission of light, as in Figure 17.13,
and for reflection of light, as on the butterfly wings or the Australian opal shown in Figure 17.14, or the CD pictured in the
opening illustration of this chapter. In addition to their use as novelty items, diffraction gratings are commonly used for
spectroscopic dispersion and analysis of light. What makes them particularly useful is the fact that they form a sharper pattern
than do double slits. That is, their bright regions are narrower and brighter, while their dark regions are darker. Figure 17.15
shows idealized graphs demonstrating the sharper pattern. Natural diffraction gratings occur in the feathers of certain birds.
Tiny, fingerlike structures in regular patterns act as reflection gratings, producing constructive interference that gives the
feathers colors not solely due to their pigmentation. The effect is called iridescence.

Figure 17.13 A diffraction grating consists of a large number of evenly-spaced parallel slits. (a) Light passing through the grating is

diffracted in a pattern similar to a double slit, with bright regions at various angles. (b) The pattern obtained for white light incident on a

grating. The central maximum is white, and the higher-order maxima disperse white light into a rainbow of colors.

Virtual Physics

Lasers
Click to view content (https://www.openstax.org/l/28lasers)
This animation allows you to examine the workings of a laser. First view the picture of a real laser. Change the energy of the
incoming photons, and see if you can match it to an excitation level that will produce pairs of coherent photons. Change the
excitation level and try to match it to the incoming photon energy.

In the animation there is only one excited atom. Is that the case for a real laser? Explain.

a. No, a laser would have two excited atoms.
b. No, a laser would have several million excited atoms.
c. Yes, a laser would have only one excited atom.
d. No, a laser would have on the order of 1023 excited atoms.
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Figure 17.14 (a) This Australian opal and (b) the butterfly wings have rows of reflectors that act like reflection gratings, reflecting different

colors at different angles. (credit: (a) Opals-On-Black.com, via Flickr (b) whologwhy, Flickr)

Figure 17.15 Idealized graphs of the intensity of light passing through a double slit (a) and a diffraction grating (b) for monochromatic light.

Maxima can be produced at the same angles, but those for the diffraction grating are narrower, and hence sharper. The maxima become

narrower and the regions between become darker as the number of slits is increased.

Snap Lab

Diffraction Grating
• A CD (compact disc) or DVD
• A measuring tape
• Sunlight near a white wall

Instructions

Procedure
1. Hold the CD in direct sunlight near the wall, and move it around until a circular rainbow pattern appears on the wall.
2. Measure the distance from the CD to the wall and the distance from the center of the circular pattern to a color in the

rainbow. Use those two distances to calculate . Find .
3. Look up the wavelength of the color you chose. That is .
4. Solve for d.
5. Compare your answer to the usual spacing between CD tracks, which is 1,600 nm (1.6 μm).

How do you know what number to use for m?

a. Count the rainbow rings preceding the chosen color.
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FUN IN PHYSICS

CD Players
Can you see the grooves on a CD or DVD (see Figure 17.16)? You may think you can because you know they are there, but they are
extremely narrow—1,600 in a millimeter. Because the width of the grooves is similar to wavelengths of visible light, they form a
diffraction grating. That is why you see rainbows on a CD. The colors are attractive, but they are incidental to the functions of
storing and retrieving audio and other data.

Figure 17.16 For its size, this CD holds a surprising amount of information. Likewise, the CD player it is in houses a surprising number of

electronic devices.

The grooves are actually one continuous groove that spirals outward from the center. Data are recorded in the grooves as binary
code (zeroes and ones) in small pits. Information in the pits is detected by a laser that tracks along the groove. It gets even more
complicated: The speed of rotation must be varied as the laser tracks toward the circumference so that the linear speed along the
groove remains constant. There is also an error correction mechanism to prevent the laser beam from getting off track. A
diffraction grating is used to create the first two maxima on either side of the track. If those maxima are not the same distance
from the track, an error is indicated and then corrected.

The pits are reflective because they have been coated with a thin layer of aluminum. That allows the laser beam to be reflected
back and directed toward a photodiode detector. The signal can then be processed and converted to the audio we hear.

The longest wavelength of visible light is about 780 nm . How does that compare to the distance between CD grooves?

a. The grooves are about 3 times the longest wavelength of visible light.
b. The grooves are about 2 times the longest wavelength of visible light.
c. The grooves are about 2 times the shortest wavelength of visible light.
d. The grooves are about 3 times the shortest wavelength of visible light.

LINKS TO PHYSICS

Biology: DIC Microscopy
If you were completely transparent, it would be hard to recognize you from your photograph. The same problem arises when
using a traditional microscope to view or photograph small transparent objects such as cells and microbes. Microscopes using
differential interference contrast (DIC) solve the problem by making it possible to view microscopic objects with enhanced
contrast, as shown in Figure 17.17.

b. Calculate mfrom the frequency of the light of the chosen color.
c. Calculate m from the wavelength of the light of the chosen color.
d. The value of m is fixed for every color.
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Figure 17.17 This aquatic organism was photographed with a DIC microscope. (credit: Public Library of Science)

A DIC microscope separates a polarized light source into two beams polarized at right angles to each other and coherent with
each other, that is, in phase. After passing through the sample, the beams are recombined and realigned so they have the same
plane of polarization. They then create an interference pattern caused by the differences in their optical path and the refractive
indices of the parts of the sample they passed through. The result is an image with contrast and shadowing that could not be
observed with traditional optics.

Where are diffraction gratings used? Diffraction gratings are key components of monochromators—devices that separate the
various wavelengths of incoming light and allow a beam with only a specific wavelength to pass through. Monochromators are
used, for example, in optical imaging of particular wavelengths from biological or medical samples. A diffraction grating can be
chosen to specifically analyze a wavelength of light emitted by molecules in diseased cells in a biopsy sample, or to help excite
strategic molecules in the sample with a selected frequency of light. Another important use is in optical fiber technologies where
fibers are designed to provide optimum performance at specific wavelengths. A range of diffraction gratings is available for
selecting specific wavelengths for such use.

Diffraction gratings are used in spectroscopes to separate a light source into its component wavelengths. When a material is
heated to incandescence, it gives off wavelengths of light characteristic of the chemical makeup of the material. A pure
substance will produce a spectrum that is unique, thus allowing identification of the substance. Spectroscopes are also used to
measure wavelengths both shorter and longer than visible light. Such instruments have become especially useful to astronomers
and chemists. Figure 17.18 shows a diagram of a spectroscope.

Figure 17.18 The diagram shows the function of a diffraction grating in a spectroscope.

Light diffracts as it moves through space, bending around obstacles and interfering constructively and destructively. While
diffraction allows light to be used as a spectroscopic tool, it also limits the detail we can obtain in images.

Figure 17.19 (a) shows the effect of passing light through a small circular aperture. Instead of a bright spot with sharp edges, a
spot with a fuzzy edge surrounded by circles of light is obtained. This pattern is caused by diffraction similar to that produced by
a single slit. Light from different parts of the circular aperture interferes constructively and destructively. The effect is most
noticeable when the aperture is small, but the effect is there for large apertures, too.
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Figure 17.19 (a) Monochromatic light passed through a small circular aperture produces this diffraction pattern. (b) Two point light sources

that are close to one another produce overlapping images because of diffraction. (c) If they are closer together, they cannot be resolved,

that is, distinguished.

How does diffraction affect the detail that can be observed when light passes through an aperture? Figure 17.19 (b) shows the
diffraction pattern produced by two point light sources that are close to one another. The pattern is similar to that for a single
point source, and it is just barely possible to tell that there are two light sources rather than one. If they are closer together, as in
Figure 17.19 (c), you cannot distinguish them, thus limiting the detail, or resolution, you can obtain. That limit is an inescapable
consequence of the wave nature of light.

There are many situations in which diffraction limits the resolution. The acuity of vision is limited because light passes through
the pupil, the circular aperture of the eye. Be aware that the diffraction-like spreading of light is due to the limited diameter of a
light beam, not the interaction with an aperture. Thus light passing through a lens with a diameter of D shows the diffraction
effect and spreads, blurring the image, just as light passing through an aperture of diameter D does. Diffraction limits the
resolution of any system having a lens or mirror. Telescopes are also limited by diffraction, because of the finite diameter, D, of
their primary mirror.

Why are diffraction gratings used in spectroscopes rather than just two slits?
a. The bands produced by diffraction gratings are dimmer but sharper than the bands produced by two slits.
b. The bands produced by diffraction gratings are brighter, though less sharp, than the bands produced by two slits.
c. The bands produced by diffraction gratings are brighter and sharper than the bands produced by two slits.
d. The bands produced by diffraction gratings are dimmer and less sharp, but more widely dispersed, than the bands

produced by two slits.

Calculations Involving Diffraction Gratings and Resolution
Early in the chapter, it was mentioned that when light passes from one medium to another, its speed and wavelength change,
but its frequency remains constant. The equation

shows how to the wavelength in a given medium, , is related to the wavelength in a vacuum, , and the refractive index, n, of
the medium. The equation is useful for calculating the change in wavelength of a monochromatic laser beam in various media.
The analysis of a diffraction grating is very similar to that for a double slit. As you know from the discussion of double slits in
Young’s double-slit experiment, light is diffracted by, and spreads out after passing through, each slit. Rays travel at an angle
relative to the incident direction. Each ray travels a different distance to a common point on a screen far away. The rays start in
phase, and they can be in or out of phase when they reach a screen, depending on the difference in the path lengths traveled.
Each ray travels a distance that differs by from that of its neighbor, where d is the distance between slits. If
equals an integral number of wavelengths, the rays all arrive in phase, and constructive interference (a maximum) is obtained.
Thus, the condition necessary to obtain constructive interference for a diffraction grating is

where d is the distance between slits in the grating, is the wavelength of the light, and m is the order of the maximum. Note
that this is exactly the same equation as for two slits separated by d. However, the slits are usually closer in diffraction gratings
than in double slits, producing fewer maxima at larger angles.
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WATCH PHYSICS

Diffraction Grating
This video (https://www.openstax.org/l/28diffraction) explains the geometry behind the diffraction pattern produced by a
diffraction grating.

Click to view content (https://www.openstax.org/l/28diffraction)
The equation that gives the points of constructive interference produced by a diffraction grating is . Why does that
equation look familiar?
a. It is the same as the equation for destructive interference for a double-slit diffraction pattern.
b. It is the same as the equation for constructive interference for a double-slit diffraction pattern.
c. It is the same as the equation for constructive interference for a single-slit diffraction pattern.
d. It is the same as the equation for destructive interference for a single-slit diffraction pattern.

Just what is the resolution limit of an aperture or lens? To answer that question, consider the diffraction pattern for a circular
aperture, which, similar to the diffraction pattern of light passing through a slit, has a central maximum that is wider and
brighter than the maxima surrounding it (see Figure 17.19 (a)). It can be shown that, for a circular aperture of diameter D, the
first minimum in the diffraction pattern occurs at , provided that the aperture is large compared with the
wavelength of light, which is the case for most optical instruments. The accepted criterion for determining the diffraction limit
to resolution based on diffraction was developed by Lord Rayleigh in the 19th century. The Rayleigh criterion for the diffraction
limit to resolution states that two images are just resolvable when the center of the diffraction pattern of one is directly over the
first minimum of the diffraction pattern of the other. See Figure 17.20 (b). The first minimum is at an angle of , so
that two point objects are just resolvable if they are separated by the angle

where is the wavelength of the light (or other electromagnetic radiation) and D is the diameter of the aperture, lens, mirror,
etc., with which the two objects are observed. In the expression above, has units of radians.

Figure 17.20 (a) Graph of intensity of the diffraction pattern for a circular aperture. Note that, similar to a single slit, the central maximum is

wider and brighter than those to the sides. (b) Two point objects produce overlapping diffraction patterns. Shown here is the Rayleigh

criterion for their being just resolvable. The central maximum of one pattern lies on the first minimum of the other.

538 Chapter 17 • Diffraction and Interference

Access for free at openstax.org.

https://www.openstax.org/l/28diffraction
https://www.openstax.org/l/28diffraction


WORKED EXAMPLE

Change of Wavelength
A monochromatic laser beam of green light with a wavelength of 550 nm passes from air to water. The refractive index of water
is 1.33. What will be the wavelength of the light after it enters the water?
STRATEGY
You can assume that the refractive index of air is the same as that of light in a vacuum because they are so close. You then have
all the information you need to solve for .

Solution

Discussion
The refractive index of air is 1.0003, so the approximation holds for three significant figures. You would not see the light change
color, however. Color is determined by frequency, not wavelength.

WORKED EXAMPLE

Diffraction Grating
A diffraction grating has 2000 lines per centimeter. At what angle will the first-order maximum form for green light with a
wavelength of 520 nm?
STRATEGY
You are given enough information to calculate d, and you are given the values of and m. You will have to find the arcsin of a

Snap Lab

Resolution
• A sheet of white paper
• A black pen or pencil
• A measuring tape

Instructions

Procedure
1. Draw two lines several mm apart on a white sheet of paper.
2. Move away from the sheet as it is held upright, and measure the distance at which you can just distinguish (resolve) the

lines as separate.
3. Use to calculate D the diameter of your pupil. Use the distance between the lines and the maximum

distance at which they were resolved to calculate . Use the average wavelength for visible light as the value for .
4. Compare your answer to the average pupil diameter of 3 mm.

Describe resolution in terms of minima and maxima of diffraction patterns.
a. The limit for resolution is when the minimum of the pattern for one of the lines is directly over the first minimum of

the pattern for the other line.
b. The limit for resolution is when the maximum of the pattern for one of the lines is directly over the first minimum of

the pattern for the other line.
c. The limit for resolution is when the maximum of the pattern for one of the lines is directly over the second minimum of

the pattern for the other line.
d. The limit for resolution is when the minimum of the pattern for one of the lines is directly over the second maximum of

the pattern for the other line.

17.5
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number to find .

Solution
First find d.

Rearrange the equation for constructive interference conditions for a diffraction grating, and substitute the known values.

Discussion
This angle seems reasonable for the first maximum. Recall that the meaning of sin‒1 (or arcsin) is the angle with a sine that is
(the unknown). Remember that the value of will not be greater than 1 for any value of .

WORKED EXAMPLE

Resolution
What is the minimum angular spread of a 633-nm-wavelength He-Ne laser beam that is originally 1.00 mm in diameter?
STRATEGY
The diameter of the beam is the same as if it were coming through an aperture of that size, so D = 1.00 mm. You are given , and
you must solve for .

Solution

Discussion
The conversion factor for radians to degrees is 1.000 radian = 57.3°. The spread is very small and would not be noticeable over
short distances. The angle represents the angular separation of the central maximum and the first minimum.

Practice Problems
6. A beam of yellow light has a wavelength of 600 nm in a vacuum and a wavelength of 397 nm in Plexiglas. What is the

refractive index of Plexiglas?
a. 1.51
b. 2.61
c. 3.02
d. 3.77

7. What is the angle between two just-resolved points of light for a 3.00 mm diameter pupil, assuming an average wavelength
of 550 nm?
a. 224 rad
b. 183 rad
c. 1.83 × 10–4 rad
d. 2.24 × 10–4 rad

Check Your Understanding
8. How is an interference pattern formed by a diffraction grating different from the pattern formed by a double slit?

17.6
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a. The pattern is colorful.
b. The pattern is faded.
c. The pattern is sharper.
d. The pattern is curved.

9. A beam of light always spreads out. Why can a beam not be produced with parallel rays to prevent spreading?
a. Light is always polarized.
b. Light is always reflected.
c. Light is always refracted.
d. Light is always diffracted.

10. Compare interference patterns formed by a double slit and by a diffraction grating in terms of brightness and narrowness
of bands.
a. The pattern formed has broader and brighter bands.
b. The pattern formed has broader and duller bands.
c. The pattern formed has narrower and duller bands.
d. The pattern formed has narrower and brighter bands.

11. Describe the slits in a diffraction grating in terms of number and spacing, as compared to a two-slit diffraction setup.
a. The slits in a diffraction grating are broader, with space between them that is greater than the separation of the two

slits in two-slit diffraction.
b. The slits in a diffraction grating are broader, with space between them that is the same as the separation of the two slits

in two-slit diffraction.
c. The slits in a diffraction grating are narrower, with space between them that is the same as the separation of the two

slits in two-slit diffraction.
d. The slits in a diffraction grating are narrower, with space between them that is greater than the separation of the two

slits in two-slit diffraction.
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KEY TERMS
differential interference contrast (DIC) separating a

polarized light source into two beams polarized at right
angles to each other and coherent with each other then,
after passing through the sample, recombining and
realigning the beams so they have the same plane of
polarization, and then creating an interference pattern
caused by the differences in their optical path and the
refractive indices of the parts of the sample they passed
through; the result is an image with contrast and
shadowing that could not be observed with traditional
optics

diffraction bending of a wave around the edges of an
opening or an obstacle

diffraction grating many of evenly spaced slits having
dimensions such that they produce an interference
pattern

Huygens’s principle Every point on a wavefront is a source
of wavelets that spread out in the forward direction at the
same speed as the wave itself; the new wavefront is a line

tangent to all of the wavelets.
iridescence the effect that occurs when tiny, fingerlike

structures in regular patterns act as reflection gratings,
producing constructive interference that gives feathers
colors not solely due to their pigmentation

laser acronym for a device that produces light
amplification by stimulated emission of radiation

monochromatic one color
monochromator device that separates the various

wavelengths of incoming light and allows a beam with
only a specific wavelength to pass through

Rayleigh criterion two images are just resolvable when the
center of the diffraction pattern of one is directly over the
first minimum of the diffraction pattern of the other

resolution degree to which two images can be
distinguished from one another, which is limited by
diffraction

wavefront points on a wave surface that all share an
identical, constant phase

SECTION SUMMARY
17.1 Understanding Diffraction and
Interference

• The wavelength of light varies with the refractive index
of the medium.

• Slits produce a diffraction pattern if their width and
separation are similar to the wavelength of light passing
through them.

• Interference bands of a single-slit diffraction pattern
can be predicted.

• Interference bands of a double-slit diffraction pattern
can be predicted.

17.2 Applications of Diffraction,
Interference, and Coherence

• The focused, coherent radiation emitted by lasers has
many uses in medicine and industry.

• Characteristics of diffraction patterns produced with
diffraction gratings can be determined.

• Diffraction gratings have been incorporated in many
instruments, including microscopes and spectrometers.

• Resolution has a limit that can be predicted.

KEY EQUATIONS
17.1 Understanding Diffraction and
Interference

speed of light, frequency, and
wavelength

change of wavelength with
index of refraction

two-slit constructive
interference

, for m
= 0, 1, −1, 2, −2, …

two-slit destructive
interference

, for m = 0, 1, −1, 2,
−2, …

one-slit, first-order destructive
interference; wavelength
related to dimensions

one-slit destructive
interference
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17.2 Applications of Diffraction,
Interference, and Coherence

wavelength change with change in
medium

diffraction grating constructive
interference

resolution

CHAPTER REVIEW
Concept Items
17.1 Understanding Diffraction and
Interference
1. Which behavior of light is indicated by an interference

pattern?
a. ray behavior
b. particle behavior
c. corpuscular behavior
d. wave behavior

2. Which behavior of light is indicated by diffraction?
a. wave behavior
b. particle behavior
c. ray behavior
d. corpuscular behavior

17.2 Applications of Diffraction,
Interference, and Coherence
3. There is a principle related to resolution that is expressed

by this equation.

What is that principle stated in full?

4. A principle related to resolution states, “Two images are
just resolved when the center of the diffraction pattern of
one is directly over the first minimum of the diffraction
pattern of the other.” Write the equation that expresses
that principle.
a.
b.

c.
d.

5. Which statement completes this resolution?
Two images are just resolved when —
a. The center of the diffraction pattern of one image is

directly over the central maximum of the diffraction
pattern of the other.

b. The center of the diffraction pattern of one image is
directly over the central minimum of the diffraction
pattern of the other

c. The center of the diffraction pattern of one image is
directly over the first minimum of the diffraction
pattern of the other

d. The center of the diffraction pattern of one is
directly over the first maximum of the diffraction
pattern of the other

Critical Thinking Items
17.1 Understanding Diffraction and
Interference
6. Describe a situation in which bodies of water and a line

of rocks could create a diffraction pattern similar to light
passing through double slits. Include the arrangement of
the rocks, the positions of the bodies of water, and the
location of the diffraction pattern. Note the dimensions
that are necessary for the production of the pattern.
a. When waves from a small body of water pass

through two widely separated openings and enter a
larger body of water, a diffraction pattern is
produced that is similar tothe diffraction pattern
formed by light passing through two slits. The width
of each opening is larger than the size of the
wavelength of the waves.

b. When waves from a large body of water pass

through two narrow openings and enter a smaller
body of water, a diffraction pattern is produced that
is similar to the diffraction pattern formed by light
passing through two slits. The widths and
separation of the openings are similar to the size of
the wavelength of the waves.

c. When waves from a small body of water pass
through two wide openings and enter a larger body
of water, a diffraction pattern is produced that is
similar tothe diffraction pattern formed by light
passing through two slits. The separation between
the openings is similar to the size of the wavelength
of the waves.

d. When waves from a large body of water pass
through two wide openings and enter a smaller body
of water, a diffraction pattern is produced that is
similar to the diffraction pattern formed by light
passing through two slits. The widths and

17.8
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separation of the openings are larger than the size of
the wavelength of the waves.

17.2 Applications of Diffraction,
Interference, and Coherence
7. For what type of electromagnetic radiation would a

grating with spacing greater than 800 nm be useful as a
spectroscopic tool?
a. It can be used to analyze spectra only in the infrared

portion of the spectrum.
b. It can be used to analyze spectra in the entire visible

portion of the electromagnetic spectrum.

c. It can only be used to analyze spectra in the
short‐wavelength visible.

d. It can only be used to analyze spectra in the
short‐wavelength visible and ultraviolet.

8. A beam of green light has a wavelength of in a
vacuum and a wavelength of in Plexiglas. What
is the refractive index of Plexiglas?
a.
b.
c.
d.

Problems
17.1 Understanding Diffraction and
Interference
9. What is the distance between two slits that produce a

diffraction pattern with the first minimum at an angle of
45.0° when 410-nm violet light passes through the slits?
a. 2,030 nm
b. 1,450 nm
c. 410 nm
d. 290 nm

10. A breakwater at the entrance to a harbor consists of a
rock barrier with a 50.0 − m -wide opening. Ocean
waves with a 20.0-m wavelength approach the opening
straight on. At what angle to the incident direction are
the boats inside the harbor most protected against wave
action?
a. 11.5°
b. 7.46°
c. 5.74°
d. 23.6°

17.2 Applications of Diffraction,
Interference, and Coherence
11. A 500-nm beam of light passing through a diffraction

grating creates its second band of constructive
interference at an angle of 1.50°. How far apart are the
slits in the grating?
a. 38,200 nm
b. 19,100 nm
c. 667 nm
d. 333 nm

12. The range of the visible-light spectrum is 380 nm to 780
nm. What is the maximum number of lines per
centimeter a diffraction grating can have and produce a
complete first-order spectrum for visible light?
a. 26,300 lines/cm
b. 13,200 lines/cm
c. 6,410 lines/cm
d. 12,820 lines/cm

Performance Task
17.2 Applications of Diffraction,
Interference, and Coherence
13. In this performance task you will create one- and two-

slit diffraction and observe the interference patterns
that result.

• A utility knife (a knife with a razor blade-like
cutting edge)

• Aluminum foil
• A straight edge
• A strong, small light source or a laser pointer
• A tape measure
• A white wall

Procedure
1. Cut a piece of aluminum foil about 15 cm × 15 cm.
2. Use the utility knife and the straight edge to cut a

straight slit several cm long in the center of the foil
square.

3. With the room darkened, one partner shines the
light through the slit and toward the wall. The other
partner observes the pattern on the wall. The
partner with the light changes the distance from
the foil to the wall and the distance from the light to
the foil.

4. When the sharpest, brightest pattern possible is
obtained, the partner who is not holding the foil
and light makes measurements.

5. Measure the perpendicular (shortest) distance from
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the slit to the wall, the distance from the center of
the pattern to several of the dark bands, and the
distance from the slit to the same dark bands.

6. Carefully make a second slit parallel to the first slit
and 1 mm or less away.

7. Repeat steps 2 through 5, only this time measure
the distances to bright bands.
NOTE—In your calculations, use 580 nm for if
you used white light. If you used a colored laser
pointer, look up the wavelength of the color. You
may find it easier to calculate from its tangent

rather than from its sine.

a. Which experiment gave the most distinct
pattern—one or two slits?

b. What was the width of the single slit? Compare
the calculated distance with the measured
distance.

c. What was the distance between the two slits?
Compare the calculated distance with the
measured distance.

TEST PREP
Multiple Choice
17.1 Understanding Diffraction and
Interference
14. Which remains unchanged when a monochromatic

beam of light passes from air into water?
a. the speed of the light
b. the direction of the beam
c. the frequency of the light
d. the wavelength of the light

15. Two slits are separated by a distance of 3500 nm . If light
with a wavelength of 500 nm passes through the slits
and produces an interference pattern, the m = ________
order minimum appears at an angle of 30.0°.
a. 0
b. 1
c. 2
d. 3

16. In the sunlight, the shadow of a building has fuzzy
edges even if the building does not. Is this a refraction
effect? Explain.
a. Yes, this is a refraction effect, where every point on

the building acts as the origin for a new wavefront.
b. Yes, this is a refraction effect, where the whole

building acts as the origin for a new wavefront.
c. No, this is a diffraction effect, where every point on

the edge of the building’s shadow acts as the origin
for a new wavefront.

d. No, this is a diffraction effect, where the whole
building acts as the origin for a new wavefront.

17.2 Applications of Diffraction,
Interference, and Coherence
17. Two images are just resolved when the center of the

diffraction pattern of one is directly over ________ of the
diffraction pattern of the other.
a. the center

b. the first minimum
c. the first maximum
d. the last maximum

18. Two point sources of light are just resolvable as
they pass through a small hole. The angle to the first
minimum of one source is . What is the
diameter of the hole?
a.
b.
c.
d.

19. Will a beam of light shining through a 1-mm hole behave
any differently than a beam of light that is 1 mm wide as
it leaves its source? Explain.?
a. Yes, the beam passing through the hole will spread

out as it travels, because it is diffracted by the edges
of the hole, whereas the 1 -mm beam, which
encounters no diffracting obstacle, will not spread
out.

b. Yes, the beam passing through the hole will be
made more parallel by passing through the hole,
and so will not spread out as it travels, whereas the
unaltered wavefronts of the 1-mm beam will cause
the beam to spread out as it travels.

c. No, both beams will remain the same width as they
travel, and they will not spread out.

d. No, both beams will spread out as they travel.

20. A laser pointer emits a coherent beam of parallel light
rays. Does the light from such a source spread out at all?
Explain.
a. Yes, every point on a wavefront is not a source of

wavelets, which prevent the spreading of light
waves.

b. No, every point on a wavefront is not a source of
wavelets, so that the beam behaves as a bundles of
rays that travel in their initial direction.

c. No, every point on a wavefront is a source of
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wavelets, which keep the beam from spreading.
d. Yes, every point on a wavefront is a source of

wavelets, which cause the beam to spread out
steadily as it moves forward.

Short Answer
17.1 Understanding Diffraction and
Interference
21. Light passing through double slits creates a diffraction

pattern. How would the spacing of the bands in the
pattern change if the slits were closer together?
a. The bands would be closer together.
b. The bands would spread farther apart.
c. The bands would remain stationary.
d. The bands would fade and eventually disappear.

22. A beam of light passes through a single slit to create a
diffraction pattern. How will the spacing of the bands in
the pattern change if the width of the slit is increased?
a. The width of the spaces between the bands will

remain the same.
b. The width of the spaces between the bands will

increase.
c. The width of the spaces between the bands will

decrease.
d. The width of the spaces between the bands will first

decrease and then increase.

23. What is the wavelength of light falling on double slits
separated by if the third-order maximum is at
an angle of ?
a.
b.
c.
d.

24. What is the longest wavelength of light passing through
a single slit of width 1.20 μm for which there is a first-
order minimum?
a. 1.04 µm
b. 0.849 µm
c. 0.600 µm
d. 2.40 µm

17.2 Applications of Diffraction,
Interference, and Coherence
25. Describe a diffraction grating and the interference

pattern it produces.
a. A diffraction grating is a large collection of evenly

spaced parallel lines that produces an interference
pattern that is similar to but sharper and better
dispersed than that of a double slit.

b. A diffraction grating is a large collection of
randomly spaced parallel lines that produces an
interference pattern that is similar to but less sharp
or well-dispersed as that of a double slit.

c. A diffraction grating is a large collection of
randomly spaced intersecting lines that produces
an interference pattern that is similar to but
sharper and better dispersed than that of a double
slit.

d. A diffraction grating is a large collection of evenly
spaced intersecting lines that produces an
interference pattern that is similar to but less sharp
or well-dispersed as that of a double slit.

26. Suppose pure-wavelength light falls on a diffraction
grating. What happens to the interference pattern if the
same light falls on a grating that has more lines per
centimeter?
a. The bands will spread farther from the central

maximum.
b. The bands will come closer to the central

maximum.
c. The bands will not spread farther from the first

maximum.
d. The bands will come closer to the first maximum.

27. How many lines per centimeter are there on a
diffraction grating that gives a first-order maximum for
473 nm blue light at an angle of 25.0°?
a. 529,000 lines/cm
b. 50,000 lines/cm
c. 851 lines/cm
d. 8,934 lines/cm

28. What is the distance between lines on a diffraction
grating that produces a second-order maximum for
760-nm red light at an angle of 60.0°?
a. 2.28 × 104 nm
b. 3.29 × 102 nm
c. 2.53 × 101 nm
d. 1.76 × 103 nm
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Extended Response
17.1 Understanding Diffraction and
Interference
29. Suppose you use a double slit to perform Young’s

double-slit experiment in air, and then repeat the
experiment with the same double slit in water. Does the
color of the light change? Do the angles to the same
parts of the interference pattern get larger or smaller?
Explain.
a. No, the color is determined by frequency. The

magnitude of the angle decreases.
b. No, the color is determined by wavelength. The

magnitude of the angle decreases.
c. Yes, the color is determined by frequency. The

magnitude of the angle increases.
d. Yes, the color is determined by wavelength. The

magnitude of the angle increases.

30. A double slit is located at a distance x from a screen,
with the distance along the screen from the center given
by y . When the distance d between the slits is relatively
large, there will be numerous bright bands.
For small angles (where sinθ = θ, with θ in radians),
what is the distance between fringes?
a.

b.

c.

d.

17.2 Applications of Diffraction,
Interference, and Coherence
31. Compare the interference patterns of single-slit

diffraction, double-slit diffraction, and a diffraction

grating.
a. All three interference pattern produce identical

bands.
b. A double slit produces the sharpest and most

distinct bands.
c. A single slit produces the sharpest and most

distinct bands.
d. The diffraction grating produces the sharpest and

most distinct bands.

32. An electric current through hydrogen gas produces
several distinct wavelengths of visible light. The light is
projected onto a diffraction grating having lines
per centimeter. What are the wavelengths of the
hydrogen spectrum if the light forms first-order
maxima at angles of , , , and ?
a.

b.

c.

d.
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INTRODUCTION

CHAPTER 18
Static Electricity

18.1 Electrical Charges, Conservation of Charge, and Transfer of Charge

18.2 Coulomb's law

18.3 Electric Field

18.4 Electric Potential

18.5 Capacitors and Dielectrics

You may have been introduced to static electricity like the child sliding down the slide in the opening
photograph (Figure 18.1). The zap that he is likely to receive if he touches a playmate or parent tends to bring home the lesson.
But static electricity is more than just fun and games—it is put to use in many industries. The forces between electrically
charged particles are used in technologies such as printers, pollution filters, and spray guns used for painting cars and trucks.
Static electricity is the study of phenomena that involve an imbalance of electrical charge. Although creating this imbalance
typically requires moving charge around, once the imbalance is created, it often remains static for a long time. The study of
charge in motion is called electromagnetism and will be covered in a later chapter. What is electrical charge, how is it associated

Figure 18.1 This child’s hair contains an imbalance of electrical charge (commonly called static electricity), which
causes it to stand on end. The sliding motion stripped electrons away from the child’s body, leaving him with an
excess of positive charges, which repel each other along each strand of hair. (credit: Ken Bosma, Wikimedia
Commons)

Chapter Outline



with objects, and what forces does it create? These are just some of the questions that this chapter addresses.

18.1 Electrical Charges, Conservation of Charge, and Transfer
of Charge
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe positive and negative electric charges
• Use conservation of charge to calculate quantities of charge transferred between objects
• Characterize materials as conductors or insulators based on their electrical properties
• Describe electric polarization and charging by induction

Section Key Terms

conduction conductor electron induction

insulator law of conservation of charge polarization proton

Electric Charge
You may know someone who has an electric personality, which usually means that other people are attracted to this person. This
saying is based on electric charge, which is a property of matter that causes objects to attract or repel each other. Electric charge
comes in two varieties, which we call positive and negative. Like charges repel each other, and unlike charges attract each other.
Thus, two positive charges repel each other, as do two negative charges. A positive charge and a negative charge attract each
other.

How do we know there are two types of electric charge? When various materials are rubbed together in controlled ways, certain
combinations of materials always result in a net charge of one type on one material and a net charge of the opposite type on the
other material. By convention, we call one type of charge positive and the other type negative. For example, when glass is rubbed
with silk, the glass becomes positively charged and the silk negatively charged. Because the glass and silk have opposite charges,
they attract one another like clothes that have rubbed together in a dryer. Two glass rods rubbed with silk in this manner will
repel one another, because each rod has positive charge on it. Similarly, two silk cloths rubbed in this manner will repel each
other, because both cloths have negative charge. Figure 18.2 shows how these simple materials can be used to explore the nature
of the force between charges.

Figure 18.2 A glass rod becomes positively charged when rubbed with silk, whereas the silk becomes negatively charged. (a) The glass rod

is attracted to the silk, because their charges are opposite. (b) Two similarly charged glass rods repel. (c) Two similarly charged silk cloths

repel.

It took scientists a long time to discover what lay behind these two types of charges. The word electric itself comes from the
Greek word elektron for amber, because the ancient Greeks noticed that amber, when rubbed by fur, attracts dry straw. Almost
2,000 years later, the English physicist William Gilbert proposed a model that explained the effect of electric charge as being due
to a mysterious electrical fluid that would pass from one object to another. This model was debated for several hundred years,
but it was finally put to rest in 1897 by the work of the English physicist J. J. Thomson and French physicist Jean Perrin. Along
with many others, Thomson and Perrin were studying the mysterious cathode rays that were known at the time to consist of
particles smaller than the smallest atom. Perrin showed that cathode rays actually carried negative electrical charge. Later,
Thomson’s work led him to declare, “I can see no escape from the conclusion that [cathode rays] are charges of negative
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electricity carried by particles of matter.”

It took several years of further experiments to confirm Thomson’s interpretation of the experiments, but science had in fact
discovered the particle that carries the fundamental unit of negative electrical charge. We now know this particle as the
electron.

Atoms, however, were known to be electrically neutral, which means that they carry the same amount of positive and negative
charge, so their net charge is zero. Because electrons are negative, some other part of the atom must contain positive charge.
Thomson put forth what is called the plum pudding model, in which he described atoms as being made of thousands of
electrons swimming around in a nebulous mass of positive charge, as shown by the left-side image of Figure 18.3. His student,
Ernest Rutherford, originally believed that this model was correct and used it (along with other models) to try to understand the
results of his experiments bombarding gold foils with alpha particles (i.e., helium atoms stripped of their electrons). The results,
however, did not confirm Thomson’s model but rather destroyed it! Rutherford found that most of the space occupied by the gold
atoms was actually empty and that almost all of the matter of each atom was concentrated into a tiny, extremely dense nucleus,
as shown by the right-side image of Figure 18.3. The atomic nucleus was later found to contain particles called protons, each of
which carries a unit of positive electric charge.1

Figure 18.3 The left drawing shows Thompson’s plum-pudding model, in which the electrons swim around in a nebulous mass of positive

charge. The right drawing shows Rutherford’s model, in which the electrons orbit around a tiny, massive nucleus. Note that the size of the

nucleus is vastly exaggerated in this drawing. Were it drawn to scale with respect to the size of the electron orbits, the nucleus would not be

visible to the naked eye in this drawing. Also, as far as science can currently detect, electrons are point particles, which means that they

have no size at all!

Protons and electrons are thus the fundamental particles that carry electric charge. Each proton carries one unit of positive
charge, and each electron carries one unit of negative charge. To the best precision that modern technology can provide, the
charge carried by a proton is exactly the opposite of that carried by an electron. The SI unit for electric charge is the coulomb
(abbreviated as “C”), which is named after the French physicist Charles Augustin de Coulomb, who studied the force between
charged objects. The proton carries and the electron carries . The number n of
protons required to make +1.00 C is

The same number of electrons is required to make −1.00 C of electric charge. The fundamental unit of charge is often
represented as e. Thus, the charge on a proton is e, and the charge on an electron is −e. Mathematically,

LINKS TO PHYSICS

Measuring the Fundamental Electric Charge
The American physicist Robert Millikan (1868–1953) and his student Harvey Fletcher (1884–1981) were the first to make a
relatively accurate measurement of the fundamental unit of charge on the electron. They designed what is now a classic

18.1

1Protons were later found to contain sub particles called quarks, which have fractional electric charge. But that is another story that we leave for

subsequent physics courses.
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experiment performed by students. The Millikan oil-drop experiment is shown in Figure 18.4. The experiment involves some
concepts that will be introduced later, but the basic idea is that a fine oil mist is sprayed between two plates that can be charged
with a known amount of opposite charge. Some oil drops accumulate some excess negative charge when being sprayed and are
attracted to the positive charge of the upper plate and repelled by the negative charge on the lower plate. By tuning the charge on
these plates until the weight of the oil drop is balanced by the electric forces, the net charge on the oil drop can be determined
quite precisely.

Figure 18.4 The oil-drop experiment involved spraying a fine mist of oil between two metal plates charged with opposite charges. By

knowing the mass of the oil droplets and adjusting the electric charge on the plates, the charge on the oil drops can be determined with

precision.

Millikan and Fletcher found that the drops would accumulate charge in discrete units of about which is
within 1 percent of the modern value of Although this difference may seem quite small, it is actually five
times greater than the possible error Millikan reported for his results!

Because the charge on the electron is a fundamental constant of nature, determining its precise value is very important for all of
science. This created pressure on Millikan and others after him that reveals some equally important aspects of human nature.

First, Millikan took sole credit for the experiment and was awarded the 1923 Nobel Prize in physics for this work, although his
student Harvey Fletcher apparently contributed in significant ways to the work. Just before his death in 1981, Fletcher divulged
that Millikan coerced him to give Millikan sole credit for the work, in exchange for which Millikan promoted Fletcher’s career at
Bell Labs.

Another great scientist, Richard Feynman, points out that many scientists who measured the fundamental charge after Millikan
were reluctant to report values that differed much from Millikan’s value. History shows that later measurements slowly crept up
from Millikan’s value until settling on the modern value. Why did they not immediately find the error and correct the value, asks
Feynman. Apparently, having found a value higher than the much-respected value found by Millikan, scientists would look for
possible mistakes that might lower their value to make it agree better with Millikan’s value. This reveals the important
psychological weight carried by preconceived notions and shows how hard it is to refute them. Scientists, however devoted to
logic and data they may be, are apparently just as vulnerable to this aspect of human nature as everyone else. The lesson here is
that, although it is good to be skeptical of new results, you should not discount them just because they do not agree with
conventional wisdom. If your reasoning is sound and your data are reliable, the conclusion demanded by the data must be
seriously considered, even if that conclusion disagrees with the commonly accepted truth.

GRASP CHECK
Suppose that Millikan observed an oil drop carrying three fundamental units of charge. What would be the net charge on
this oil drop?
a. −4.81 × 10−19 C
b. −1.602 × 10−19 C
c. 1.602 × 10−19 C
d. 4.81 × 10−19 C
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Snap Lab

Like and Unlike Charges
This activity investigates the repulsion and attraction caused by static electrical charge.

• Adhesive tape
• Nonconducting surface, such as a plastic table or chair

Instructions

Procedure for Part (a)
1. Prepare two pieces of tape about 4 cm long. To make a handle, double over about 0.5 cm at one end so that the sticky

side sticks together.
2. Attach the pieces of tape side by side onto a nonmetallic surface, such as a tabletop or the seat of a chair, as shown in

Figure 18.5(a).
3. Peel off both pieces of tape and hang them downward, holding them by the handles, as shown in Figure 18.5(b). If the

tape bends upward and sticks to your hand, try using a shorter piece of tape, or simply shake the tape so that it no
longer sticks to your hand.

4. Now slowly bring the two pieces of tape together, as shown in Figure 18.5(c). What happens?

Figure 18.5

Procedure for Part (b)
5. Stick one piece of tape on the nonmetallic surface, and stick the second piece of tape on top of the first piece, as shown

in Figure 18.6(a).
6. Slowly peel off the two pieces by pulling on the handle of the bottom piece.
7. Gently stroke your finger along the top of the second piece of tape (i.e., the nonsticky side), as shown in Figure 18.6(b).
8. Peel the two pieces of tape apart by pulling on their handles, as shown in Figure 18.6(c).
9. Slowly bring the two pieces of tape together. What happens?

Figure 18.6

GRASP CHECK
In step 4, why did the two pieces of tape repel each other? In step 9, why did they attract each other?
a. Like charges attract, while unlike charges repel each other.
b. Like charges repel, while unlike charges attract each other.
c. Tapes having positive charge repel, while tapes having negative charge attract each other.
d. Tapes having negative charge repel, while tapes having positive charge attract each other.

18.1 • Electrical Charges, Conservation of Charge, and Transfer of Charge 553



Conservation of Charge
Because the fundamental positive and negative units of charge are carried on protons and electrons, we would expect that the
total charge cannot change in any system that we define. In other words, although we might be able to move charge around, we
cannot create or destroy it. This should be true provided that we do not create or destroy protons or electrons in our system. In
the twentieth century, however, scientists learned how to create and destroy electrons and protons, but they found that charge is
still conserved. Many experiments and solid theoretical arguments have elevated this idea to the status of a law. The law of
conservation of charge says that electrical charge cannot be created or destroyed.

The law of conservation of charge is very useful. It tells us that the net charge in a system is the same before and after any
interaction within the system. Of course, we must ensure that no external charge enters the system during the interaction and
that no internal charge leaves the system. Mathematically, conservation of charge can be expressed as

where is the net charge of the system before the interaction, and is the net charge after the interaction.

WORKED EXAMPLE

What is the missing charge?
Figure 18.7 shows two spheres that initially have +4 C and +8 C of charge. After an interaction (which could simply be that they
touch each other), the blue sphere has +10 C of charge, and the red sphere has an unknown quantity of charge. Use the law of
conservation of charge to find the final charge on the red sphere.
Strategy
The net initial charge of the system is . The net final charge of the system is

, where is the final charge on the red sphere. Conservation of charge tells us that , so
we can solve for .

Solution
Equating and and solving for gives

The red sphere has +2 C of charge.

Figure 18.7 Two spheres, one blue and one red, initially have +4 C and +8 C of charge, respectively. After the two spheres interact, the blue

sphere has a charge of +10 C. The law of conservation of charge allows us to find the final charge on the red sphere.

Discussion
Like all conservation laws, conservation of charge is an accounting scheme that helps us keep track of electric charge.

Practice Problems
1. Which equation describes conservation of charge?

a. qinitial = qfinal = constant
b. qinitial = qfinal = 0
c. qinitial − qfinal = 0

18.2

18.3
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d. qinitial/qfinal = constant

2. An isolated system contains two objects with charges and . If object 1 loses half of its charge, what is the final charge on
object 2?
a.

b.
c.
d.

Conductors and Insulators
Materials can be classified depending on whether they allow charge to move. If charge can easily move through a material, such
as metals, then these materials are called conductors. This means that charge can be conducted (i.e., move) through the material
rather easily. If charge cannot move through a material, such as rubber, then this material is called an insulator.

Most materials are insulators. Their atoms and molecules hold on more tightly to their electrons, so it is difficult for electrons to
move between atoms. However, it is not impossible. With enough energy, it is possible to force electrons to move through an
insulator. However, the insulator is often physically destroyed in the process. In metals, the outer electrons are loosely bound to
their atoms, so not much energy is required to make electrons move through metal. Such metals as copper, silver, and
aluminum are good conductors. Insulating materials include plastics, glass, ceramics, and wood.

The conductivity of some materials is intermediate between conductors and insulators. These are called semiconductors. They
can be made conductive under the right conditions, which can involve temperature, the purity of the material, and the force
applied to push electrons through them. Because we can control whether semiconductors are conductors or insulators, these
materials are used extensively in computer chips. The most commonly used semiconductor is silicon. Figure 18.8 shows various
materials arranged according to their ability to conduct electrons.

Figure 18.8 Materials can be arranged according to their ability to conduct electric charge. The slashes on the arrow mean that there is a

very large gap in conducting ability between conductors, semiconductors, and insulators, but the drawing is compressed to fit on the page.

The numbers below the materials give their resistivity in Ω•m (which you will learn about below). The resistivity is a measure of how hard it

is to make charge move through a given material.

What happens if an excess negative charge is placed on a conducting object? Because like charges repel each other, they will push
against each other until they are as far apart as they can get. Because the charge can move in a conductor, it moves to the outer
surfaces of the object. Figure 18.9(a) shows schematically how an excess negative charge spreads itself evenly over the outer
surface of a metal sphere.

What happens if the same is done with an insulating object? The electrons still repel each other, but they are not able to move,
because the material is an insulator. Thus, the excess charge stays put and does not distribute itself over the object. Figure 18.9(b)
shows this situation.
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Figure 18.9 (a) A conducting sphere with excess negative charge (i.e., electrons). The electrons repel each other and spread out to cover

the outer surface of the sphere. (b) An insulating sphere with excess negative charge. The electrons cannot move, so they remain in their

original positions.

Transfer and Separation of Charge
Most objects we deal with are electrically neutral, which means that they have the same amount of positive and negative charge.
However, transferring negative charge from one object to another is fairly easy to do. When negative charge is transferred from
one object to another, an excess of positive charge is left behind. How do we know that the negative charge is the mobile charge?
The positive charge is carried by the proton, which is stuck firmly in the nucleus of atoms, and the atoms are stuck in place in
solid materials. Electrons, which carry the negative charge, are much easier to remove from their atoms or molecules and can
therefore be transferred more easily.

Electric charge can be transferred in several manners. One of the simplest ways to transfer charge is charging by contact, in
which the surfaces of two objects made of different materials are placed in close contact. If one of the materials holds electrons
more tightly than the other, then it takes some electrons with it when the materials are separated. Rubbing two surfaces
together increases the transfer of electrons, because it creates a closer contact between the materials. It also serves to present
fresh material with a full supply of electrons to the other material. Thus, when you walk across a carpet on a dry day, your shoes
rub against the carpet, and some electrons are removed from the carpet by your shoes. The result is that you have an excess of
negative charge on your shoes. When you then touch a doorknob, some of your excess of electrons transfer to the neutral
doorknob, creating a small spark.

Touching the doorknob with your hand demonstrates a second way to transfer electric charge, which is charging by conduction.
This transfer happens because like charges repel, and so the excess electrons that you picked up from the carpet want to be as far
away from each other as possible. Some of them move to the doorknob, where they will distribute themselves over the outer
surface of the metal. Another example of charging by conduction is shown in the top row of Figure 18.10. A metal sphere with
100 excess electrons touches a metal sphere with 50 excess electrons, so 25 electrons from the first sphere transfer to the second
sphere. Each sphere finishes with 75 excess electrons.

The same reasoning applies to the transfer of positive charge. However, because positive charge essentially cannot move in
solids, it is transferred by moving negative charge in the opposite direction. For example, consider the bottom row of Figure
18.10. The first metal sphere has 100 excess protons and touches a metal sphere with 50 excess protons, so the second sphere
transfers 25 electrons to the first sphere. These 25 extra electrons will electrically cancel 25 protons so that the first metal sphere
is left with 75 excess protons. This is shown in the bottom row of Figure 18.10. The second metal sphere lost 25 electrons so it has
25 more excess protons, for a total of 75 excess protons. The end result is the same if we consider that the first ball transferred a
net positive charge equal to that of 25 protons to the first ball.
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Figure 18.10 In the top row, a metal sphere with 100 excess electrons transfers 25 electrons to a metal sphere with an excess of 50

electrons. After the transfer, both spheres have 75 excess electrons. In the bottom row, a metal sphere with 100 excess protons receives

25 electrons from a ball with 50 excess protons. After the transfer, both spheres have 75 excess protons.

In this discussion, you may wonder how the excess electrons originally got from your shoes to your hand to create the spark
when you touched the doorknob. The answer is that no electrons actually traveled from your shoes to your hands. Instead,
because like charges repel each other, the excess electrons on your shoe simply pushed away some of the electrons in your feet.
The electrons thus dislodged from your feet moved up into your leg and in turn pushed away some electrons in your leg. This
process continued through your whole body until a distribution of excess electrons covered the extremities of your body. Thus
your head, your hands, the tip of your nose, and so forth all received their doses of excess electrons that had been pushed out of
their normal positions. All this was the result of electrons being pushed out of your feet by the excess electrons on your shoes.

This type of charge separation is called polarization. As soon as the excess electrons leave your shoes (by rubbing off onto the
floor or being carried away in humid air), the distribution of electrons in your body returns to normal. Every part of your body is
again electrically neutral (i.e., zero excess charge).

The phenomenon of polarization is seen in . The child has accumulated excess positive charge by sliding on the slide. This excess
charge repels itself and so becomes distributed over the extremities of the child’s body, notably in his hair. As a result, the hair
stands on end, because the excess negative charge on each strand repels the excess positive charge on neighboring strands.

Polarization can be used to charge objects. Consider the two metallic spheres shown in Figure 18.11. The spheres are electrically
neutral, so they carry the same amounts of positive and negative charge. In the top picture (Figure 18.11(a)), the two spheres are
touching, and the positive and negative charge is evenly distributed over the two spheres. We then approach a glass rod that
carries an excess positive charge, which can be done by rubbing the glass rod with silk, as shown in Figure 18.11(b). Because
opposite charges attract each other, the negative charge is attracted to the glass rod, leaving an excess positive charge on the
opposite side of the right sphere. This is an example of charging by induction, whereby a charge is created by approaching a
charged object with a second object to create an unbalanced charge in the second object. If we then separate the two spheres, as
shown in Figure 18.11(c), the excess charge is stuck on each sphere. The left sphere now has an excess negative charge, and the
right sphere has an excess positive charge. Finally, in the bottom picture, the rod is removed, and the opposite charges attract
each other, so they move as close together as they can get.
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Figure 18.11 (a) Two neutral conducting spheres are touching each other, so the charge is evenly spread over both spheres. (b) A positively

charged rod approaches, which attracts negative charges, leaving excess positive charge on the right sphere. (c) The spheres are separated.

Each sphere now carries an equal magnitude of excess charge. (d) When the positively charged rod is removed, the excess negative charge

on the left sphere is attracted to the excess positive charge on the right sphere.

FUN IN PHYSICS

Create a Spark in a Science Fair
Van de Graaff generators are devices that are used not only for serious physics research but also for demonstrating the physics of
static electricity at science fairs and in classrooms. Because they deliver relatively little electric current, they can be made safe
for use in such environments. The first such generator was built by Robert Van de Graaff in 1931 for use in nuclear physics
research. Figure 18.12 shows a simplified sketch of a Van de Graaff generator.

Van de Graaff generators use smooth and pointed surfaces and conductors and insulators to generate large static charges. In the
version shown in Figure 18.12, electrons are “sprayed” from the tips of the lower comb onto a moving belt, which is made of an
insulating material like, such as rubber. This technique of charging the belt is akin to charging your shoes with electrons by
walking across a carpet. The belt raises the charges up to the upper comb, where they transfer again, akin to your touching the
doorknob and transferring your charge to it. Because like charges repel, the excess electrons all rush to the outer surface of the
globe, which is made of metal (a conductor). Thus, the comb itself never accumulates too much charge, because any charge it
gains is quickly depleted by the charge moving to the outer surface of the globe.
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Figure 18.12 Van de Graaff generators transfer electrons onto a metallic sphere, where the electrons distribute themselves uniformly over

the outer surface.

Van de Graaff generators are used to demonstrate many interesting effects caused by static electricity. By touching the globe, a
person gains excess charge, so his or her hair stands on end, as shown in Figure 18.13. You can also create mini lightning bolts by
moving a neutral conductor toward the globe. Another favorite is to pile up aluminum muffin tins on top of the uncharged
globe, then turn on the generator. Being made of conducting material, the tins accumulate excess charge. They then repel each
other and fly off the globe one by one. A quick Internet search will show many examples of what you can do with a Van de Graaff
generator.

Figure 18.13 The man touching the Van de Graaff generator has excess charge, which spreads over his hair and repels hair strands from his

neighbors. (credit: Jon “ShakataGaNai” Davis)

GRASP CHECK
Why don’t the electrons stay on the rubber belt when they reach the upper comb?
a. The upper comb has no excess electrons, and the excess electrons in the rubber belt get transferred to the comb by

contact.
b. The upper comb has no excess electrons, and the excess electrons in the rubber belt get transferred to the comb by

conduction.
c. The upper comb has excess electrons, and the excess electrons in the rubber belt get transferred to the comb by

conduction.
d. The upper comb has excess electrons, and the excess electrons in the rubber belt get transferred to the comb by contact.

Virtual Physics

Balloons and Static Electricity
Click to view content (http://www.openstax.org/l/28balloons)

18.1 • Electrical Charges, Conservation of Charge, and Transfer of Charge 559

http://www.openstax.org/l/28balloons


WORKED EXAMPLE

Charging Ink Droplets
Electrically neutral ink droplets in an ink-jet printer pass through an electron beam created by an electron gun, as shown in
Figure 18.14. Some electrons are captured by the ink droplet, so that it becomes charged. After passing through the electron
beam, the net charge of the ink droplet is . How many electrons are captured by the ink droplet?

This simulation allows you to observe negative charge accumulating on a balloon as you rub it against a sweater. You can
then observe how two charged balloons interact and how they cause polarization in a wall.

GRASP CHECK
Click the reset button, and start with two balloons. Charge a first balloon by rubbing it on the sweater, and then move it
toward the second balloon. Why does the second balloon not move?
a. The second balloon has an equal number of positive and negative charges.
b. The second balloon has more positive charges than negative charges.
c. The second balloon has more negative charges than positive charges.
d. The second balloon is positively charged and has polarization.

Snap Lab

Polarizing Tap Water
This lab will demonstrate how water molecules can easily be polarized.

• Plastic object of small dimensions, such as comb or plastic stirrer
• Source of tap water

Instructions

Procedure
1. Thoroughly rub the plastic object with a dry cloth.
2. Open the faucet just enough to let a smooth filament of water run from the tap.
3. Move an edge of the charged plastic object toward the filament of running water.

What do you observe? What happens when the plastic object touches the water filament? Can you explain your
observations?

GRASP CHECK
Why does the water curve around the charged object?
a. The charged object induces uniform positive charge on the water molecules.
b. The charged object induces uniform negative charge on the water molecules.
c. The charged object attracts the polarized water molecules and ions that are dissolved in the water.
d. The charged object depolarizes the water molecules and the ions dissolved in the water.
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Figure 18.14 Electrons from an electron gun charge a passing ink droplet.

STRATEGY
A single electron carries a charge of . Dividing the net charge of the ink droplet by the charge
of a single electron will give the number of electrons captured by the ink droplet.

Solution
The number n of electrons captured by the ink droplet are

Discussion
This is almost a billion electrons! It seems like a lot, but it is quite small compared to the number of atoms in an ink droplet,
which number about Thus, each extra electron is shared between about atoms.

Practice Problems
3. How many protons are needed to make 1 nC of charge? 1 nC = 10−9 C

a. 1.6 × 10−28

b. 1.6 × 10−10

c. 3 × 109

d. 6 × 109

4. In a physics lab, you charge up three metal spheres, two with and one with . When you bring all three spheres
together so that they all touch one another, what is the total charge on the three spheres?
a.
b.
c.
d.

Check Your Understanding
5. How many types of electric charge exist?

a. one type
b. two types
c. three types
d. four types

6. Which are the two main electrical classifications of materials based on how easily charges can move through them?

18.4
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a. conductor and insulator
b. semiconductor and insulator
c. conductor and superconductor
d. conductor and semiconductor

7. True or false—A polarized material must have a nonzero net electric charge.
a. true
b. false

8. Describe the force between two positive point charges that interact.
a. The force is attractive and acts along the line joining the two point charges.
b. The force is attractive and acts tangential to the line joining the two point charges.
c. The force is repulsive and acts along the line joining the two point charges.
d. The force is repulsive and acts tangential to the line joining the two point charges.

9. How does a conductor differ from an insulator?
a. Electric charges move easily in an insulator but not in a conducting material.
b. Electric charges move easily in a conductor but not in an insulator.
c. A conductor has a large number of electrons.
d. More charges are in an insulator than in a conductor.

10. True or false—Charging an object by polarization requires touching it with an object carrying excess charge.
a. true
b. false

18.2 Coulomb's law
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe Coulomb’s law verbally and mathematically
• Solve problems involving Coulomb’s law

Section Key Terms

Coulomb’s law inverse-square law

More than 100 years before Thomson and Rutherford discovered the fundamental particles that carry positive and negative
electric charges, the French scientist Charles-Augustin de Coulomb mathematically described the force between charged
objects. Doing so required careful measurements of forces between charged spheres, for which he built an ingenious device
called a torsion balance.

This device, shown in Figure 18.15, contains an insulating rod that is hanging by a thread inside a glass-walled enclosure. At one
end of the rod is the metallic sphere A. When no charge is on this sphere, it touches sphere B. Coulomb would touch the spheres
with a third metallic ball (shown at the bottom of the diagram) that was charged. An unknown amount of charge would
distribute evenly between spheres A and B, which would then repel each other, because like charges repel. This force would cause
sphere A to rotate away from sphere B, thus twisting the wire until the torsion in the wire balanced the electrical force. Coulomb
then turned the knob at the top, which allowed him to rotate the thread, thus bringing sphere A closer to sphere B. He found
that bringing sphere A twice as close to sphere B required increasing the torsion by a factor of four. Bringing the sphere three
times closer required a ninefold increase in the torsion. From this type of measurement, he deduced that the electrical force
between the spheres was inversely proportional to the distance squared between the spheres. In other words,

where r is the distance between the spheres.

An electrical charge distributes itself equally between two conducting spheres of the same size. Knowing this allowed Coulomb
to divide an unknown charge in half. Repeating this process would produce a sphere with one quarter of the initial charge, and
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so on. Using this technique, he measured the force between spheres A and B when they were charged with different amounts of
charge. These measurements led him to deduce that the force was proportional to the charge on each sphere, or

where is the charge on sphere A, and is the charge on sphere B.

Figure 18.15 A drawing of Coulomb’s torsion balance, which he used to measure the electrical force between charged spheres. (credit:

Charles-Augustin de Coulomb)

Combining these two proportionalities, he proposed the following expression to describe the force between the charged
spheres.

This equation is known as Coulomb’s law, and it describes the electrostatic force between charged objects. The constant of
proportionality k is called Coulomb’s constant. In SI units, the constant k has the value

The direction of the force is along the line joining the centers of the two objects. If the two charges are of opposite signs,
Coulomb’s law gives a negative result. This means that the force between the particles is attractive. If the two charges have the
same signs, Coulomb’s law gives a positive result. This means that the force between the particles is repulsive. For example, if
both and are negative or if both are positive, the force between them is repulsive. This is shown in Figure 18.16(a). If is a
negative charge and is a positive charge (or vice versa), then the charges are different, so the force between them is attractive.
This is shown in Figure 18.16(b).

Figure 18.16 The magnitude of the electrostatic force F between point charges q1 and q2 separated by a distance r is given by Coulomb’s

law. Note that Newton’s third law (every force exerted creates an equal and opposite force) applies as usual—the force (F1,2) on q1 is equal

in magnitude and opposite in direction to the force (F2,1) it exerts on q2. (a) Like charges. (b) Unlike charges.

Note that Coulomb’s law applies only to charged objects that are not moving with respect to each other. The law says that the
force is proportional to the amount of charge on each object and inversely proportional to the square of the distance between the
objects. If we double the charge , for instance, then the force is doubled. If we double the distance between the objects, then
the force between them decreases by a factor of . Although Coulomb’s law is true in general, it is easiest to apply to
spherical objects or to objects that are much smaller than the distance between the objects (in which case, the objects can be
approximated as spheres).
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Coulomb’s law is an example of an inverse-square law, which means the force depends on the square of the denominator.
Another inverse-square law is Newton’s law of universal gravitation, which is . Although these laws are similar,
they differ in two important respects: (i) The gravitational constant G is much, much smaller than k
( ); and (ii) only one type of mass exists, whereas two types of electric charge exist. These two
differences explain why gravity is so much weaker than the electrostatic force and why gravity is only attractive, whereas the
electrostatic force can be attractive or repulsive.

Finally, note that Coulomb measured the distance between the spheres from the centers of each sphere. He did not explain this
assumption in his original papers, but it turns out to be valid. From outside a uniform spherical distribution of charge, it can be
treated as if all the charge were located at the center of the sphere.

WATCH PHYSICS

Electrostatics (part 1): Introduction to charge and Coulomb's law
This video explains the basics of Coulomb’s law. Note that the lecturer uses d for the distance between the center of the particles
instead of r.

Click to view content (https://www.openstax.org/l/28coulomb)

GRASP CHECK
True or false—If one particle carries a positive charge and another carries a negative charge, then the force between them is
attractive.
a. true
b. false

Snap Lab

Hovering plastic
In this lab, you will use electrostatics to hover a thin piece of plastic in the air.

• Balloon
• Light plastic bag (e.g., produce bag from grocery store)

Instructions

Procedure
1. Cut the plastic bag to make a plastic loop about 2 inches wide.
2. Inflate the balloon.
3. Charge the balloon by rubbing it on your clothes.
4. Charge the plastic loop by placing it on a nonmetallic surface and rubbing it with a cloth.
5. Hold the balloon in one hand, and in the other hand hold the plastic loop above the balloon. If the loop clings too much

to your hand, recruit a friend to hold the strip above the balloon with both hands. Now let go of the plastic loop, and
maneuver the balloon under the plastic loop to keep it hovering in the air above the balloon.

GRASP CHECK
How does the balloon keep the plastic loop hovering?
a. The balloon and the loop are both negatively charged. This will help the balloon keep the plastic loop hovering.
b. The balloon is charged, while the plastic loop is neutral.This will help the balloon keep the plastic loop hovering.
c. The balloon and the loop are both positively charged. This will help the balloon keep the plastic loop hovering.
d. The balloon is positively charged, while the plastic loop is negatively charged. This will help the balloon keep the

plastic loop hovering.
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WORKED EXAMPLE

Using Coulomb’s law to find the force between charged objects
Suppose Coulomb measures a force of between the two charged spheres when they are separated by 5.0 cm. By
turning the dial at the top of the torsion balance, he approaches the spheres so that they are separated by 3.0 cm. Which force
does he measure now?
STRATEGY
Apply Coulomb’s law to the situation before and after the spheres are brought closer together. Although we do not know the
charges on the spheres, we do know that they remain the same. We call these unknown but constant charges and .
Because these charges appear as a product in Coulomb’s law, they form a single unknown. We thus have two equations and two
unknowns, which we can solve. The first unknown is the force (which we call ) when the spheres are 3.0 cm apart, and the
second is .

Use the following notation: When the charges are 5.0 cm apart, the force is and ,
where the subscript i means initial. Once the charges are brought closer together, we know , where
the subscript f means final.

Solution
Coulomb’s law applied to the spheres in their initial positions gives

Coulomb’s law applied to the spheres in their final positions gives

Dividing the second equation by the first and solving for the final force leads to

Inserting the known quantities yields

The force acts along the line joining the centers of the spheres. Because the same type of charge is on each sphere, the force is
repulsive.

Discussion
As expected, the force between the charges is greater when they are 3.0 cm apart than when they are 5.0 cm apart. Note that
although it is a good habit to convert cm to m (because the constant k is in SI units), it is not necessary in this problem, because
the distances cancel out.

We can also solve for the second unknown . By using the first equation, we find
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Note how the units cancel in the second-to-last line. Had we not converted cm to m, this would not occur, and the result would
be incorrect. Finally, because the charge on each sphere is the same, we can further deduce that

WORKED EXAMPLE

Using Coulomb’s law to find the distance between charged objects
An engineer measures the force between two ink drops by measuring their acceleration and their diameter. She finds that each
member of a pair of ink drops exerts a repulsive force of on its partner. If each ink drop carries a charge

, how far apart are the ink drops?
STRATEGY
We know the force and the charge on each ink drop, so we can solve Coulomb’s law for the distance r between the ink drops. Do
not forget to convert the force into SI units:

Solution
The charges in Coulomb’s law are so the numerator in Coulomb’s law takes the form .

Inserting this into Coulomb’s law and solving for the distance r gives

or 130 microns (about one-tenth of a millimeter).

Discussion
The plus-minus sign means that we do not know which ink drop is to the right and which is to the left, but that is not important,
because both ink drops are the same.

Practice Problems
11. A charge of −4 × 10−9 C is a distance of 3 cm from a charge of 3 × 10−9 C . What is the magnitude and direction of the force

between them?
a. 1.2 × 10−4 N, and the force is attractive
b. 1.2 × 1014 N, and the force is attractive
c. 6.74 × 1023 N, and the force is attractive
d. −ŷ, and the force is attractive

12. Two charges are repelled by a force of 2.0 N. If the distance between them triples, what is the force between the charges?
a. 0.22 N
b. 0.67 N
c. 2.0 N
d. 18.0 N
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Check Your Understanding
13. How are electrostatic force and charge related?

a. The force is proportional to the product of two charges.
b. The force is inversely proportional to the product of two charges.
c. The force is proportional to any one of the charges between which the force is acting.
d. The force is inversely proportional to any one of the charges between which the force is acting.

14. Why is Coulomb’s law called an inverse-square law?
a. because the force is proportional to the inverse of the distance squared between charges
b. because the force is proportional to the product of two charges
c. because the force is proportional to the inverse of the product of two charges
d. because the force is proportional to the distance squared between charges

18.3 Electric Field
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Calculate the strength of an electric field
• Create and interpret drawings of electric fields

Section Key Terms

electric field test charge

You may have heard of a force field in science fiction movies, where such fields apply forces at particular positions in space to
keep a villain trapped or to protect a spaceship from enemy fire. The concept of a field is very useful in physics, although it
differs somewhat from what you see in movies.

A field is a way of conceptualizing and mapping the force that surrounds any object and acts on another object at a distance
without apparent physical connection. For example, the gravitational field surrounding Earth and all other masses represents
the gravitational force that would be experienced if another mass were placed at a given point within the field. Michael Faraday,
an English physicist of the nineteenth century, proposed the concept of an electric field. If you know the electric field, then you
can easily calculate the force (magnitude and direction) applied to any electric charge that you place in the field.

An electric field is generated by electric charge and tells us the force per unit charge at all locations in space around a charge
distribution. The charge distribution could be a single point charge; a distribution of charge over, say, a flat plate; or a more
complex distribution of charge. The electric field extends into space around the charge distribution. Now consider placing a test
charge in the field. A test charge is a positive electric charge whose charge is so small that it does not significantly disturb the
charges that create the electric field. The electric field exerts a force on the test charge in a given direction. The force exerted is
proportional to the charge of the test charge. For example, if we double the charge of the test charge, the force exerted on it
doubles. Mathematically, saying that electric field is the force per unit charge is written as

where we are considering only electric forces. Note that the electric field is a vector field that points in the same direction as the
force on the positive test charge. The units of electric field are N/C.

If the electric field is created by a point charge or a sphere of uniform charge, then the magnitude of the force between this point
charge Q and the test charge is given by Coulomb’s law

where the absolute value is used, because we only consider the magnitude of the force. The magnitude of the electric field is then
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This equation gives the magnitude of the electric field created by a point charge Q. The distance r in the denominator is the
distance from the point charge, Q, or from the center of a spherical charge, to the point of interest.

If the test charge is removed from the electric field, the electric field still exists. To create a three-dimensional map of the
electric field, imagine placing the test charge in various locations in the field. At each location, measure the force on the charge,

and use the vector equation to calculate the electric field. Draw an arrow at each point where you place the test
charge to represent the strength and the direction of the electric field. The length of the arrows should be proportional to the
strength of the electric field. If you join together these arrows, you obtain lines. Figure 18.17 shows an image of the three-
dimensional electric field created by a positive charge.

Figure 18.17 Three-dimensional representation of the electric field generated by a positive charge.

Just drawing the electric field lines in a plane that slices through the charge gives the two-dimensional electric-field maps shown
in Figure 18.18. On the left is the electric field created by a positive charge, and on the right is the electric field created by a
negative charge.

Notice that the electric field lines point away from the positive charge and toward the negative charge. Thus, a positive test
charge placed in the electric field of the positive charge will be repelled. This is consistent with Coulomb’s law, which says that
like charges repel each other. If we place the positive charge in the electric field of the negative charge, the positive charge is
attracted to the negative charge. The opposite is true for negative test charges. Thus, the direction of the electric field lines is
consistent with what we find by using Coulomb’s law.

The equation says that the electric field gets stronger as we approach the charge that generates it. For example, at
2 cm from the charge Q (r = 2 cm), the electric field is four times stronger than at 4 cm from the charge (r = 4 cm). Looking at
Figure 18.17 and Figure 18.18 again, we see that the electric field lines become denser as we approach the charge that generates
it. In fact, the density of the electric field lines is proportional to the strength of the electric field!

Figure 18.18 Electric field lines from two point charges. The red point on the left carries a charge of +1 nC, and the blue point on the right

carries a charge of –1 nC. The arrows point in the direction that a positive test charge would move. The field lines are denser as you

approach the point charge.

Electric-field maps can be made for several charges or for more complicated charge distributions. The electric field due to
multiple charges may be found by adding together the electric field from each individual charge. Because this sum can only be a
single number, we know that only a single electric-field line can go through any given point. In other words, electric-field lines
cannot cross each other.

Figure 18.19(a) shows a two-dimensional map of the electric field generated by a charge of +q and a nearby charge of −q. The
three-dimensional version of this map is obtained by rotating this map about the axis that goes through both charges. A positive
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test charge placed in this field would experience a force in the direction of the field lines at its location. It would thus be repelled
from the positive charge and attracted to the negative charge. Figure 18.19(b) shows the electric field generated by two charges of
−q. Note how the field lines tend to repel each other and do not overlap. A positive test charge placed in this field would be
attracted to both charges. If you are far from these two charges, where far means much farther than the distance between the
charges, the electric field looks like the electric field from a single charge of −2q.

Figure 18.19 (a) The electric field generated by a positive point charge (left) and a negative point charge of the same magnitude (right). (b)

The electric field generated by two equal negative charges.

WATCH PHYSICS

Electrostatics (part 2): Interpreting electric field
This video explains how to calculate the electric field of a point charge and how to interpret electric-field maps in general. Note

Virtual Physics

Probing an Electric Field
Click to view content (http://www.openstax.org/l/28charge-field)
This simulation shows you the electric field due to charges that you place on the screen. Start by clicking the top checkbox in
the options panel on the right-hand side to show the electric field. Drag charges from the buckets onto the screen, move
them around, and observe the electric field that they form. To see more precisely the magnitude and direction of the electric
field, drag an electric-field sensor, or E-field sensor from the bottom bucket, and move it around the screen.

GRASP CHECK
Two positive charges are placed on a screen. Which statement describes the electric field produced by the charges?
a. It is constant everywhere.
b. It is zero near each charge.
c. It is zero halfway between the charges.
d. It is strongest halfway between the charges.
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that the lecturer uses d for the distance between particles instead of r. Note that the point charges are infinitesimally small, so
all their charges are focused at a point. When larger charged objects are considered, the distance between the objects must be
measured between the center of the objects.

Click to view content (https://www.youtube.com/embed/0YOGrTNgGhE)

GRASP CHECK
True or false—If a point charge has electric field lines that point into it, the charge must be ositive.
a. true
b. false

WORKED EXAMPLE

What is the charge?
Look at the drawing of the electric field in Figure 18.20. What is the relative strength and sign of the three charges?

Figure 18.20 Map of electric field due to three charged particles.

STRATEGY
We know the electric field extends out from positive charge and terminates on negative charge. We also know that the number
of electric field lines that touch a charge is proportional to the charge. Charge 1 has 12 fields coming out of it. Charge 2 has six
field lines going into it. Charge 3 has 12 field lines going into it.

Solution
The electric-field lines come out of charge 1, so it is a positive charge. The electric-field lines go into charges 2 and 3, so they are
negative charges. The ratio of the charges is . Thus, magnitude of charges 1 and 3 is twice that
of charge 2.

Discussion
Although we cannot determine the precise charge on each particle, we can get a lot of information from the electric field
regarding the magnitude and sign of the charges and where the force on a test charge would be greatest (or least).

WORKED EXAMPLE

Electric field from doorknob
A doorknob, which can be taken to be a spherical metal conductor, acquires a static electricity charge of What is
the electric field 1.0 cm in front of the doorknob? The diameter of the doorknob is 5.0 cm.
STRATEGY
Because the doorknob is a conductor, the entire charge is distributed on the outside surface of the metal. In addition, because
the doorknob is assumed to be perfectly spherical, the charge on the surface is uniformly distributed, so we can treat the
doorknob as if all the charge were located at the center of the doorknob. The validity of this simplification will be proved in a
later physics course. Now sketch the doorknob, and define your coordinate system. Use to indicate the outward direction
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perpendicular to the door, with at the center of the doorknob (as shown in the figure below).

If the diameter of the doorknob is 5.0 cm, its radius is 2.5 cm. We want to know the electric field 1.0 cm from the surface of the
doorknob, which is a distance from the center of the doorknob. We can use the equation

to find the magnitude of the electric field. The direction of the electric field is determined by the sign of the charge,

which is negative in this case.

Solution
Inserting the charge and the distance into the equation

gives

Because the charge is negative, the electric-field lines point toward the center of the doorknob. Thus, the electric field at
is .

Discussion
This seems like an enormous electric field. Luckily, it takes an electric field roughly 100 times stronger ( ) to cause
air to break down and conduct electricity. Also, the weight of an adult is about , so why don’t you
feel a force on the protons in your hand as you reach for the doorknob? The reason is that your hand contains an equal amount of
negative charge, which repels the negative charge in the doorknob. A very small force might develop from polarization in your
hand, but you would never notice it.

Practice Problems
15. What is the magnitude of the electric field from 20 cm from a point charge of q = 33 nC?

a. 7.4 × 103 N/C
b. 1.48 × 103 N / C
c. 7.4 × 1012 N / C
d. 0

16. A −10 nC charge is at the origin. In which direction does the electric field from the charge point at x + 10 cm ?
a. The electric field points away from negative charges.
b. The electric field points toward negative charges.
c. The electric field points toward positive charges.
d. The electric field points away from positive charges.

Check Your Understanding
17. When electric field lines get closer together, what does that tell you about the electric field?
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a. The electric field is inversely proportional to the density of electric field lines.
b. The electric field is directly proportional to the density of electric field lines.
c. The electric field is not related to the density of electric field lines.
d. The electric field is inversely proportional to the square root of density of electric field lines.

18. If five electric-field lines come out of a +5 nC charge, how many electric-field lines should come out of a +20 nC charge?
a. five field lines
b. 10 field lines
c. 15 field lines
d. 20 field lines

18.4 Electric Potential
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain the similarities and differences between electric potential energy and gravitational potential energy
• Calculate the electric potential difference between two point charges and in a uniform electric field

Section Key Terms

electric potential electric potential energy

As you learned in studying gravity, a mass in a gravitational field has potential energy, which means it has the potential to
accelerate and thereby increase its kinetic energy. This kinetic energy can be used to do work. For example, imagine you want to
use a stone to pound a nail into a piece of wood. You first lift the stone high above the nail, which increases the potential energy
of the stone-Earth system—because Earth is so large, it does not move, so we usually shorten this by saying simply that the
potential energy of the stone increases. When you drop the stone, gravity converts the potential energy into kinetic energy.
When the stone hits the nail, it does work by pounding the nail into the wood. The gravitational potential energy is the work that
a mass can potentially do by virtue of its position in a gravitational field. Potential energy is a very useful concept, because it can
be used with conservation of energy to calculate the motion of masses in a gravitational field.

Electric potential energy works much the same way, but it is based on the electric field instead of the gravitational field. By
virtue of its position in an electric field, a charge has an electric potential energy. If the charge is free to move, the force due to
the electric field causes it to accelerate, so its potential energy is converted to kinetic energy, just like a mass that falls in a
gravitational field. This kinetic energy can be used to do work. The electric potential energy is the work that a charge can do by
virtue of its position in an electric field.

The analogy between gravitational potential energy and electric potential energy is depicted in Figure 18.21. On the left, the ball-
Earth system gains gravitational potential energy when the ball is higher in Earth's gravitational field. On the right, the two-
charge system gains electric potential energy when the positive charge is farther from the negative charge.
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Figure 18.21 On the left, the gravitational field points toward Earth. The higher the ball is in the gravitational field, the higher the potential

energy is of the Earth-ball system. On the right, the electric field points toward a negative charge. The farther the positive charge is from the

negative charge, the higher the potential energy is of the two-charge system.

Let’s use the symbol to denote gravitational potential energy. When a mass falls in a gravitational field, its gravitational
potential energy decreases. Conservation of energy tells us that the work done by the gravitational field to make the mass
accelerate must equal the loss of potential energy of the mass. If we use the symbol to denote this work, then

where the minus sign reflects the fact that the potential energy of the ball decreases.

The work done by gravity on the mass is

where F is the force due to gravity, and and are the initial and final positions of the ball, respectively. The negative sign is
because gravity points down, which we consider to be the negative direction. For the constant gravitational field near Earth’s
surface, . The change in gravitational potential energy of the mass is

Note that is just the negative of the height h from which the mass falls, so we usually just write .

We now apply the same reasoning to a charge in an electric field to find the electric potential energy. The change in electric
potential energy is the work done by the electric field to move a charge q from an initial position to a final position (

). The definition of work does not change, except that now the work is done by the electric field:
. For a charge that falls through a constant electric field E, the force applied to the charge by the

electric field is . The change in electric potential energy of the charge is thus

or

This equation gives the change in electric potential energy of a charge q when it moves from position to position in a
constant electric field E.

Figure 18.22 shows how this analogy would work if we were close to Earth’s surface, where gravity is constant. The top image
shows a charge accelerating due to a constant electric field. Likewise, the round mass in the bottom image accelerates due to a
constant gravitation field. In both cases, the potential energy of the particle decreases, and its kinetic energy increases.
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Figure 18.22 In the top picture, a mass accelerates due to a constant electric field. In the bottom picture, the mass accelerates due to a

constant gravitational field.

WATCH PHYSICS

Analogy between Gravity and Electricity
This video discusses the analogy between gravitational potential energy and electric potential energy. It reviews the concepts of
work and potential energy and shows the connection between a mass in a uniform gravitation field, such as on Earth’s surface,
and an electric charge in a uniform electric field.

Click to view content (https://www.openstax.org/l/28grav-elec)

If the electric field is not constant, then the equation is not valid, and deriving the electric potential
energy becomes more involved. For example, consider the electric potential energy of an assembly of two point charges and

of the same sign that are initially very far apart. We start by placing charge at the origin of our coordinate system. This
takes no electrical energy, because there is no electric field at the origin (because charge is very far away). We then bring
charge in from very far away to a distance r from the center of charge . This requires some effort, because the electric field
of charge applies a repulsive force on charge . The energy it takes to assemble these two charges can be recuperated if we
let them fly apart again. Thus, the charges have potential energy when they are a distance r apart. It turns out that the electric
potential energy of a pair of point charges and a distance r apart is

To recap, if charges and are free to move, they can accumulate kinetic energy by flying apart, and this kinetic energy can
be used to do work. The maximum amount of work the two charges can do (if they fly infinitely far from each other) is given by
the equation above.

Notice that if the two charges have opposite signs, then the potential energy is negative. This means that the charges have more
potential to do work when they are far apart than when they are at a distance r apart. This makes sense: Opposite charges
attract, so the charges can gain more kinetic energy if they attract each other from far away than if they start at only a short
distance apart. Thus, they have more potential to do work when they are far apart. Figure 18.23 summarizes how the electric
potential energy depends on charge and separation.
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Figure 18.23 The potential energy depends on the sign of the charges and their separation. The arrows on the charges indicate the

direction in which the charges would move if released. When charges with the same sign are far apart, their potential energy is low, as

shown in the top panel for two positive charges. The situation is the reverse for charges of opposite signs, as shown in the bottom panel.

Electric Potential
Recall that to find the force applied by a fixed charge Q on any arbitrary test charge q, it was convenient to define the electric
field, which is the force per unit charge applied by Q on any test charge that we place in its electric field. The same strategy is
used here with electric potential energy: We now define the electric potential V, which is the electric potential energy per unit
charge.

Normally, the electric potential is simply called the potential or voltage. The units for the potential are J/C, which are given the
name volt (V) after the Italian physicist Alessandro Volta (1745–1827). From the equation , the electric potential a
distance r from a point charge is

This equation gives the energy required per unit charge to bring a charge from infinity to a distance r from a point charge
Mathematically, this is written as

Note that this equation actually represents a difference in electric potential. However, because the second term is zero, it is
normally not written, and we speak of the electric potential instead of the electric potential difference, or we just say the
potential difference, or voltage). Below, when we consider the electric potential energy per unit charge between two points not
infinitely far apart, we speak of electric potential difference explicitly. Just remember that electric potential and electric
potential difference are really the same thing; the former is used just when the electric potential energy is zero in either the
initial or final charge configuration.

Coming back now to the electric potential a distance r from a point charge , note that can be any arbitrary point charge, so
we can drop the subscripts and simply write

Now consider the electric potential near a group of charges q1, q2, and q3, as drawn in Figure 18.24. The electric potential is

18.24

18.25

∞
18.26
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derived by considering the electric field. Electric fields follow the principle of superposition and can be simply added together,
so the electric potential from different charges also add together. Thus, the electric potential of a point near a group of charges is

where are the distances from the center of charges to the point of interest, as shown in Figure
18.24.

Figure 18.24 The potential at the red point is simply the sum of the potentials due to each individual charge.

Now let’s consider the electric potential in a uniform electric field. From the equation , we see that the
potential difference in going from to in a uniform electric field E is

TIPS FOR SUCCESS
Notice from the equation that the electric field can be written as

which means that the electric field has units of V/m. Thus, if you know the potential difference between two points,
calculating the electric field is very simple—you simply divide the potential difference by the distance!

Notice that a positive charge in a region with high potential will experience a force pushing it toward regions of lower potential.
In this sense, potential is like pressure for fluids. Imagine a pipe containing fluid, with the fluid at one end of the pipe under
high pressure and the fluid at the other end of the pipe under low pressure. If nothing prevents the fluid from flowing, it will
flow from the high-pressure end to the low-pressure end. Likewise, a positive charge that is free to move will move from a
region with high potential to a region with lower potential.

WATCH PHYSICS

Voltage
This video starts from electric potential energy and explains how this is related to electric potential (or voltage). The lecturer
calculates the electric potential created by a uniform electric field.

Click to view content (https://www.openstax.org/l/28voltage)

GRASP CHECK
What is the voltage difference between the positions and in an electric field of ?
a.

18.28
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b.
c.
d.

LINKS TO PHYSICS

Electric Animals
Many animals generate and/or detect electric fields. This is useful for activities such as hunting, defense, navigation,
communication, and mating. Because salt water is a relatively good conductor, electric fish have evolved in all the world’s
oceans. These fish have intrigued humans since the earliest times. In the nineteenth century, parties were even organized where
the main attraction was getting a jolt from an electric fish! Scientists also studied electric fish to learn about electricity.
Alessandro Volta based his research that led to batteries in 1799 on electric fish. He even referred to batteries as artificial electric
organs, because he saw them as imitations of the electric organs of electric fish.

Animals that generate electricity are called electrogenic and those that detect electric fields are called electroreceptive. Most fish
that are electrogenic are also electroreceptive. One of the most well-known electric fish is the electric eel (see Figure 18.25),
which is both electrogenic and electroreceptive. These fish have three pairs of organs that produce the electric charge: the main
organ, Hunter’s organ, and Sach’s organ. Together, these organs account for more than 80percent of the fish’s body.

Electric eels can produce electric discharges of much greater voltage than what you would get from a standard wall socket. These
discharges can stun or even kill their prey. They also use low-intensity discharges to navigate. The electric fields they generate
reflect off nearby obstacles or animals and are then detected by electroreceptors in the eel’s skin. The three organs that produce
electricity contain electrolytes, which are substances that ionize when dissolved in water (or other liquids). An ionized atom or
molecule is one that has lost or gained at least one electron, so it carries a net charge. Thus, a liquid solution containing an
electrolyte conducts electricity, because the ions in the solution can move if an electric field is applied.

To produce large discharges, the main organ is used. It contains approximately 6,000 rows of electroplaques connected in a long
chain. Connected this way, the voltage between electroplaques adds up, creating a large final voltage. Each electroplaque
consists of a column of cells controlled by an excitor nerve. When triggered by the excitor nerve, the electroplaques allow ionized
sodium to flow through them, creating a potential difference between electroplaques. These potentials add up, and a large
current can flow through the electrolyte.

This geometry is reflected in batteries, which also use stacks of plates to produce larger potential differences.

Figure 18.25 An electric eel in its natural environment. (credit: Steven G. Johnson)

GRASP CHECK
If an electric eel produces 1,000 V, which voltage is produced by each electroplaque in the main organ?
a. 0.17 mV
b. 1.7 mV
c. 17 mV
d. 170 mV
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WORKED EXAMPLE

X-ray Tube
Dentists use X-rays to image their patients’ teeth and bones. The X-ray tubes that generate X-rays contain an electron source
separated by about 10 cm from a metallic target. The electrons are accelerated from the source to the target by a uniform electric
field with a magnitude of about 100 kN/C, as drawn in Figure 18.26. When the electrons hit the target, X-rays are produced. (a)
What is the potential difference between the electron source and the metallic target? (b) What is the kinetic energy of the
electrons when they reach the target, assuming that the electrons start at rest?

Figure 18.26 In an X-ray tube, a large current flows through the electron source, causing electrons to be ejected from the electron

source. The ejected electrons are accelerated toward the target by the electric field. When they strike the target, X-rays are produced.

STRATEGY FOR (A)
Use the equation to find the potential difference given a constant electric field. Define the source position
as and the target position as . To accelerate the electrons in the positive x direction, the electric field must
point in the negative x direction. This way, the force on the electrons will point in the positive x direction, because both
q and E are negative. Thus, .

Solution for (a)
Using and , the equation tells us that the potential difference between the
electron source and the target is

Discussion for (a)
The potential difference is positive, so the energy per unit positive charge is higher at the target than at the source. This means
that free positive charges would fall from the target to the source. However, electrons are negative charges, so they accelerate
from the source toward the target, gaining kinetic energy as they go.

STRATEGY FOR (B)
Apply conservation of energy to find the final kinetic energy of the electrons. In going from the source to the target, the change
in electric potential energy plus the change in kinetic energy of the electrons must be zero, so The change in
electric potential energy for moving through a constant electric field is given by the equation

where the electric field is . Because the electrons start at rest, their initial kinetic energy is zero. Thus,
the change in kinetic energy is simply their final kinetic energy, so .

Solution for (b)
Again and . The charge of an electron is . Conservation of energy
gives
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Inserting the known values into the right-hand side of this equation gives

Discussion for (b)
This is a very small energy. However, electrons are very small, so they are easy to accelerate, and this energy is enough to make
an electron go extremely fast. You can find their speed by using the definition of kinetic energy, . The result is that
the electrons are moving at more than 100 million miles per hour!

WORKED EXAMPLE

Electric Potential Energy of Doorknob and Dust Speck
Consider again the doorknob from the example in the previous section. The doorknob is treated as a spherical conductor with a
uniform static charge on its surface. What is the electric potential energy between the doorknob and a speck of
dust carrying a charge at 1.0 cm from the front surface of the doorknob? The diameter of the doorknob is 5.0 cm.
STRATEGY
As we did in the previous section, we treat the charge as if it were concentrated at the center of the doorknob. Again, as you will
be able to validate in later physics classes, we can make this simplification, because the charge is uniformly distributed over the
surface of the spherical object. Make a sketch of the situation and define a coordinate system, as shown in the image below. We
use to indicate the outward direction perpendicular to the door, with at the center of the doorknob. If the diameter of
the doorknob is 5.0 cm, its radius is 2.5 cm. Thus, the speck of dust 1.0 cm from the surface of the doorknob is a distance

from the center of the doorknob. To solve this problem, use the equation .

Solution
The charge on the doorknob is and the charge on the speck of dust is

. The distance . Inserting these values into the equation
gives

Discussion
The energy is negative, which means that the energy will decrease that is, get even more negative as the speck of dust
approaches the doorknob. This helps explain why dust accumulates on objects that carry a static charge. However, note that
insulators normally collect more static charge than conductors, because any charge that accumulates on insulators cannot move
about on the insulator to find a way to escape. They must simply wait to be removed by some passing moist speck of dust or
other host.
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Practice Problems
19. What is the electric potential 10 cm from a −10 nC charge?

a. 9.0 × 102 V
b. 9.0 × 103 V
c. 9.0 × 104 V
d. 9.0 × 105 V

20. An electron accelerates from 0 to 10 × 104 m/s in an electric field. Through what potential difference did the electron travel?
The mass of an electron is 9.11 × 10–31 kg, and its charge is −1.60 × 10–19 C.
a. 29 mV
b. 290 mV
c. 2,900 mV
d. 29 V

Check Your Understanding
21. Gravitational potential energy is the potential for two masses to do work by virtue of their positions with

respect to each other. What is the analogous definition of electric potential energy?
a. Electric potential energy is the potential for two charges to do work by virtue of their positions with respect to the

origin point.
b. Electric potential energy is the potential for two charges to do work by virtue of their positions with respect to infinity.
c. Electric potential energy is the potential for two charges to do work by virtue of their positions with respect to each

other.
d. Electric potential energy is the potential for single charges to do work by virtue of their positions with respect to their

final positions.

22. A negative charge is 10 m from a positive charge. Where would you have to move the negative charge to increase the
potential energy of the system?
a. The negative charge should be moved closer to the positive charge.
b. The negative charge should be moved farther away from the positive charge.
c. The negative charge should be moved to infinity.
d. The negative charge should be placed just next to the positive charge.

18.5 Capacitors and Dielectrics
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Calculate the energy stored in a charged capacitor and the capacitance of a capacitor
• Explain the properties of capacitors and dielectrics

Section Key Terms

capacitor dielectric

Capacitors
Consider again the X-ray tube discussed in the previous sample problem. How can a uniform electric field be produced? A single
positive charge produces an electric field that points away from it, as in . This field is not uniform, because the space between
the lines increases as you move away from the charge. However, if we combine a positive and a negative charge, we obtain the
electric field shown in (a). Notice that, between the charges, the electric field lines are more equally spaced.

What happens if we place, say, five positive charges in a line across from five negative charges, as in Figure 18.27? Now the
region between the lines of charge contains a fairly uniform electric field.
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Figure 18.27 The red dots are positive charges, and the blue dots are negative charges. The electric-field direction is shown by the red

arrows. Notice that the electric field between the positive and negative dots is fairly uniform.

We can extend this idea even further and into two dimensions by placing two metallic plates face to face and charging one with
positive charge and the other with an equal magnitude of negative charge. This can be done by connecting one plate to the
positive terminal of a battery and the other plate to the negative terminal, as shown in Figure 18.28. The electric field between
these charged plates will be extremely uniform.
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Figure 18.28 Two parallel metal plates are charged with opposite charge, by connecting the plates to the opposite terminals of a battery.

The magnitude of the charge on each plate is the same.

Let’s think about the work required to charge these plates. Before the plates are connected to the battery, they are neutral—that
is, they have zero net charge. Placing the first positive charge on the left plate and the first negative charge on the right plate
requires very little work, because the plates are neutral, so no opposing charges are present. Now consider placing a second
positive charge on the left plate and a second negative charge on the right plate. Because the first two charges repel the new
arrivals, a force must be applied to the two new charges over a distance to put them on the plates. This is the definition of work,
which means that, compared with the first pair, more work is required to put the second pair of charges on the plates. To place
the third positive and negative charges on the plates requires yet more work, and so on. Where does this work come from? The
battery! Its chemical potential energy is converted into the work required to separate the positive and negative charges.

Although the battery does work, this work remains within the battery-plate system. Therefore, conservation of energy tells us
that, if the potential energy of the battery decreases to separate charges, the energy of another part of the system must increase
by the same amount. In fact, the energy from the battery is stored in the electric field between the plates. This idea is analogous
to considering that the potential energy of a raised hammer is stored in Earth’s gravitational field. If the gravitational field were
to disappear, the hammer would have no potential energy. Likewise, if no electric field existed between the plates, no energy
would be stored between them.

If we now disconnect the plates from the battery, they will hold the energy. We could connect the plates to a lightbulb, for
example, and the lightbulb would light up until this energy was used up. These plates thus have the capacity to store energy. For
this reason, an arrangement such as this is called a capacitor. A capacitor is an arrangement of objects that, by virtue of their
geometry, can store energy an electric field.

Various real capacitors are shown in Figure 18.29. They are usually made from conducting plates or sheets that are separated by
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an insulating material. They can be flat or rolled up or have other geometries.

Figure 18.29 Some typical capacitors. (credit: Windell Oskay)

The capacity of a capacitor is defined by its capacitance C, which is given by

where Q is the magnitude of the charge on each capacitor plate, and V is the potential difference in going from the negative
plate to the positive plate. This means that both Q and V are always positive, so the capacitance is always positive. We can see
from the equation for capacitance that the units of capacitance are C/V, which are called farads (F) after the nineteenth-century
English physicist Michael Faraday.

The equation makes sense: A parallel-plate capacitor (like the one shown in Figure 18.28) the size of a football field
could hold a lot of charge without requiring too much work per unit charge to push the charge into the capacitor. Thus, Q would
be large, and V would be small, so the capacitance C would be very large. Squeezing the same charge into a capacitor the size of
a fingernail would require much more work, so V would be very large, and the capacitance would be much smaller.

Although the equation makes it seem that capacitance depends on voltage, in fact it does not. For a given capacitor,
the ratio of the charge stored in the capacitor to the voltage difference between the plates of the capacitor always remains the
same. Capacitance is determined by the geometry of the capacitor and the materials that it is made from. For a parallel-plate
capacitor with nothing between its plates, the capacitance is given by

where A is the area of the plates of the capacitor and d is their separation. We use instead of C, because the capacitor has
nothing between its plates (in the next section, we’ll see what happens when this is not the case). The constant read epsilon
zero is called the permittivity of free space, and its value is

Coming back to the energy stored in a capacitor, we can ask exactly how much energy a capacitor stores. If a capacitor is charged
by putting a voltage V across it for example, by connecting it to a battery with voltage V—the electrical potential energy stored in
the capacitor is

Notice that the form of this equation is similar to that for kinetic energy, .

WATCH PHYSICS

Where does Capacitance Come From?
This video shows how capacitance is defined and why it depends only on the geometric properties of the capacitor, not on
voltage or charge stored. In so doing, it provides a good review of the concepts of work and electric potential.

Click to view content (https://www.openstax.org/l/28capacitance)
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GRASP CHECK
If you increase the distance between the plates of a capacitor, how does the capacitance change?
a. Doubling the distance between capacitor plates will reduce the capacitance four fold.
b. Doubling the distance between capacitor plates will reduce the capacitance two fold.
c. Doubling the distance between capacitor plates will increase the capacitance two times.
d. Doubling the distance between capacitor plates will increase the capacitance four times.

WORKED EXAMPLE

Capacitance and Charge Stored in a Parallel Plate Capacitor
(a) What is the capacitance of a parallel-plate capacitor with metal plates, each of area 1.00 m2, separated by 0.0010 m? (b) What
charge is stored in this capacitor if a voltage of 3.00 × 103 V is applied to it?
STRATEGY FOR (A)
Use the equation .

Solution for (a)
Entering the given values into this equation for the capacitance of a parallel-plate capacitor yields

Discussion for (a)
This small value for the capacitance indicates how difficult it is to make a device with a large capacitance. Special techniques
help, such as using very-large-area thin foils placed close together or using a dielectric (to be discussed below).

STRATEGY FOR (B)
Knowing C, find the charge stored by solving the equation , for the charge Q.

Virtual Physics

Charge your Capacitor
Click to view content (http://www.openstax.org/l/28charge-cap)
For this simulation, choose the tab labeled Introduction at the top left of the screen. You are presented with a parallel-plate
capacitor connected to a variable-voltage battery. The battery is initially at zero volts, so no charge is on the capacitor. Slide
the battery slider up and down to change the battery voltage, and observe the charges that accumulate on the plates. Display
the capacitance, top-plate charge, and stored energy as you vary the battery voltage. You can also display the electric-field
lines in the capacitor. Finally, probe the voltage between different points in this circuit with the help of the voltmeter, and
probe the electric field in the capacitor with the help of the electric-field detector.

GRASP CHECK
True or false— In a capacitor, the stored energy is always positive, regardless of whether the top plate is charged with
negative or positive charge.
a. false
b. true

18.39
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Solution for (b)
The charge Q on the capacitor is

Discussion for (b)
This charge is only slightly greater than typical static electricity charges. More charge could be stored by using a dielectric
between the capacitor plates.

WORKED EXAMPLE

What battery is needed to charge a capacitor?
Your friend provides you with a capacitor. To store on this capacitor, what voltage battery should you buy?
STRATEGY
Use the equation to find the voltage needed to charge the capacitor.

Solution
Solving for the voltage gives . Inserting and

gives

Discussion
Such a battery should be easy to procure. There is still a question of whether the battery contains enough energy to provide the
desired charge. The equation allows us to calculate the required energy.

A typical commercial battery can easily provide this much energy.

Practice Problems
23. What is the voltage on a 35 μF with 25 nC of charge?

a. 8.75 × 10−13 V
b. 0.71 × 10−3 V
c. 1.4 × 10−3 V
d. 1.4 × 103 V

24. Which voltage is across a 100 μF capacitor that stores 10 J of energy?
a. −4.5 × 102 V
b. 4.5 × 102 V
c. ±4.5 × 102 V
d. ±9 × 102 V

Dielectrics
Before working through some sample problems, let’s look at what happens if we put an insulating material between the plates of
a capacitor that has been charged and then disconnected from the charging battery, as illustrated in Figure 18.30. Because the
material is insulating, the charge cannot move through it from one plate to the other, so the charge Q on the capacitor does not
change. An electric field exists between the plates of a charged capacitor, so the insulating material becomes polarized, as shown
in the lower part of the figure. An electrically insulating material that becomes polarized in an electric field is called a dielectric.
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Figure 18.30 shows that the negative charge in the molecules in the material shifts to the left, toward the positive charge of the
capacitor. This shift is due to the electric field, which applies a force to the left on the electrons in the molecules of the dielectric.
The right sides of the molecules are now missing a bit of negative charge, so their net charge is positive.

Figure 18.30 The top and bottom capacitors carry the same charge Q. The top capacitor has no dielectric between its plates. The bottom

capacitor has a dielectric between its plates. The molecules in the dielectric are polarized by the electric field of the capacitor.

All electrically insulating materials are dielectrics, but some are better dielectrics than others. A good dielectric is one whose
molecules allow their electrons to shift strongly in an electric field. In other words, an electric field pulls their electrons a fair bit
away from their atom, but they do not escape completely from their atom (which is why they are insulators).

Figure 18.31 shows a macroscopic view of a dielectric in a charged capacitor. Notice that the electric-field lines in the capacitor
with the dielectric are spaced farther apart than the electric-field lines in the capacitor with no dielectric. This means that the
electric field in the dielectric is weaker, so it stores less electrical potential energy than the electric field in the capacitor with no
dielectric.
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Where has this energy gone? In fact, the molecules in the dielectric act like tiny springs, and the energy in the electric field goes
into stretching these springs. With the electric field thus weakened, the voltage difference between the two sides of the capacitor
is smaller, so it becomes easier to put more charge on the capacitor. Placing a dielectric in a capacitor before charging it
therefore allows more charge and potential energy to be stored in the capacitor. A parallel plate with a dielectric has a
capacitance of

where (kappa) is a dimensionless constant called the dielectric constant. Because is greater than 1 for dielectrics, the
capacitance increases when a dielectric is placed between the capacitor plates. The dielectric constant of several materials is
shown in Table 18.1.

Material Dielectric Constant ( )

Vacuum 1.00000

Air 1.00059

Fused quartz 3.78

Neoprene rubber 6.7

Nylon 3.4

Paper 3.7

Polystyrene 2.56

Pyrex glass 5.6

Silicon oil 2.5

Strontium titanate 233

Teflon 2.1

Water 80

Table 18.1 Dielectric Constants for Various Materials
at 20 °C
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Figure 18.31 The top and bottom capacitors carry the same charge Q. The top capacitor has no dielectric between its plates. The bottom

capacitor has a dielectric between its plates. Because some electric-field lines terminate and start on polarization charges in the dielectric,

the electric field is less strong in the capacitor. Thus, for the same charge, a capacitor stores less energy when it contains a dielectric.

WORKED EXAMPLE

Capacitor for Camera Flash
A typical flash for a point-and-shoot camera uses a capacitor of about . (a) If the potential difference between the
capacitor plates is 100 V—that is, 100 V is placed “across the capacitor,” how much energy is stored in the capacitor? (b) If the
dielectric used in the capacitor were a 0.010-mm-thick sheet of nylon, what would be the surface area of the capacitor plates?
STRATEGY FOR (A)
Given that and , we can use the equation , to find the electric potential energy
stored in the capacitor.
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Solution for (a)
Inserting the given quantities into gives

Discussion for (a)
This is enough energy to lift a 1-kg ball about 1 m up from the ground. The flash lasts for about 0.001 s, so the power delivered by
the capacitor during this brief time is . Considering that a car engine delivers about 100 kW of
power, this is not bad for a little capacitor!

STRATEGY FOR (B)
Because the capacitor plates are in contact with the dielectric, we know that the spacing between the capacitor plates is

. From the previous table, the dielectric constant of nylon is . We can now use the
equation to find the area A of the capacitor.

Solution (b)
Solving the equation for the area A and inserting the known quantities gives

Discussion for (b)
This is much too large an area to roll into a capacitor small enough to fit in a handheld camera. This is why these capacitors don’t
use simple dielectrics but a more advanced technology to obtain a high capacitance.

Practice Problems
25. With 12 V across a capacitor, it accepts 10 mC of charge. What is its capacitance?

a. 0.83 μF
b. 83 μF
c. 120 μF
d. 830 μF

26. A parallel-plate capacitor has an area of 10 cm2 and the plates are separated by 100 μm . If the capacitor contains paper
between the plates, what is its capacitance?
a. 3.3 × 10−10 F
b. 3.3 × 10−8 F
c. 3.3 × 10−6 F
d. 3.3 × 10−4 F

Check Your Understanding
27. If the area of a parallel-plate capacitor doubles, how is the capacitance affected?

a. The capacitance will remain same.
b. The capacitance will double.
c. The capacitance will increase four times.
d. The capacitance will increase eight times.

28. If you double the area of a parallel-plate capacitor and reduce the distance between the plates by a factor of four, how is the
capacitance affected?
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a. It will increase by a factor of two.
b. It will increase by a factor of four.
c. It will increase by a factor of six.
d. It will increase by a factor of eight.
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KEY TERMS
capacitor arrangement of objects that can store electrical

energy by virtue of their geometry
conductor material through which electric charge can

easily move, such as metals
Coulomb’s law describes the electrostatic force between

charged objects, which is proportional to the charge on
each object and inversely proportional to the square of
the distance between the objects

dielectric electrically insulating material that becomes
polarized in an electric field

electric field defines the force per unit charge at all
locations in space around a charge distribution

electric potential the electric potential energy per unit
charge

electric potential energy the work that a charge can do by
virtue of its position in an electric field

electron subatomic particle that carries one indivisible unit

of negative electric charge
induction creating an unbalanced charge distribution in an

object by moving a charged object toward it (but without
touching)

insulator material through which a charge does not move,
such as rubber

inverse-square law law that has the form of a ratio, with
the denominator being the distance squared

law of conservation of charge states that total charge is
constant in any process

polarization separation of charge induced by nearby excess
charge

proton subatomic particle that carries the same magnitude
charge as the electron, but its charge is positive

test charge positive electric charge whose with a charge
magnitude so small that it does not significantly perturb
any nearby charge distribution

SECTION SUMMARY
18.1 Electrical Charges,
Conservation of Charge, and
Transfer of Charge

• Electric charge is a conserved quantity, which means it
can be neither created nor destroyed.

• Electric charge comes in two varieties, which are called
positive and negative.

• Charges with the same sign repel each other. Charges
with opposite signs attract each other.

• Charges can move easily in conducting material.
Charges cannot move easily in an insulating material.

• Objects can be charged in three ways: by contact, by
conduction, and by induction.

• Although a polarized object may be neutral, its electrical
charge is unbalanced, so one side of the object has
excess negative charge and the other side has an equal
magnitude of excess positive charge.

18.2 Coulomb's law
• Coulomb’s law is an inverse square law and describes

the electrostatic force between particles.
• The electrostatic force between charged objects is

proportional to the charge on each object and inversely
proportional to the distance squared between the
objects.

• If Coulomb’s law gives a negative result, the force is
attractive; if the result is positive, the force is repulsive.

18.3 Electric Field
• The electric field defines the force per unit charge in the

space around a charge distribution.

• For a point charge or a sphere of uniform charge, the
electric field is inversely proportional to the distance
from the point charge or from the center of the sphere.

• Electric-field lines never cross each other.
• More force is applied to a charge in a region with many

electric field lines than in a region with few electric field
lines.

• Electric field lines start at positive charges and point
away from positive charges. They end at negative
charges and point toward negative charges.

18.4 Electric Potential
• Electric potential energy is a concept similar to

gravitational potential energy: It is the potential that
charges have to do work by virtue of their positions
relative to each other.

• Electric potential is the electric potential energy per
unit charge.

• The potential is always measured between two points,
where one point may be at infinity.

• Positive charges move from regions of high potential to
regions of low potential.

• Negative charges move from regions of low potential to
regions of high potential.

18.5 Capacitors and Dielectrics
• The capacitance of a capacitor depends only on the

geometry of the capacitor and the materials from which
it is made. It does not depend on the voltage across the
capacitor.

• Capacitors store electrical energy in the electric field
between their plates.
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• A dielectric material is an insulator that is polarized in
an electric field.

• Putting a dielectric between the plates of a capacitor
increases the capacitance of the capacitor.

KEY EQUATIONS
18.2 Coulomb's law

Coulomb’s law

18.3 Electric Field

electric field

magnitude of electric field of point
charge

18.4 Electric Potential

change in electric potential
energy for a charge that
moves in a constant electric
field

electric potential energy of a
charge a distance r from a
point charge or sphere of
uniform charge

definition of electric
potential

change in electric potential
for a charge that moves in a
constant electric field

electric potential of a charge
a distance r from a point
charge or sphere of uniform
charge

18.5 Capacitors and Dielectrics

capacitance

energy stored in a capacitor

capacitance of a parallel-plate
capacitor

CHAPTER REVIEW
Concept Items
18.1 Electrical Charges, Conservation of
Charge, and Transfer of Charge
1. There are very large numbers of charged particles in most

objects. Why, then, don’t most objects exhibit static
electric effects?
a. Most objects are neutral.
b. Most objects have positive charge only.
c. Most objects have negative charge only.
d. Most objects have excess protons.

2. Can an insulating material be used to charge a
conductor? If so, how? If not, why not?
a. No, an insulator cannot charge a conductor by

induction.
b. No, an insulating material cannot charge a

conductor.

c. Yes, an uncharged insulator can charge a conductor
by induction.

d. Yes, a charged insulator can charge a conductor
upon contact.

3. True or false—A liquid can be an insulating material.
a. true
b. false

18.2 Coulomb's law
4. Two plastic spheres with uniform charge repel each other

with a force of 10 N . If you remove the charge from one
sphere, what will be the force between the spheres?
a. The force will be 15 N.
b. The force will be 10 N.
c. The force will be 5 N.
d. The force will be zero.

5. What creates a greater magnitude of force, two charges
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+q a distance r apart or two charges – q the same
distance apart?
a. Two charges +q a distance r away
b. Two charges −q a distance r away
c. The magnitudes of forces are equal.

6. In Newton’s law of universal gravitation, the force
between two masses is proportional to the product of the
two masses. What plays the role of mass in Coulomb’s
law?
a. the electric charge
b. the electric dipole
c. the electric monopole
d. the electric quadruple

18.3 Electric Field
7. Why can electric fields not cross each other?

a. Many electric-field lines can exist at any given point
in space.

b. No electric-field lines can exist at any given point in
space.

c. Only a single electric-field line can exist at any given
point in space.

d. Two electric-field lines can exist at the same point in
space.

8. A constant electric field is (4.5 × 105 N/C)ŷ. In which
direction is the force on a −20 nC charge placed in this
field?
a. The direction of the force is in the direction.
b. The direction of the force is in the direction.
c. The direction of the force is in the −ŷ direction.
d. The direction of the force is in the +ŷ direction.

18.4 Electric Potential
9. True or false—The potential from a group of charges is

the sum of the potentials from each individual charge.
a. false

b. true

10. True or false—The characteristics of an electric field
make it analogous to the gravitational field near the
surface of Earth.
a. false
b. true

11. An electron moves in an electric field. Does it move
toward regions of higher potential or lower potential?
Explain.
a. It moves toward regions of higher potential because

its charge is negative.
b. It moves toward regions of lower potential because

its charge is negative
c. It moves toward regions of higher potential because

its charge is positive.
d. It moves toward regions of lower potential because

its charge is positive.

18.5 Capacitors and Dielectrics
12. You insert a dielectric into an air-filled capacitor. How

does this affect the energy stored in the capacitor?
a. Energy stored in the capacitor will remain same.
b. Energy stored in the capacitor will decrease.
c. Energy stored in the capacitor will increase.
d. Energy stored in the capacitor will increase first,

and then it will decrease.

13. True or false— Placing a dielectric between the plates of
a capacitor increases the energy of the capacitor.
a. false
b. true

14. True or false— The electric field in an air-filled capacitor
is reduced when a dielectric is inserted between the
plates.
a. false
b. true

Critical Thinking Items
18.1 Electrical Charges, Conservation of
Charge, and Transfer of Charge
15. If you dive into a pool of seawater through which an

equal amount of positively and negatively charged
particles is moving, will you receive an electric shock?
a. Yes, because negatively charged particles are

moving.
b. No, because positively charged particles are

moving.
c. Yes, because positively and negatively charged

particles are moving.

d. No, because equal amounts of positively and
negatively charged particles are moving.

16. True or false—The high-voltage wires that you see
connected to tall metal-frame towers are held aloft by
insulating connectors, and these wires are wrapped in
an insulating material.
a. true
b. false

17. By considering the molecules of an insulator, explain
how an insulator can be overall neutral but carry a
surface charge when polarized.
a. Inside the insulator, the oppositely charged ends of
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the molecules cancel each other.
b. Inside the insulator, the oppositely charged ends of

the molecules do not cancel each other.
c. The electron distribution in all the molecules shifts

in every possible direction, leaving an excess of
positive charge on the opposite end of each
molecule.

d. The electron distribution in all the molecules shifts
in a given direction, leaving an excess of negative
charge on the opposite end of each molecule.

18.2 Coulomb's law
18. In terms of Coulomb’s law, why are water molecules

attracted by positive and negative charges?
a. Water molecules are neutral.
b. Water molecules have a third type of charge that is

attracted by positive as well as negative charges.
c. Water molecules are polar.
d. Water molecule have either an excess of electrons

or an excess of protons.

19. A negative lightning strike occurs when a negatively
charged cloud discharges its excess electrons to the
positively charged ground. If you observe a cloud-to-
cloud lightning strike, what can you say about the
charge on the area of the cloud struck by lightning?
a. The area of the cloud that was struck by lightning

had a positive charge.
b. The area of the cloud that was struck by lightning

had a negative charge.
c. The area of the cloud that was struck by lightning is

neutral.
d. The area of the cloud that was struck by lightning

had a third type of charge.

18.3 Electric Field
20. An arbitrary electric field passes through a box-shaped

volume. There are no charges in the box. If 11 electric-
field lines enter the box, how many electric-field lines
must exit the box?
a. nine electric field lines
b. 10 electric field lines
c. 11 electric field lines
d. 12 electric field lines

21. In a science-fiction movie, a villain emits a radial
electric field to repulse the hero. Knowing that the hero
is electrically neutral, is this possible? Explain your
reasoning.
a. No, because an electrically neutral body cannot be

repelled or attracted.
b. No, because an electrically neutral body can be

attracted but not repelled.
c. Yes, because an electrically neutral body can be

repelled or attracted.
d. Yes, because an electrically neutral body can be

repelled.

18.4 Electric Potential
22. What is the relationship between voltage and energy?

More precisely, what is the relationship between
potential difference and electric potential?
a. Voltage is the energy per unit mass at some point

in space.
b. Voltage is the energy per unit length in space.
c. Voltage is the energy per unit charge at some point

in space.
d. Voltage is the energy per unit area in space.

23. Three parallel plates are stacked above each other, with a
separation between each plate. If the potential
difference between the first two plates is ΔV1 and the
potential between the second two plates is ΔV2, what is
the potential difference between the first and the third
plates?
a. ΔV3 = ΔV2 + ΔV1

b. ΔV3 = ΔV2 − ΔV1

c. ΔV3 = ΔV2 / ΔV1

d. ΔV3 = ΔV2×ΔV1

18.5 Capacitors and Dielectrics
24. When you insert a dielectric into a capacitor, the energy

stored in the capacitor decreases. If you take the
dielectric out, the energy increases again. Where does
this energy go in the former case, and where does the
energy come from in the latter case?
a. Energy is utilized to remove the dielectric and is

released when the dielectric is introduced between
the plates.

b. Energy is released when the dielectric is added and
is utilized when the dielectric is introduced
between the plates.

c. Energy is utilized to polarize the dielectric and is
released when the dielectric is introduced between
the plates.

d. Energy is released to polarize the dielectric and is
utilized when dielectric is introduced between the
plates.
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Problems
18.1 Electrical Charges, Conservation of
Charge, and Transfer of Charge
25. A dust particle acquires a charge of −13 nC. How many

excess electrons does it carry?
a. 20.8 × 10−28 electrons
b. 20.8 × −19 electrons
c. 8.1 × 1010 electrons
d. 8.1 × 1019 electrons

26. Two identical conducting spheres are charged with a net
charge of +5.0 q on the first sphere and a net charge of
−8.0 q on the second sphere. The spheres are brought
together, allowed to touch, and then separated. What is
the net charge on each sphere now?
a. −3.0q
b. −1.5q
c. +1.5q
d. +3.0q

18.2 Coulomb's law
27. Two particles with equal charge experience a force of 10

nN when they are 30 cm apart. What is the magnitude
of the charge on each particle?
a. -5.8 × 10-10 C
b. -3.2 × 10-10 C
c. +3.2 × 10-10 C
d. +1.4 × 10-5 C

28. Three charges are on a line. The left charge is q1 = 2.0 nC
. The middle charge is q2 = 5.0 nC . The right charge is q3

= − 3.0 nC . The left and right charges are 2.0 cm from
the middle charge. What is the force on the middle
charge?
a. −5.6 × 10−4 N to the left
b. −1.12 × 10−4 N to the left
c. +1.12 × 10−4 N to the right
d. 5.6 × 10−4 N to the right

18.3 Electric Field

29. An electric field (15 N/C)ẑ applies a force (− 3 × 10–6 N)ẑ
on a particle. What is the charge on the particle?
a. −2.0 × 10–7 C
b. 2.0 × 10–7 C

c. 2.0 × 10–8 C
d. 2.0 × 10–9 C

30. Two uniform electric fields are superimposed. The first

electric field is . The second electric

field is . With respect to the positive
x axis, at which angle will a positive test charge
accelerate in this combined field?
a. 27°
b. 54°
c. 90°
d. 108°

18.4 Electric Potential
31. You move a charge q from ri = 20 cm to rf = 40 cm from a

fixed charge Q = 10 nC. What is the difference in
potential for these two positions?
a. −2.2 × 102 V
b. −1.7 × 103 V
c. −2.2 × 104 V
d. −1.7 × 102 V

32. How much work is required from an outside agent to
move an electron from xi = 0 to xf = 20 cm in an electric
field ?
a. 1.6 × 10−15 J
b. 1.6 × 10−16 J
c. 1.6 × 10−20 J
d. 1.6 × 10−18 J

18.5 Capacitors and Dielectrics
33. A 4.12 µF parallel-plate capacitor has a plate area of

2,000 cm2 and a plate separation of 10 µm . What
dielectric is between the plates?
a. 1, the dielectric is strontium titanate
b. 466, the dielectric is strontium
c. 699, the dielectric is strontium nitrate
d. 1,000, the dielectric is strontium chloride

34. What is the capacitance of a metal sphere of radius ?
a.

b.
c.

d.

Performance Task
18.5 Capacitors and Dielectrics
35. Newton’s law of universal gravitation is

where . This describes
the gravitational force between two point masses m1 and
m2.
Coulomb’s law is

18.46 18.47
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where . This describes the
electric force between two point charges q1 and q2.
(a) Describe how the force in each case depends on the
distance r between the objects. How do the forces
change if the distance is reduced by half? If the distance
is doubled?
(b) Describe the similarities and differences between the
two laws. Consider the signs of the quantities that create
the interaction (i.e., mass and charge), the constants G
and k, and their dependence on separation r.
(c) Given that the electric force is much stronger than

the gravitational force, discuss why the law for
gravitational force was discovered much earlier than the
law for electric force.
(d) Consider a hydrogen atom, which is a single proton
orbited by a single electron. The electric force holds the
electron and proton together so that the hydrogen atom
has a radius of about . Assuming the
force between electron and proton does not change,
what would be the approximate radius of the hydrogen
atom if ?

TEST PREP
Multiple Choice
18.1 Electrical Charges, Conservation of
Charge, and Transfer of Charge
36. A neutral hydrogen atom has one proton and one

electron. If you remove the electron, what will be the
leftover sign of the charge?
a. negative
b. positive
c. zero
d. neutral

37. What is the charge on a proton?
a. +8.99 × 10–9 C
b. −8.99 × 10–9 C
c. + 1.60 × 10–19 C
d. −1.60 × 10–19 C

38. True or false—Carbon is more conductive than pure
water.
a. true
b. false

39. True or false—Two insulating objects are polarized. To
cancel the polarization, it suffices to touch them
together.
a. true
b. false

40. How is the charge of the proton related to the charge of
the electron?
a. The magnitudes of charge of the proton and the

electron are equal, but the charge of the proton is
positive, whereas the charge of the electron is
negative.

b. The magnitudes of charge of the proton and the
electron are unequal, but the charge of the proton
is positive, whereas the charge of the electron is
negative.

c. The magnitudes of charge of the proton and the
electron are equal, but the charge of the proton is

negative, whereas the charge of the electron is
positive.

d. The magnitudes of charge of the proton and the
electron are unequal, but the charge of the proton
is negative, whereas the charge of the electron is
positive.

18.2 Coulomb's law
41. If you double the distance between two point charges, by

which factor does the force between the particles
change?
a. 1/2
b. 2
c. 4
d. 1/4

42. The combined charge of all the electrons in a dime is
hundreds of thousands of coulombs. Because like
charges repel, what keeps the dime from exploding?
a. The dime has an equal number of protons, with

positive charge.
b. The dime has more protons than electrons, with

positive charge.
c. The dime has fewer protons than electrons, with

positive charge.
d. The dime is polarized, with electrons on one side

and protons on the other side.

43. How can you modify the charges on two particles to
quadruple the force between them without moving
them?
a. Increase the distance between the charges by a

factor of two.
b. Increase the distance between the charges by a

factor of four.
c. Increase the product of the charges by a factor of

two
d. Increase the product of the charges by a factor of

four.

596 Chapter 18 • Test Prep

Access for free at openstax.org.



18.3 Electric Field
44. What is the magnitude of the electric field 12 cm from a

charge of 1.5 nC ?
a. 9.4 × 107 N/ C
b. 1.1 × 102 N/C
c. 9.4 × 102 N/C
d. 9.4 × 10–2 N/C

45. A charge distribution has electric field lines pointing
into it. What sign is the net charge?
a. positive
b. neutral
c. final
d. negative

46. If five electric field lines come out of point charge q1 and
10 electric-field lines go into point charge q2, what is the
ratio q1/q2?
a. –2
b. –1
c. –1/2
d. 0

47. True or false—The electric-field lines from a positive
point charge spread out radially and point outward.
a. false
b. true

18.4 Electric Potential
48. What is the potential at 1.0 m from a point charge Q = −

25 nC?
a. 6.6 × 102 V
b. −2.3 × 102 V
c. −6.6 × 102 V
d. 2.3 × 102 V

49. Increasing the distance by a factor of two from a point
charge will change the potential by a factor of how

much?
a. 2
b. 4
c. 1/2
d. 1/4

50. True or false—Voltage is the common word for potential
difference, because this term is more descriptive than
potential difference.
a. false
b. true

18.5 Capacitors and Dielectrics
51. Which magnitude of charge is stored on each plate of a

12 µF capacitor with 12 V applied across it?
a. –1.0 × 10–6 C
b. 1.0 × 10–6 C
c. –1.4 × 10–4 C
d. 1.4 × 10–4 C

52. What is the capacitance of a parallel-plate capacitor
with an area of 200 cm2, a distance of 0.20 mm between
the plates, and polystyrene as a dielectric?
a. 2.3 nC
b. 0.89 nC
c. 23 nC
d. 8.9 nC

53. Which factors determine the capacitance of a device?
a. Capacitance depends only on the materials that

make up the device.
b. Capacitance depends on the electric field

surrounding the device.
c. Capacitance depends on the geometric and

material parameters of the device.
d. Capacitance depends only on the mass of the

capacitor

Short Answer
18.1 Electrical Charges, Conservation of
Charge, and Transfer of Charge
54. Compare the mass of the electron with the mass of the

proton.
a. The mass of the electron is about 1,000 times that

of the proton.
b. The mass of the proton is about 1,000 times that of

the electron.
c. The mass of the electron is about 1,836 times that of

the proton.
d. The mass of the proton is about 1,836 times that of

the electron.

55. The positive terminal of a battery is connected to one
connection of a lightbulb, and the other connection of
the lightbulb is connected to the negative terminal of the
battery. The battery pushes charge through the circuit
but does not become charged itself. Does this violate the
law of conservation of charge? Explain.
a. No, because this is a closed circuit.
b. No, because this is an open circuit.
c. Yes, because this is a closed circuit.
d. Yes, because this is an open circuit.

56. Two flat pieces of aluminum foil lay one on top of the
other. What happens if you add charge to the top piece
of aluminum foil?
a. The charge will distribute over the top of the top
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piece.
b. The charge will distribute to the bottom of the

bottom piece.
c. The inner surfaces will have excess charge of the

opposite sign.
d. The inner surfaces will have excess charge of the

same sign.

57. The students in your class count off consecutively so
each student has a number. The odd-numbered students
are told to act as negative charge, and the even-
numbered students are told to act as positive charge.
How would you organize them to represent a polarized
material?
a. The even-numbered and odd-numbered students

will be arranged one after the other.
b. Two even-numbered will be followed by two odd-

numbered, and so on.
c. Even-numbered students will be asked to come to

the front, whereas odd-numbered students will be
asked to go to the back of the class.

d. Half even-numbered and odd-numbered will come
to the front, whereas half even-numbered and odd-
numbered will go to the back.

58. An ion of iron contains 56 protons. How many electrons
must it contain if its net charge is +5e?
a. five electrons
b. 51 electrons
c. 56 electrons
d. 61 electrons

59. An insulating rod carries of charge. After
rubbing it with a material, you find it carries of
charge. How much charge was transferred to it?
a.
b.
c.
d.

60. A solid cube carries a charge of +8e. You measure the
charge on each face of the cube and find that each face
carries +0.5e of charge. Is the cube made of conducting
or insulating material? Explain.
a. The cube is made of insulating material, because all

the charges are on the surface of the cube.
b. The cube is made of conducting material, because

some of the charges are inside the cube.
c. The cube is made of insulating material, because all

the charges are on the surface of the cube.
d. The cube is made of insulating material, because

some of the charges are inside the cube.

61. You have four neutral conducting spheres and a
charging device that allows you to place charge q on any
neutral object. You want to charge one sphere with a

charge q/2 and the other three with a charge q6 . How do
you proceed?
a. Charge one sphere with charge q. Touch it

simultaneously to the three remaining neutral
spheres.

b. Charge one sphere with charge q. Touch it to one
other sphere to produce two spheres with charge
. Touch one of these spheres to one other neutral
sphere.

c. Charge one sphere with charge q. Touch it to one
other sphere to produce two spheres with charge
. Touch one of these spheres simultaneously to the
two remaining neutral spheres.

d. Charge one sphere with charge q. Touch it
simultaneously to two other neutral spheres to
produce three spheres with charge q/3. Touch one
of these spheres to one other neutral sphere.

18.2 Coulomb's law
62. Why does dust stick to the computer screen?

a. The dust is neutral.
b. The dust is polarized.
c. The dust is positively charged.
d. The dust is negatively charged.

63. The force between two charges is 4 × 10–9 N . If the
magnitude of one charge is reduced by a factor of two
and the distance between the charges is reduced by a
factor of two, what is the new force between the
charges?
a. 2 × 10–9 N
b. 4 × 10–9 N
c. 6 × 10–9 N
d. 8 × 10–9 N

64. True or false—Coulomb’s constant is k = 8.99 × 109

N·m2/C2. Newton’s gravitational constant is G = 6.67 ×
10−11 m3/kg⋅s2. This tells you about the relative strength
of the electrostatic force versus that of gravity.
a. true
b. false

65. An atomic nucleus contains 56 protons, for iron. Which
force would this nucleus apply on an electron at a
distance of 10×10–12 m?
a. 0.65 × 10–4 N
b. 0.02 × 10–4 N
c. 1.3 × 10–4 N
d. 72.8 × 10–4 N

18.3 Electric Field
66. The electric field a distance of 10 km from a storm cloud

is 1,000 N/C . What is the approximate charge in the
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cloud?
a. 0.0011 C
b. 11 C
c. 110 C
d. 1,100 C

67. Which electric field would produce a 10 N force in the
+x- direction on a charge of – 10 nC ?
a. − 1.0 × 109 N/C
b. 1.0 × 109 N/C
c. 1.0 × 1010 N/C
d. 1.0 × 1011 N/C

68. A positive charge is located at x = 0 . When a negative
charge is placed at x = 10 cm, what happens to the
electric field lines between the charges?
a. The electric field lines become denser between the

charges.
b. The electric field lines become denser between the

charges.
c. The electric field lines remains same between the

charges.
d. The electric field lines will be zero between the

charges.

18.4 Electric Potential
69. The energy required to bring a charge q = − 8.8 nC from

far away to 5.5 cm from a point charge Q is 13 mJ. What
is the potential at the final position of q?
a. −112 MV
b. −1.5 MV
c. −0.66 MV
d. +1.5 MV

70. How is electric potential related to electric potential
energy?
a. Electric potential is the electric potential energy

per unit mass at a given position in space.
b. Electric potential is the electric potential energy

per unit length at a given position in space. This
relation is not dimensionally correct.

c. Electric potential is the electric potential energy
per unit area in space.

d. Electric potential is the electric potential energy
per unit charge at a given position in space.

71. If it takes 10 mJ to move a charge q from xi = 25 cm to xf =
− 25 cm in an electric field of what is the
charge q?
a. −1.0 mC
b. +0.25 mC
c. + 1.0 mC

d. +400 mC

72. Given the potential difference between two points and
the distance between the points, explain how to obtain
the electric field between the points.
a. Add the electric potential to the distance to obtain

the electric field.
b. Divide the electric potential by the distance to

obtain the electric field.
c. Multiply the electric potential and the distance to

obtain the electric field.
d. Subtract the electric potential from the distance to

obtain the electric field.

18.5 Capacitors and Dielectrics
73. If you double the voltage across the plates of a capacitor,

how is the stored energy affected?
a. Stored energy will decrease two times.
b. Stored energy will decrease four times.
c. Stored energy will increase two times.
d. Stored energy will increase four times.

74. A capacitor with neoprene rubber as the dielectric stores
0.185 mJ of energy with a voltage of 50 V across the
plates. If the area of the plates is 500 cm2, what is the
plate separation?
a. 20 µm
b. 20 m
c. 80 µm
d. 80 m

75. Explain why a storm cloud before a lightning strike is
like a giant capacitor.
a. The storm cloud acts as a giant charged capacitor,

as it can store a large amount of charge.
b. The storm cloud acts as a giant charged capacitor,

as it contains a high amount of excess charges.
c. The storm cloud acts as a giant charged capacitor,

as it splits in two capacitor plates with equal and
opposite charge.

d. The storm cloud acts as a giant charged capacitor,
as it splits in two capacitor plates with unequal and
opposite charges.

76. A storm cloud is 2 km above the surface of Earth. The
lower surface of the cloud is approximately 2 km2 in
area. What is the approximate capacitance of this storm
cloud-Earth system?
a. 9 × 10–15 F
b. 9 × 10-9 F
c. 17.7 × 10-15 F
d. 17.7 × 10-9 F
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Extended Response
18.1 Electrical Charges, Conservation of
Charge, and Transfer of Charge
77. Imagine that the magnitude of the charge on the

electron differed very slightly from that of the proton.
How would this affect life on Earth and physics in
general?
a. Many macroscopic objects would be charged, so we

would experience the enormous force of electricity
on a daily basis.

b. Many macroscopic objects would be charged, so we
would experience the small force of electricity on a
daily basis.

c. Many macroscopic objects would be charged, but it
would not affect life on Earth and physics in
general.

d. Macroscopic objects would remain neutral, so it
would not affect life on Earth and physics in
general.

78. True or false—Conservation of charge is like balancing a
budget.
a. true
b. false

79. True or false—Although wood is an insulator, lightning
can travel through a tree to reach Earth.
a. true
b. false

80. True or false—An eccentric inventor attempts to levitate
by first placing a large negative charge on himself and
then putting a large positive charge on the ceiling of his
workshop. Instead, while he attempts to place a large
negative charge on himself, his clothes fly off.
a. true
b. false

18.2 Coulomb's law
81. Electrostatic forces are enormous compared to

gravitational force. Why do you not notice electrostatic
forces in everyday life, whereas you do notice the force
due to gravity?
a. Because there are two types of charge, but only one

type of mass exists.
b. Because there is only one type of charge, but two

types of mass exist.
c. Because opposite charges cancel each other, while

gravity does not cancel out.
d. Because opposite charges do not cancel each other,

while gravity cancels out.

82. A small metal sphere with a net charge of 3.0 nC is

touched to a second small metal sphere that is initially
neutral. The spheres are then placed 20 cm apart. What
is the force between the spheres?
a. 1.02 × 10−7 N
b. 2.55 × 10−7 N
c. 5.1 × 10−7 N
d. 20.4 × 10−7 N

18.3 Electric Field
83. Point charges are located at each corner of a square with

sides of 5.0 cm . The top-left charge is q1 = 8.0 nC The
top right charge is q2 = 4.0 nC. The bottom-right charge
is q3 = 4.0 nC. The bottom-left charge is q4 = 8.0 nC.
What is the electric field at the point midway between
charges q2 and q3?

a.

b.

c.

d.

84. A long straight wire carries a uniform positive charge
distribution. Draw the electric field lines in a plane
containing the wire at a location far from the ends of the
wire. Do not worry about the magnitude of the charge
on the wire.
a. Take the wire on the x-axis, and draw electric-field

lines perpendicular to it.
b. Take the wire on the x-axis, and draw electric-field

lines parallel to it.
c. Take the wire on the y-axis, and draw electric-field

lines along it.
d. Take the wire on the z-axis, and draw electric-field

lines along it.

18.4 Electric Potential
85. A square grid has charges of Q = 10 nC are each corner.

The sides of the square at 10 cm . How much energy does
it require to bring a q = 1.0 nC charge from very far away
to the point at the center of this square?
a. 1.3 × 10−6 J
b. 2.5 × 10−6 J
c. 3.8 × 10−6 J
d. 5.1 × 10−6 J

86. How are potential difference and electric-field strength
related for a constant electric field?
a. The magnitude of electric-field strength is

equivalent to the potential divided by the distance.
b. The magnitude of electric-field strength is

equivalent to the product of the electric potential
and the distance.

c. The magnitude of electric-field strength is
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equivalent to the difference between magnitude of
the electric potential and the distance.

d. The magnitude of electric-field strength is
equivalent to the sum of the magnitude of the
electric potential and the distance.

18.5 Capacitors and Dielectrics
87. A 12 μF air-filled capacitor has 12 V across it. If the

surface charge on each capacitor plate isσ = 7.2 mC /
m2, what is the attractive force of one capacitor plate
toward the other?
a. 0.81 × 105 N
b. 0.81 × 106 N
c. 1.2 × 105 N
d. 1.2 × 106 N

88. Explain why capacitance should be inversely
proportional to the separation between the plates of a
capacitor.
a. Capacitance is directly proportional to the electric

field, which is inversely proportional to the
distance between the capacitor plates.

b. Capacitance is inversely proportional to the electric
field, which is inversely proportional to the
distance between the capacitor plates.

c. Capacitance is inversely proportional to the electric
field, which is directly proportional to the distance
between the capacitor plates.

d. Capacitance is directly proportional to the electric
field, which is directly proportional to the distance
between the capacitor plates.
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INTRODUCTION

CHAPTER 19
Electrical Circuits

19.1 Ohm's law

19.2 Series Circuits

19.3 Parallel Circuits

19.4 Electric Power

The flicker of numbers on a handheld calculator, nerve impulses carrying signals of vision to the brain, an
ultrasound device sending a signal to a computer screen, the brain sending a message for a baby to twitch its toes, an electric
train pulling into a station, a hydroelectric plant sending energy to metropolitan and rural users—these and many other
examples of electricity involve electric current, which is the movement of charge. Humanity has harnessed electricity, the basis
of this technology, to improve our quality of life. Whereas the previous chapter concentrated on static electricity and the
fundamental force underlying its behavior, the next two chapters will be devoted to electric and magnetic phenomena involving
current. In addition to exploring applications of electricity, we shall gain new insights into the workings of nature.

Figure 19.1 Electric energy in massive quantities is transmitted from this hydroelectric facility, the Srisailam power
station located along the Krishna River in India, by the movement of charge—that is, by electric current. (credit:
Chintohere, Wikimedia Commons)

Chapter Outline



19.1 Ohm's law
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe how current is related to charge and time, and distinguish between direct current and alternating

current
• Define resistance and verbally describe Ohm’s law
• Calculate current and solve problems involving Ohm’s law

Section Key Terms

alternating current ampere conventional current direct current electric current

nonohmic ohmic Ohm’s law resistance

Direct and Alternating Current
Just as water flows from high to low elevation, electrons that are free to move will travel from a place with low potential to a place
with high potential. A battery has two terminals that are at different potentials. If the terminals are connected by a conducting
wire, an electric current (charges) will flow, as shown in Figure 19.2. Electrons will then move from the low-potential terminal of
the battery (the negative end) through the wire and enter the high-potential terminal of the battery (the positive end).

Figure 19.2 A battery has a wire connecting the positive and negative terminals, which allows electrons to move from the negative terminal

to the positive terminal.

Electric current is the rate at which electric charge moves. A large current, such as that used to start a truck engine, moves a
large amount very quickly, whereas a small current, such as that used to operate a hand-held calculator, moves a small amount
of charge more slowly. In equation form, electric current I is defined as

where is the amount of charge that flows past a given area and is the time it takes for the charge to move past the area.
The SI unit for electric current is the ampere (A), which is named in honor of the French physicist André-Marie Ampère
(1775–1836). One ampere is one coulomb per second, or

Electric current moving through a wire is in many ways similar to water current moving through a pipe. To define the flow of
water through a pipe, we can count the water molecules that flow past a given section of the pipe. As shown in Figure 19.3,
electric current is very similar. We count the number of electrical charges that flow past a section of a conductor; in this case, a
wire.
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Figure 19.3 The electric current moving through this wire is the charge that moves past the cross-section A divided by the time it takes for

this charge to move past the section A.

Assume each particle q in Figure 19.3 carries a charge , in which case the total charge shown would be
. If these charges move past the area A in a time , then the current would be

Note that we assigned a positive charge to the charges in Figure 19.3. Normally, negative charges—electrons—are the mobile
charge in wires, as indicated in Figure 19.2. Positive charges are normally stuck in place in solids and cannot move freely.
However, because a positive current moving to the right is the same as a negative current of equal magnitude moving to the left,
as shown in Figure 19.4, we define conventional current to flow in the direction that a positive charge would flow if it could
move. Thus, unless otherwise specified, an electric current is assumed to be composed of positive charges.

Also note that one Coulomb is a significant amount of electric charge, so 5 A is a very large current. Most often you will see
current on the order of milliamperes (mA).

Figure 19.4 (a) The electric field points to the right, the current moves to the right, and positive charges move to the right. (b) The

equivalent situation but with negative charges moving to the left. The electric field and the current are still to the right.

19.1

Snap Lab

Vegetable Current
This lab helps students understand how current works. Given that particles confined in a pipe cannot occupy the same
space, pushing more particles into one end of the pipe will force the same number of particles out of the opposite end. This
creates a current of particles.

Find a straw and dried peas that can move freely in the straw. Place the straw flat on a table and fill the straw with peas.
When you push one pea in at one end, a different pea should come out of the other end. This demonstration is a model for
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The direction of conventional current is the direction that positive charge would flow. Depending on the situation, positive
charges, negative charges, or both may move. In metal wires, as we have seen, current is carried by electrons, so the negative
charges move. In ionic solutions, such as salt water, both positively charged and negatively charged ions move. This is also true
in nerve cells. Pure positive currents are relatively rare but do occur. History credits American politician and scientist Benjamin
Franklin with describing current as the direction that positive charges flow through a wire. He named the type of charge
associated with electrons negative long before they were known to carry current in so many situations.

As electrons move through a metal wire, they encounter obstacles such as other electrons, atoms, impurities, etc. The electrons
scatter from these obstacles, as depicted in Figure 19.5. Normally, the electrons lose energy with each interaction. 1 To keep the
electrons moving thus requires a force, which is supplied by an electric field. The electric field in a wire points from the end of
the wire at the higher potential to the end of the wire at the lower potential. Electrons, carrying a negative charge, move on
average (or drift) in the direction opposite the electric field, as shown in Figure 19.5.

Figure 19.5 Free electrons moving in a conductor make many collisions with other electrons and atoms. The path of one electron is shown.

The average velocity of free electrons is in the direction opposite to the electric field. The collisions normally transfer energy to the

conductor, so a constant supply of energy is required to maintain a steady current.

So far, we have discussed current that moves constantly in a single direction. This is called direct current, because the electric
charge flows in only one direction. Direct current is often called DC current.

Many sources of electrical power, such as the hydroelectric dam shown at the beginning of this chapter, produce alternating
current, in which the current direction alternates back and forth. Alternating current is often called AC current. Alternating
current moves back and forth at regular time intervals, as shown in Figure 19.6. The alternating current that comes from a
normal wall socket does not suddenly switch directions. Rather, it increases smoothly up to a maximum current and then
smoothly decreases back to zero. It then grows again, but in the opposite direction until it has reached the same maximum
value. After that, it decreases smoothly back to zero, and the cycle starts over again.

an electric current. Identify the part of the model that represents electrons and the part of the model that represents the
supply of electrical energy. For a period of 30 s, count the number of peas you can push through the straw. When finished,
calculate the pea current by dividing the number of peas by the time in seconds.

Note that the flow of peas is based on the peas physically bumping into each other; electrons push each other along due to
mutually repulsive electrostatic forces.

GRASP CHECK
Suppose four peas per second pass through a straw. If each pea carried a charge of , what would the electric current
be through the straw?
a. The electric current would be the pea charge multiplied by .
b. The electric current would be the pea current calculated in the lab multiplied by .
c. The electric current would be the pea current calculated in the lab.
d. The electric current would be the pea charge divided by time.

1This energy is transferred to the wire and becomes thermal energy, which is what makes wires hot when they carry a lot of current.
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Figure 19.6 With alternating current, the direction of the current reverses at regular time intervals. The graph on the top shows the current

versus time. The negative maxima correspond to the current moving to the left. The positive maxima correspond to current moving to the

right. The current alternates regularly and smoothly between these two maxima.

Devices that use AC include vacuum cleaners, fans, power tools, hair dryers, and countless others. These devices obtain the
power they require when you plug them into a wall socket. The wall socket is connected to the power grid that provides an
alternating potential (AC potential). When your device is plugged in, the AC potential pushes charges back and forth in the
circuit of the device, creating an alternating current.

Many devices, however, use DC, such as computers, cell phones, flashlights, and cars. One source of DC is a battery, which
provides a constant potential (DC potential) between its terminals. With your device connected to a battery, the DC potential
pushes charge in one direction through the circuit of your device, creating a DC current. Another way to produce DC current is
by using a transformer, which converts AC potential to DC potential. Small transformers that you can plug into a wall socket are
used to charge up your laptop, cell phone, or other electronic device. People generally call this a charger or a battery, but it is a
transformer that transforms AC voltage into DC voltage. The next time someone asks to borrow your laptop charger, tell them
that you don’t have a laptop charger, but that they may borrow your converter.

WORKED EXAMPLE

Current in a Lightning Strike
A lightning strike can transfer as many as electrons from the cloud to the ground. If the strike lasts 2 ms, what is the
average electric current in the lightning?
STRATEGY
Use the definition of current, . The charge from electrons is , where is the number of
electrons and is the charge on the electron. This gives

The time is the duration of the lightning strike.

Solution
The current in the lightning strike is

Discussion

19.2

19.3
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The negative sign reflects the fact that electrons carry the negative charge. Thus, although the electrons flow from the cloud to
the ground, the positive current is defined to flow from the ground to the cloud.

WORKED EXAMPLE

Average Current to Charge a Capacitor
In a circuit containing a capacitor and a resistor, it takes 1 min to charge a 16 μF capacitor by using a 9-V battery. What is the
average current during this time?
STRATEGY
We can determine the charge on the capacitor by using the definition of capacitance: . When the capacitor is charged by
a 9-V battery, the voltage across the capacitor will be . This gives a charge of

By inserting this expression for charge into the equation for current, , we can find the average current.

Solution
The average current is

Discussion

This small current is typical of the current encountered in circuits such as this.

Practice Problems
1. 10 nC of charge flows through a circuit in 3.0 × 10−6 s . What is the current during this time?

a. The current passes through the circuit is 3.3 × 10−3 A.
b. The current passes through the circuit is 30 A.
c. The current passes through the circuit is 33 A.
d. The current passes through the circuit is 0.3 A.

2. How long would it take a current to charge a capacitor with ?
a.
b.
c.
d.

Resistance and Ohm’s Law
As mentioned previously, electrical current in a wire is in many ways similar to water flowing through a pipe. The water current
that can flow through a pipe is affected by obstacles in the pipe, such as clogs and narrow sections in the pipe. These obstacles
slow down the flow of current through the pipe. Similarly, electrical current in a wire can be slowed down by many factors,
including impurities in the metal of the wire or collisions between the charges in the material. These factors create a resistance
to the electrical current. Resistance is a description of how much a wire or other electrical component opposes the flow of
charge through it. In the 19th century, the German physicist Georg Simon Ohm (1787–1854) found experimentally that current
through a conductor is proportional to the voltage drop across a current-carrying conductor.

19.4

19.5
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The constant of proportionality is the resistance R of the material, which leads to

This relationship is called Ohm’s law. It can be viewed as a cause-and-effect relationship, with voltage being the cause and the
current being the effect. Ohm’s law is an empirical law like that for friction, which means that it is an experimentally observed
phenomenon. The units of resistance are volts per ampere, or V/A. We call a V/A an ohm, which is represented by the uppercase
Greek letter omega ( ). Thus,

Ohm’s law holds for most materials and at common temperatures. At very low temperatures, resistance may drop to zero
(superconductivity). At very high temperatures, the thermal motion of atoms in the material inhibits the flow of electrons,
increasing the resistance. The many substances for which Ohm’s law holds are called ohmic. Ohmic materials include good
conductors like copper, aluminum, and silver, and some poor conductors under certain circumstances. The resistance of ohmic
materials remains essentially the same for a wide range of voltage and current.

WATCH PHYSICS

Introduction to Electricity, Circuits, Current, and Resistance
This video presents Ohm’s law and shows a simple electrical circuit. The speaker uses the analogy of pressure to describe how
electric potential makes charge move. He refers to electric potential as electric pressure. Another way of thinking about electric
potential is to imagine that lots of particles of the same sign are crowded in a small, confined space. Because these charges have
the same sign (they are all positive or all negative), each charge repels the others around it. This means that lots of charges are
constantly being pushed towards the outside of the space. A complete electric circuit is like opening a door in the small space:
Whichever particles are pushed towards the door now have a way to escape. The higher the electric potential, the harder each
particle pushes against the others.

GRASP CHECK
If, instead of a single resistor , two resistors each with resistance are drawn in the circuit diagram shown in the video,
what can you say about the current through the circuit?
a. The amount of current through the circuit must decrease by half.
b. The amount of current through the circuit must increase by half.
c. The current must remain the same through the circuit.
d. The amount of current through the circuit would be doubled.

Virtual Physics

Ohm’s Law
Click to view content (http://www.openstax.org/l/28ohms_law)
This simulation mimics a simple circuit with batteries providing the voltage source and a resistor connected across the
batteries. See how the current is affected by modifying the resistance and/or the voltage. Note that the resistance is modeled
as an element containing small scattering centers. These represent impurities or other obstacles that impede the passage of
the current.

GRASP CHECK
In a circuit, if the resistance is left constant and the voltage is doubled (for example, from to ), how does the
current change? Does this conform to Ohm’s law?
a. The current will get doubled. This conforms to Ohm’s law as the current is proportional to the voltage.
b. The current will double. This does not conform to Ohm’s law as the current is proportional to the voltage.

19.1 • Ohm's law 609

http://www.openstax.org/l/28ohms_law


WORKED EXAMPLE

Resistance of a Headlight
What is the resistance of an automobile headlight through which 2.50 A flows when 12.0 V is applied to it?

STRATEGY
Ohm’s law tells us . The voltage drop in going through the headlight is just the voltage rise supplied by
the battery, . We can use this equation and rearrange Ohm’s law to find the resistance of the
headlight.

Solution
Solving Ohm’s law for the resistance of the headlight gives

Discussion

This is a relatively small resistance. As we will see below, resistances in circuits are commonly measured in kW or MW.

WORKED EXAMPLE

Determine Resistance from Current-Voltage Graph
Suppose you apply several different voltages across a circuit and measure the current that runs through the circuit. A plot of
your results is shown in Figure 19.7. What is the resistance of the circuit?

c. The current will increase by half. This conforms to Ohm’s law as the current is proportional to the voltage.
d. The current will decrease by half. This does not conform to Ohm’s law as the current is proportional to the voltage.

19.6
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Figure 19.7 The line shows the current as a function of voltage. Notice that the current is given in milliamperes. For example, at 3 V, the

current is 0.003 A, or 3 mA.

STRATEGY
The plot shows that current is proportional to voltage, which is Ohm’s law. In Ohm’s law ( ), the constant of
proportionality is the resistance R. Because the graph shows current as a function of voltage, we have to rearrange Ohm’s law in
that form: . This shows that the slope of the line of I versus V is . Thus, if we find the slope of the line in
Figure 19.7, we can calculate the resistance R.

Solution
The slope of the line is the rise divided by the run. Looking at the lower-left square of the grid, we see that the line rises by 1 mA
(0.001 A) and runs over a voltage of 1 V. Thus, the slope of the line is

Equating the slope with and solving for R gives

or 1 k-ohm.

Discussion

This resistance is greater than what we found in the previous example. Resistances such as this are common in electric circuits,
as we will discover in the next section. Note that if the line in Figure 19.7 were not straight, then the material would not be ohmic
and we would not be able to use Ohm’s law. Materials that do not follow Ohm’s law are called nonohmic.

Practice Problems
3. If you double the voltage across an ohmic resistor, how does the current through the resistor change?

a. The current will double.
b. The current will increase by half.
c. The current will decrease by half.
d. The current will decrease by a factor of two.

4. The current through a resistor is . What is the voltage drop across the resistor?
a.
b.
c.
d.

19.7

19.8
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Check Your Understanding
5. What is electric current?

a. Electric current is the electric charge that is at rest.
b. Electric current is the electric charge that is moving.
c. Electric current is the electric charge that moves only from the positive terminal of a battery to the negative terminal.
d. Electric current is the electric charge that moves only from a region of lower potential to higher potential.

6. What is an ohmic material?
a. An ohmic material is a material that obeys Ohm’s law.
b. An ohmic material is a material that does not obey Ohm’s law.
c. An ohmic material is a material that has high resistance.
d. An ohmic material is a material that has low resistance.

7. What is the difference between direct current and alternating current?
a. Direct current flows continuously in every direction whereas alternating current flows in one direction.
b. Direct current flows continuously in one direction whereas alternating current reverses its direction at regular time

intervals.
c. Both direct and alternating current flow in one direction but the magnitude of direct current is fixed whereas the

magnitude of alternating current changes at regular intervals of time.
d. Both direct and alternating current changes its direction of flow but the magnitude of direct current is fixed whereas

the magnitude of alternating current changes at regular intervals of time.

19.2 Series Circuits
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Interpret circuit diagrams and diagram basic circuit elements
• Calculate equivalent resistance of resistors in series and apply Ohm’s law to resistors in series and apply

Ohm’s law to resistors in series

Section Key Terms

circuit diagram electric circuit equivalent resistance

in series resistor steady state

Electric Circuits and Resistors
Now that we understand the concept of electric current, let’s see what we can do with it. As you are no doubt aware, the modern
lifestyle relies heavily on electrical devices. These devices contain ingenious electric circuits, which are complete, closed
pathways through which electric current flows. Returning to our water analogy, an electric circuit is to electric charge like a
network of pipes is to water: The electric circuit guides electric charge from one point to the next, running the charge through
various devices along the way to extract work or information.

Electric circuits are made from many materials and cover a huge range of sizes, as shown in Figure 19.8. Computers and cell
phones contain electric circuits whose features can be as small as roughly a billionth of a meter (a nanometer, or ). The
pathways that guide the current in these devices are made by ultraprecise chemical treatments of silicon or other
semiconductors. Large power systems, on the other hand, contain electric circuits whose features are on the scale of meters.
These systems carry such large electric currents that their physical dimensions must be relatively large.
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Figure 19.8 The photo on the left shows a chip that contains complex integrated electric circuitry. Chips such as this are at the heart of

devices such as computers and cell phones. The photograph on the right shows some typical electric circuitry required for high-power

electric power transmission.

The pathways that form electric circuits are made from a conducting material, normally a metal in macroscopic circuits. For
example, copper wires inside your school building form the electrical circuits that power lighting, projectors, screens, speakers,
etc. To represent an electric circuit, we draw circuit diagrams. We use lines and symbols to represent the elements in the circuit.
A simple electric circuit diagram is shown on the left side of Figure 19.9. On the right side is an analogous water circuit, which
we discuss below.

Figure 19.9 On the left is a circuit diagram showing a battery (in red), a resistor (black zigzag element), and the current I. On the right is the

analogous water circuit. The pump is like the battery, the sand filter is like the resistor, the water current is like the electrical current, and

the reservoir is like the ground.

There are many different symbols that scientists and engineers use in circuit diagrams, but we will focus on four main symbols:
the wire, the battery or voltage source, resistors, and the ground. The thin black lines in the electric circuit diagram represent
the pathway that the electric charge must follow. These pathways are assumed to be perfect conductors, so electric charge can
move along these pathways without losing any energy. In reality, the wires in circuits are not perfect, but they come close
enough for our purposes.

The zigzag element labeled R is a resistor, which is a circuit element that provides a known resistance. Macroscopic resistors are
often color coded to indicate their resistance, as shown in Figure 19.10.

The red element in Figure 19.9 is a battery, with its positive and negative terminals indicated; the longer line represents the
positive terminal of the battery, and the shorter line represents the negative terminal. Note that the battery icon is not always
colored red; this is done in Figure 19.9 just to make it easy to identify.

Finally, the element labeled ground on the lower left of the circuit indicates that the circuit is connected to Earth, which is a
large, essentially neutral object containing an infinite amount of charge. Among other things, the ground determines the
potential of the negative terminal of the battery. Normally, the potential of the ground is defined to be zero: . This
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means that the entire lower wire in Figure 19.10 is at a voltage of zero volts.

Figure 19.10 Some typical resistors. The color bands indicate the value of the resistance of each resistor.

The electric current in Figure 19.9 is indicted by the blue line labeled I. The arrow indicates the direction in which positive charge
would flow in this circuit. Recall that, in metals, electrons are mobile charge carriers, so negative charges actually flow in the
opposite direction around this circuit (i.e., counterclockwise). However, we draw the current to show the direction in which
positive charge would move.

On the right side of Figure 19.9 is an analogous water circuit. Water at a higher pressure leaves the top of the pump, which is like
charges leaving the positive terminal of the battery. The water travels through the pipe, like the charges traveling through the
wire. Next, the water goes through a sand filter, which heats up as the water squeezes through. This step is like the charges
going through the resistor. When charges flow through a resistor, they do work to heat up the resistor. After flowing through the
sand filter, the water has converted its potential energy into heat, so it is at a lower pressure. Likewise, the charges exiting the
resistor have converted their potential energy into heat, so they are at a lower voltage. Recall that voltage is just potential energy
per charge. Thus, water pressure is analogous to electric potential energy (i.e., voltage). Coming back to the water circuit again,
we see that the water returns to the bottom of the pump, which is like the charge returning to the negative terminal of the
battery. The water pump uses a source of energy to pump the water back up to a high pressure again, giving it the pressure
required to go through the circuit once more. The water pump is like the battery, which uses chemical energy to increase the
voltage of the charge up to the level of the positive terminal.

The potential energy per charge at the positive terminal of the battery is the voltage rating of the battery. This voltage is like
water pressure in the upper pipe. Just like a higher pressure forces water to move toward a lower pressure, a higher voltage
forces electric charge to flow toward a lower voltage. The pump takes water at low pressure and does work on it, ejecting water at
a higher pressure. Likewise, a battery takes charge at a low voltage, does work on it, and ejects charge at a higher voltage.

Note that the current in the water circuit of Figure 19.9 is the same throughout the circuit. In other words, if we measured the
number of water molecules passing a cross-section of the pipe per unit time at any point in the circuit, we would get the same
answer no matter where in the circuit we measured. The same is true of the electrical circuit in the same figure. The electric
current is the same at all points in this circuit, including inside the battery and in the resistor. The electric current neither
speeds up in the wires nor slows down in the resistor. This would create points where too much or too little charge would be
bunched up. Thus, the current is the same at all points in the circuit shown in Figure 19.9.

Although the current is the same everywhere in both the electric and water circuits, the voltage or water pressure changes as you
move through the circuits. In the water circuit, the water pressure at the pump outlet stays the same until the water goes
through the sand filter, assuming no energy loss in the pipe. Likewise, the voltage in the electrical circuit is the same at all points
in a given wire, because we have assumed that the wires are perfect conductors. Thus, as indicated by the constant red color of
the upper wire in Figure 19.11, the voltage throughout this wire is constant at . The voltage then drops as you go
through the resistor, but once you reach the blue wire, the voltage stays at its new level of all the way to the negative
terminal of the battery (i.e., the blue terminal of the battery).
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Figure 19.11 The voltage in the red wire is constant at from the positive terminal of the battery to the top of the resistor. The

voltage in the blue wire is constant at from the bottom of the resistor to the negative terminal of the battery.

If we go from the blue wire through the battery to the red wire, the voltage increases from to . Likewise, if
we go from the blue wire up through the resistor to the red wire, the voltage also goes from to . Thus, using
Ohm’s law, we can write

Note that is measured from the bottom of the resistor to the top, meaning that the top of the resistor is at a higher
voltage than the bottom of the resistor. Thus, current flows from the top of the resistor or higher voltage to the bottom of the
resistor or lower voltage.

Other possible circuit elements include capacitors and switches. These are drawn as shown on the left side of Figure 19.12. A
switch is a device that opens and closes the circuit, like a light switch. It is analogous to a valve in a water circuit, as shown on
the right side of Figure 19.12. With the switch open, no current passes through the circuit. With the switch closed, it becomes
part of the wire, so the current passes through it with no loss of voltage.

The capacitor is labeled C on the left of Figure 19.12. A capacitor in an electrical circuit is analogous to a flexible membrane in a

Virtual Physics

Battery-Resistor Circuit
Click to view content (http://www.openstax.org/l/21batteryresist)
Use this simulation to better understand how resistance, voltage, and current are related. The simulation shows a battery
with a resistor connected between the terminals of the battery, as in the previous figure. You can modify the battery voltage
and the resistance. The simulation shows how electrons react to these changes. It also shows the atomic cores in the resistor
and how they are excited and heat up as more current goes through the resistor.

Draw the circuit diagram for the circuit, being sure to draw an arrow indicating the direction of the current. Now pick three
spots along the wire. Without changing the settings, allow the simulation to run for 20 s while you count the number of
electrons passing through that spot. Record the number on the circuit diagram. Now do the same thing at each of the other
two spots in the circuit. What do you notice about the number of charges passing through each spot in 20 s? Remember that
that current is defined as the rate that charges flow through the circuit. What does this mean about the current through the
entire circuit?

GRASP CHECK
With the voltage slider, give the battery a positive voltage. Notice that the electrons are spaced farther apart in the left
wire than they are in the right wire. How does this reflect the voltage in the two wires?
a. The voltage between static charges is directly proportional to the distance between them.
b. The voltage between static charges is directly proportional to square of the distance between them.
c. The voltage between static charges is inversely proportional to the distance between them.
d. The voltage between static charges is inversely proportional to square of the distance between them.
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water circuit. When the switch is closed in the circuit of Figure 19.12, the battery forces electrical current to flow toward the
capacitor, charging the upper capacitor plate with positive charge. As this happens, the voltage across the capacitor plates
increases. This is like the membrane in the water circuit: When the valve is opened, the pump forces water to flow toward the
membrane, making it stretch to store the excess water. As this happens, the pressure behind the membrane increases.

Now if we open the switch, the capacitor holds the voltage between its plates because the charges have nowhere to go. Likewise,
if we close the valve, the water has nowhere to go and the membrane maintains the water pressure in the pipe between itself and
the valve.

If the switch is closed for a long time in the electric circuit or if the valve is open for a long time in the water circuit, the current
will eventually stop flowing because the capacitor or the membrane will have become completely charged. Each circuit is now in
the steady state, which means that its characteristics do not change over time. In this case, the steady state is characterized by
zero current, and this does not change as long as the switch or valve remains in the same position. In the steady state, no
electrical current passes through the capacitor, and no water current passes through the membrane. The voltage difference
between the capacitor plates will be the same as the battery voltage. In the water circuit, the pressure behind the membrane will
be the same as the pressure created by the pump.

Although the circuit in Figure 19.12 may seem a bit pointless because all that happens when the switch is closed is that the
capacitor charges up, it does show the capacitor’s ability to store charge. Thus, the capacitor serves as a reservoir for charge. This
property of capacitors is used in circuits in many ways. For example, capacitors are used to power circuits while batteries are
being charged. In addition, capacitors can serve as filters. To understand this, let’s go back to the water analogy. Suppose you
have a water hose and are watering your garden. Your friend thinks he’s funny, and kinks the hose. While the hose is kinked, you
experience no water flow. When he lets go, the water starts flowing again. If he does this really fast, you experience water-no
water-water-no water, and that’s really no way to water your garden. Now imagine that the hose is filling up a big bucket, and
you are watering from the bottom of the bucket. As long as you had water in your bucket to begin with and your friend doesn’t
kink the water hose for too long, you would be able to water your garden without the interruptions. Your friend kinking the
water hose is filtered by the big bucket’s supply of water, so it does not impact your ability to water the garden. We can think of
the interruptions in the current (be it water or electrical current) as noise. Capacitors act in an analogous way as the water
bucket to help filter out the noise. Capacitors have so many uses that it is very rare to find an electronic circuit that does not
include some capacitors.

Figure 19.12 On the left is an electrical circuit containing a battery, a switch, and a capacitor. On the left is the analogous water circuit with

a pump, a valve, and a stretchable membrane. The pump is like the battery, the valve is like the switch, and the stretchable membrane is

like the capacitor. When the switch is closed, electrical current flows as the capacitor charges and its voltage increases. Likewise in the

water circuit, when the valve is open, water current flows as the stretchable membrane stretches and the water pressure behind it

increases.
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WORK IN PHYSICS

What It Takes to be an Electrical Engineer
Physics is used in a wide variety of fields. One field that requires a very thorough knowledge of physics is electrical engineering.
An electrical engineer can work on anything from the large-scale power systems that provide power to big cities to the nanoscale
electronic circuits that are found in computers and cell phones (Figure 19.13).

In working with power companies, you can be responsible for maintaining the power grid that supplies electrical power to large
areas. Although much of this work is done from an office, it is common to be called in for overtime duty after storms or other
natural events. Many electrical engineers enjoy this part of the job, which requires them to race around the countryside
repairing high-voltage transformers and other equipment. However, one of the more unpleasant aspects of this work is to
remove the carcasses of unfortunate squirrels or other animals that have wandered into the transformers.

Other careers in electrical engineering can involve designing circuits for cell phones, which requires cramming some 10 billion
transistors into an electronic chip the size of your thumbnail. These jobs can involve much work with computer simulations and
can also involve fields other than electronics. For example, the 1-m-diameter lenses that are used to make these circuits (as of
2015) are so precise that they are shipped from the manufacture to the chip fabrication plant in temperature-controlled trucks to
ensure that they are held within a certain temperature range. If they heat up or cool down too much, they deform ever so
slightly, rendering them useless for the ultrahigh precision photolithography required to manufacture these chips.

In addition to a solid knowledge of physics, electrical engineers must above all be practical. Consider, for example, how one
corporation managed to launch some anti-ballistic missiles at the White Sands Missile Test Range in New Mexico in the 1960s.
Before launch, the skin of the missile had to be at the same voltage as the rail from which it was launched. The rail was
connected to the ground by a large copper wire connected to a stake driven into the sandy earth. The missile, however, was
connected by an umbilical cord to the equipment in the control shed a few meters away, which was grounded via a different
grounding circuit. Before launching the missile, the voltage difference between the missile skin and the rail had to be less than
2.5 V. After an especially dry spell of weather, the missile could not be launched because the voltage difference stood at 5 V. A
group of electrical engineers, including the father of your author, stood around pondering how to reduce the voltage difference.
The situation was resolved when one of the engineers realized that urine contains electrolytes and conducts electricity quite
well. With that, the four engineers quickly resolved the problem by urinating on the rail spike. The voltage difference
immediately dropped to below 2.5 V and the missile was launched on schedule.

Figure 19.13 The systems that electrical engineers work on range from microprocessor circuits (left)] to missile systems (right).

Virtual Physics
Click to view content (http://www.openstax.org/l/21phetcirconstr)
Amuse yourself by building circuits of all different shapes and sizes. This simulation provides you with various standard
circuit elements, such as batteries, AC voltage sources, resistors, capacitors, light bulbs, switches, etc. You can connect
these in any configuration you like and then see the result.

Build a circuit that starts with a resistor connected to a capacitor. Connect the free side of the resistor to the positive
terminal of a battery and the free side of the capacitor to the negative terminal of the battery. Click the reset dynamics
button to see how the current flows starting with no charge on the capacitor. Now right click on the resistor to change its
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Resistors in Series and Equivalent Resistance
Now that we have a basic idea of how electrical circuits work, let’s see what happens in circuits with more than one circuit
element. In this section, we look at resistors in series. Components connected in series are connected one after the other in the
same branch of a circuit, such as the resistors connected in series on the left side of Figure 19.14.

Figure 19.14 On the left is an electric circuit with three resistors R1, R2, and R3 connected in series. On the right is an electric circuit with

one resistor Requiv that is equivalent to the combination of the three resistors R1, R2, and R3.

We will now try to find a single resistance that is equivalent to the three resistors in series on the left side of Figure 19.14. An
equivalent resistor is a resistor that has the same resistance as the combined resistance of a set of other resistors. In other
words, the same current will flow through the left and right circuits in Figure 19.14 if we use the equivalent resistor in the right
circuit.

According to Ohm’s law, the voltage drop V across a resistor when a current flows through it is where I is the current in
amperes (A) and R is the resistance in ohms ( ). Another way to think of this is that V is the voltage necessary to make a current
I flow through a resistance R. Applying Ohm’s law to each resistor on the left circuit of Figure 19.14, we find that the voltage drop
across is , that across is , and that across is . The sum of these voltages equals the
voltage output of the battery, that is

You may wonder why voltages must add up like this. One way to understand this is to go once around the circuit and add up the
successive changes in voltage. If you do this around a loop and get back to the starting point, the total change in voltage should
be zero, because you end up at the same place that you started. To better understand this, consider the analogy of going for a
stroll through some hilly countryside. If you leave your car and walk around, then come back to your car, the total height you
gained in your stroll must be the same as the total height you lost, because you end up at the same place as you started. Thus, the
gravitational potential energy you gain must be the same as the gravitational potential energy you lose. The same reasoning
holds for voltage in going around an electric circuit. Let’s apply this reasoning to the left circuit in Figure 19.14. We start just
below the battery and move up through the battery, which contributes a voltage gain of . Next, we got through the
resistors. The voltage drops by in going through resistor , by in going through resistor , and by in going through

value. When you increase the resistance, does the circuit reach the steady state more rapidly or more slowly?

GRASP CHECK
When the circuit has reached the steady state, how does the voltage across the capacitor compare to the voltage of the
battery? What is the voltage across the resistor?
a. The voltage across the capacitor is greater than the voltage of the battery. In the steady state, no current flows

through this circuit, so the voltage across the resistor is zero.
b. The voltage across the capacitor is smaller than the voltage of the battery. In the steady state, finite current flows

through this circuit, so the voltage across the resistor is finite.
c. The voltage across the capacitor is the same as the voltage of the battery. In the steady state, no current flows

through this circuit, so the voltage across the resistor is zero.
d. The voltage across the capacitor is the same as the voltage of the battery. In the steady state, finite current flows

through this circuit, so the voltage across the resistor is finite.

19.9
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resistor . After going through resistor , we arrive back at the starting point, so we add up these four changes in voltage
and set the sum equal to zero. This gives

which is the same as the previous equation. Note that the minus signs in front of are because these are voltage
drops, whereas is a voltage rise.

Ohm’s law tells us that , , and . Inserting these values into equation
gives

Applying this same logic to the right circuit in Figure 19.14 gives

Dividing the equation by , we get

This shows that the equivalent resistance for a series of resistors is simply the sum of the resistances of each resistor. In general,
N resistors connected in series can be replaced by an equivalent resistor with a resistance of

WATCH PHYSICS

Resistors in Series
This video discusses the basic concepts behind interpreting circuit diagrams and then shows how to calculate the equivalent
resistance for resistors in series.

Click to view content (https://www.openstax.org/l/02resistseries)

GRASP CHECK
True or false—In a circuit diagram, we can assume that the voltage is the same at every point in a given wire.
a. false
b. true

WORKED EXAMPLE

Calculation of Equivalent Resistance
In the left circuit of the previous figure, suppose the voltage rating of the battery is 12 V, and the resistances are

. (a) What is the equivalent resistance? (b) What is the current through the circuit?
STRATEGY FOR (A)
Use the equation for the equivalent resistance of resistors connected in series. Because the circuit has three resistances, we only
need to keep three terms, so it takes the form

Solution for (a)
Inserting the given resistances into the equation above gives
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Discussion for (a)
We can thus replace the three resistors with a single 20- resistor.

STRATEGY FOR (B)
Apply Ohm’s law to the circuit on the right side of the previous figure with the equivalent resistor of 20 .

Solution for (b)
The voltage drop across the equivalent resistor must be the same as the voltage rise in the battery. Thus, Ohm’s law gives

Discussion for (b)
To check that this result is reasonable, we calculate the voltage drop across each resistor and verify that they add up to the
voltage rating of the battery. The voltage drop across each resistor is

Adding these voltages together gives

which is the voltage rating of the battery.

WORKED EXAMPLE

Determine the Unknown Resistance
The circuit shown in figure below contains three resistors of known value and a third element whose resistance is unknown.
Given that the equivalent resistance for the entire circuit is 150 , what is the resistance ?

STRATEGY
The four resistances in this circuit are connected in series, so we know that they must add up to give the equivalent resistance.
We can use this to find the unknown resistance .

Solution
For four resistances in series, the equation for the equivalent resistance of resistors in series takes the form

19.15
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Solving for R3 and inserting the known values gives

Discussion
The equivalent resistance of a circuit can be measured with an ohmmeter. This is sometimes useful for determining the effective
resistance of elements whose resistance is not marked on the element.

Check your Understanding
8.

Figure 19.15

What circuit element is represented in the figure below?
a. a battery
b. a resistor
c. a capacitor
d. an inductor

9. How would a diagram of two resistors connected in series appear?

a.

b.

c.

d.

19.3 Parallel Circuits
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Interpret circuit diagrams with parallel resistors
• Calculate equivalent resistance of resistor combinations containing series and parallel resistors

Section Key Terms

in parallel

Resistors in Parallel
In the previous section, we learned that resistors in series are resistors that are connected one after the other. If we instead
combine resistors by connecting them next to each other, as shown in Figure 19.16, then the resistors are said to be connected in
parallel. Resistors are in parallel when both ends of each resistor are connected directly together.

Note that the tops of the resistors are all connected to the same wire, so the voltage at the top of the each resistor is the same.
Likewise, the bottoms of the resistors are all connected to the same wire, so the voltage at the bottom of each resistor is the
same. This means that the voltage drop across each resistor is the same. In this case, the voltage drop is the voltage rating V of
the battery, because the top and bottom wires connect to the positive and negative terminals of the battery, respectively.

Although the voltage drop across each resistor is the same, we cannot say the same for the current running through each
resistor. Thus, are not necessarily the same, because the resistors do not necessarily have the same

19.20
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resistance.

Note that the three resistors in Figure 19.16 provide three different paths through which the current can flow. This means that
the equivalent resistance for these three resistors must be less than the smallest of the three resistors. To understand this,
imagine that the smallest resistor is the only path through which the current can flow. Now add on the alternate paths by
connecting other resistors in parallel. Because the current has more paths to go through, the overall resistance (i.e., the
equivalent resistance) will decrease. Therefore, the equivalent resistance must be less than the smallest resistance of the parallel
resistors.

Figure 19.16 The left circuit diagram shows three resistors in parallel. The voltage V of the battery is applied across all three resistors. The

currents that flow through each branch are not necessarily equal. The right circuit diagram shows an equivalent resistance that replaces the

three parallel resistors.

To find the equivalent resistance of the three resistors , we apply Ohm’s law to each resistor. Because the
voltage drop across each resistor is V, we obtain

or

We also know from conservation of charge that the three currents must add up to give the current I that goes
through the battery. If this were not true, current would have to be mysteriously created or destroyed somewhere in the circuit,
which is physically impossible. Thus, we have

Inserting the expressions for into this equation gives

or

This formula is just Ohm’s law, with the factor in parentheses being the equivalent resistance.

Thus, the equivalent resistance for three resistors in parallel is

The same logic works for any number of resistors in parallel, so the general form of the equation that gives the equivalent
resistance of N resistors connected in parallel is

    19.21

    19.22
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WORKED EXAMPLE

Find the Current through Parallel Resistors
The three circuits below are equivalent. If the voltage rating of the battery is , what is the equivalent resistance of
the circuit and what current runs through the circuit?

STRATEGY
The three resistors are connected in parallel and the voltage drop across them is Vbattery. Thus, we can apply the equation for the
equivalent resistance of resistors in parallel, which takes the form

The circuit with the equivalent resistance is shown below. Once we know the equivalent resistance, we can use Ohm’s law to find
the current in the circuit.

Solution
Inserting the given values for the resistance into the equation for equivalent resistance gives

The current through the circuit is thus

Discussion
Although 0.62 A flows through the entire circuit, note that this current does not flow through each resistor. However, because
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electric charge must be conserved in a circuit, the sum of the currents going through each branch of the circuit must add up to
the current going through the battery. In other words, we cannot magically create charge somewhere in the circuit and add this
new charge to the current. Let’s check this reasoning by using Ohm’s law to find the current through each resistor.

As expected, these currents add up to give 0.62 A, which is the total current found going through the equivalent resistor. Also,
note that the smallest resistor has the largest current flowing through it, and vice versa.

WORKED EXAMPLE

Reasoning with Parallel Resistors
Without doing any calculation, what is the equivalent resistance of three identical resistors R in parallel?
STRATEGY
Three identical resistors R in parallel make three identical paths through which the current can flow. Thus, it is three times
easier for the current to flow through these resistors than to flow through a single one of them.

Solution
If it is three times easier to flow through three identical resistors R than to flow through a single one of them, the equivalent
resistance must be three times less: R/3.

Discussion
Let’s check our reasoning by calculating the equivalent resistance of three identical resistors R in parallel. The equation for the
equivalent resistance of resistors in parallel gives

Thus, our reasoning was correct. In general, when more paths are available through which the current can flow, the equivalent
resistance decreases. For example, if we have identical resistors R in parallel, the equivalent resistance would be R/10.

Practice Problems
10. Three resistors, 10, 20, and 30 Ω, are connected in parallel. What is the equivalent resistance?

a. The equivalent resistance is 5.5 Ω
b. The equivalent resistance is 60 Ω
c. The equivalent resistance is 6 × 103 Ω
d. The equivalent resistance is 6 × 104 Ω

11. If a drop occurs across , and is connected in parallel to , what is the voltage drop across ?
a. Voltage drop across is .
b. Voltage drop across is .
c. Voltage drop across is .
d. Voltage drop across is .

Resistors in Parallel and in Series
More complex connections of resistors are sometimes just combinations of series and parallel. Combinations of series and
parallel resistors can be reduced to a single equivalent resistance by using the technique illustrated in Figure 19.17. Various parts
are identified as either series or parallel, reduced to their equivalents, and further reduced until a single resistance is left. The
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process is more time consuming than difficult.

Figure 19.17 This combination of seven resistors has both series and parallel parts. Each is identified and reduced to an equivalent

resistance, and these are further reduced until a single equivalent resistance is reached.

Let’s work through the four steps in Figure 19.17 to reduce the seven resistors to a single equivalent resistor. To avoid distracting
algebra, we’ll assume each resistor is 10 . In step 1, we reduce the two sets of parallel resistors circled by the blue dashed loop.
The upper set has three resistors in parallel and will be reduced to a single equivalent resistor . The lower set has two
resistors in parallel and will be reduced to a single equivalent resistor . Using the equation for the equivalent resistance of
resistors in parallel, we obtain

These two equivalent resistances are encircled by the red dashed loop following step 1. They are in series, so we can use the
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equation for the equivalent resistance of resistors in series to reduce them to a single equivalent resistance . This is done in
step 2, with the result being

The equivalent resistor appears in the green dashed loop following step 2. This resistor is in parallel with resistor , so the
pair can be replaced by the equivalent resistor , which is given by

This is done in step 3. The resistor is in series with the resistor , as shown in the purple dashed loop following step 3.
These two resistors are combined in the final step to form the final equivalent resistor , which is

Thus, the entire combination of seven resistors may be replaced by a single resistor with a resistance of about 14.5 .

That was a lot of work, and you might be asking why we do it. It’s important for us to know the equivalent resistance of the
entire circuit so that we can calculate the current flowing through the circuit. Ohm’s law tells us that the current flowing through
a circuit depends on the resistance of the circuit and the voltage across the circuit. But to know the current, we must first know
the equivalent resistance.

Here is a general approach to find the equivalent resistor for any arbitrary combination of resistors:

1. Identify a group of resistors that are only in parallel or only in series.
2. For resistors in series, use the equation for the equivalent resistance of resistors in series to reduce them to a single

equivalent resistance. For resistors in parallel, use the equation for the equivalent resistance of resistors in parallel to
reduce them to a single equivalent resistance.

3. Draw a new circuit diagram with the resistors from step 1 replaced by their equivalent resistor.
4. If more than one resistor remains in the circuit, return to step 1 and repeat. Otherwise, you are finished.

FUN IN PHYSICS

Robot
Robots have captured our collective imagination for over a century. Now, this dream of creating clever machines to do our dirty
work, or sometimes just to keep us company, is becoming a reality. Robotics has become a huge field of research and
development, with some technology already being commercialized. Think of the small autonomous vacuum cleaners, for
example.

Figure 19.18 shows just a few of the multitude of different forms robots can take. The most advanced humanoid robots can walk,
pour drinks, even dance (albeit not very gracefully). Other robots are bio-inspired, such as the dogbot shown in the middle
photograph of Figure 19.18. This robot can carry hundreds of pounds of load over rough terrain. The photograph on the right in
Figure 19.18 shows the inner workings of an M-block, developed by the Massachusetts Institute of Technology. These simple-
looking blocks contain inertial wheels and electromagnets that allow them to spin and flip into the air and snap together in a
variety of shapes. By communicating wirelessly between themselves, they self-assemble into a variety of shapes, such as desks,
chairs, and someday maybe even buildings.

All robots involve an immense amount of physics and engineering. The simple act of pouring a drink has only recently been
mastered by robots, after over 30 years of research and development! The balance and timing that we humans take for granted is
in fact a very tricky act to follow, requiring excellent balance, dexterity, and feedback. To master this requires sensors to detect
balance, computing power to analyze the data and communicate the appropriate compensating actions, and joints and
actuators to implement the required actions.

In addition to sensing gravity or acceleration, robots can contain multiple different sensors to detect light, sound, temperature,
smell, taste, etc. These devices are all based on the physical principles that you are studying in this text. For example, the optics
used for robotic vision are similar to those used in your digital cameras: pixelated semiconducting detectors in which light is
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converted into electrical signals. To detect temperature, simple thermistors may be used, which are resistors whose resistance
changes depending on temperature.

Building a robot today is much less arduous than it was a few years ago. Numerous companies now offer kits for building
robots. These range in complexity something suitable for elementary school children to something that would challenge the best
professional engineers. If interested, you may find these easily on the Internet and start making your own robot today.

Figure 19.18 Robots come in many shapes and sizes, from the classic humanoid type to dogbots to small cubes that self-assemble to

perform a variety of tasks.

WATCH PHYSICS

Resistors in Parallel
This video shows a lecturer discussing a simple circuit with a battery and a pair of resistors in parallel. He emphasizes that
electrons flow in the direction opposite to that of the positive current and also makes use of the fact that the voltage is the same
at all points on an ideal wire. The derivation is quite similar to what is done in this text, but the lecturer goes through it well,
explaining each step.

Click to view content (https://www.openstax.org/l/28resistors)

GRASP CHECK
True or false—In a circuit diagram, we can assume that the voltage is the same at every point in a given wire.
a. false
b. true

WATCH PHYSICS

Resistors in Series and in Parallel
This video shows how to calculate the equivalent resistance of a circuit containing resistors in parallel and in series. The lecturer
uses the same approach as outlined above for finding the equivalent resistance.

Click to view content (https://www.openstax.org/l/28resistorssp)

GRASP CHECK
Imagine connected N identical resistors in parallel. Each resistor has a resistance of R. What is the equivalent resistance for
this group of parallel resistors?
a. The equivalent resistance is (R)N.
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b. The equivalent resistance is NR.
c. The equivalent resistance is
d. The equivalent resistance is

WORKED EXAMPLE

Find the Current through a Complex Resistor Circuit
The battery in the circuit below has a voltage rating of 10 V. What current flows through the circuit and in what direction?

STRATEGY
Apply the strategy for finding equivalent resistance to replace all the resistors with a single equivalent resistance, then use Ohm’s
law to find the current through the equivalent resistor.

Solution
The resistor combination and can be reduced to an equivalent resistance of

Replacing and with this equivalent resistance gives the circuit below.

We now replace the two upper resistors and by the equivalent resistor and the two lower resistors and by
their equivalent resistor . These resistors are in series, so we add them together to find the equivalent resistance.

Replacing the relevant resistors with their equivalent resistor gives the circuit below.
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Now replace the two resistors , which are in parallel, with their equivalent resistor . The resistance of is

Updating the circuit diagram by replacing with this equivalent resistance gives the circuit below.

Finally, we combine resistors , which are in series. The equivalent resistance is
The final circuit is shown below.

We now use Ohm’s law to find the current through the circuit.

The current goes from the positive terminal of the battery to the negative terminal of the battery, so it flows clockwise in this
circuit.

Discussion
This calculation may seem rather long, but with a little practice, you can combine some steps. Note also that extra significant
digits were carried through the calculation. Only at the end was the final result rounded to two significant digits.
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WORKED EXAMPLE

Strange-Looking Circuit Diagrams
Occasionally, you may encounter circuit diagrams that are not drawn very neatly, such as the diagram shown below. This circuit
diagram looks more like how a real circuit might appear on the lab bench. What is the equivalent resistance for the resistors in
this diagram, assuming each resistor is 10 and the voltage rating of the battery is 12 V.

STRATEGY
Let’s redraw this circuit diagram to make it clearer. Then we’ll apply the strategy outlined above to calculate the equivalent
resistance.

Solution
To redraw the diagram, consider the figure below. In the upper circuit, the blue resistors constitute a path from the positive
terminal of the battery to the negative terminal. In parallel with this circuit are the red resistors, which constitute another path
from the positive to negative terminal of the battery. The blue and red paths are shown more cleanly drawn in the lower circuit
diagram. Note that, in both the upper and lower circuit diagrams, the blue and red paths connect the positive terminal of the
battery to the negative terminal of the battery.

Now it is easier to see that are in parallel, and the parallel combination is in series with . This combination in
turn is in parallel with the series combination of . First, we calculate the blue branch, which contains

. The equivalent resistance is

where we show the contribution from the parallel combination of resistors and from the series combination of resistors. We
now calculate the equivalent resistance of the red branch, which is

Inserting these equivalent resistors into the circuit gives the circuit below.
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These two resistors are in parallel, so they can be replaced by a single equivalent resistor with a resistance of

The final equivalent circuit is show below.

Discussion
Finding the equivalent resistance was easier with a clear circuit diagram. This is why we try to make clear circuit diagrams,
where the resistors in parallel are lined up parallel to each other and at the same horizontal position on the diagram.

We can now use Ohm’s law to find the current going through each branch to this circuit. Consider the circuit diagram with
and . The voltage across each of these branches is 12 V (i.e., the voltage rating of the battery). The current in the blue branch
is

The current across the red branch is

The current going through the battery must be the sum of these two currents (can you see why?), or 1.4 A.

Practice Problems
12. What is the formula for the equivalent resistance of two parallel resistors with resistance R1 and R2?

a. Equivalent resistance of two parallel resistors
b. Equivalent resistance of two parallel resistors
c. Equivalent resistance of two parallel resistors
d. Equivalent resistance of two parallel resistors
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13.

Figure 19.19

What is the equivalent resistance for the two resistors shown below?
a. The equivalent resistance is 20 Ω
b. The equivalent resistance is 21 Ω
c. The equivalent resistance is 90 Ω
d. The equivalent resistance is 1,925 Ω

Check Your Understanding
14. The voltage drop across parallel resistors is ________.

a. the same for all resistors
b. greater for the larger resistors
c. less for the larger resistors
d. greater for the smaller resistors

15. Consider a circuit of parallel resistors. The smallest resistor is 25 Ω . What is the upper limit of the equivalent resistance?
a. The upper limit of the equivalent resistance is 2.5 Ω.
b. The upper limit of the equivalent resistance is 25 Ω.
c. The upper limit of the equivalent resistance is 100 Ω.
d. There is no upper limit.

19.4 Electric Power
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Define electric power and describe the electric power equation
• Calculate electric power in circuits of resistors in series, parallel, and complex arrangements

Section Key Terms

electric power

Power is associated by many people with electricity. Every day, we use electric power to run our modern appliances. Electric
power transmission lines are visible examples of electricity providing power. We also use electric power to start our cars, to run
our computers, or to light our homes. Power is the rate at which energy of any type is transferred; electric power is the rate at
which electric energy is transferred in a circuit. In this section, we’ll learn not only what this means, but also what factors
determine electric power.

To get started, let’s think of light bulbs, which are often characterized in terms of their power ratings in watts. Let us compare a
25-W bulb with a 60-W bulb (see Figure 19.20). Although both operate at the same voltage, the 60-W bulb emits more light
intensity than the 25-W bulb. This tells us that something other than voltage determines the power output of an electric circuit.
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Incandescent light bulbs, such as the two shown in Figure 19.20, are essentially resistors that heat up when current flows
through them and they get so hot that they emit visible and invisible light. Thus the two light bulbs in the photo can be
considered as two different resistors. In a simple circuit such as a light bulb with a voltage applied to it, the resistance
determines the current by Ohm’s law, so we can see that current as well as voltage must determine the power.

Figure 19.20 On the left is a 25-W light bulb, and on the right is a 60-W light bulb. Why are their power outputs different despite their

operating on the same voltage?

The formula for power may be found by dimensional analysis. Consider the units of power. In the SI system, power is given in
watts (W), which is energy per unit time, or J/s

Recall now that a voltage is the potential energy per unit charge, which means that voltage has units of J/C

We can rewrite this equation as and substitute this into the equation for watts to get

But a Coulomb per second (C/s) is an electric current, which we can see from the definition of electric current, , where
Q is the charge in coulombs and t is time in seconds. Thus, equation above tells us that electric power is voltage times current,
or

This equation gives the electric power consumed by a circuit with a voltage drop of V and a current of I.

For example, consider the circuit in Figure 19.21. From Ohm’s law, the current running through the circuit is

Thus, the power consumed by the circuit is

Where does this power go? In this circuit, the power goes primarily into heating the resistor in this circuit.

Figure 19.21 A simple circuit that consumes electric power.

In calculating the power in the circuit of Figure 19.21, we used the resistance and Ohm’s law to find the current. Ohm’s law gives
the current: , which we can insert into the equation for electric power to obtain

19.47

19.48

19.49

19.50
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This gives the power in terms of only the voltage and the resistance.

We can also use Ohm’s law to eliminate the voltage in the equation for electric power and obtain an expression for power in
terms of just the current and the resistance. If we write Ohm’s law as and use this to eliminate V in the equation

, we obtain

This gives the power in terms of only the current and the resistance.

Thus, by combining Ohm’s law with the equation for electric power, we obtain two more expressions for power: one in
terms of voltage and resistance and one in terms of current and resistance. Note that only resistance (not capacitance or
anything else), current, and voltage enter into the expressions for electric power. This means that the physical characteristic of a
circuit that determines how much power it dissipates is its resistance. Any capacitors in the circuit do not dissipate electric
power—on the contrary, capacitors either store electric energy or release electric energy back to the circuit.

To clarify how voltage, resistance, current, and power are all related, consider Figure 19.22, which shows the formula wheel. The
quantities in the center quarter circle are equal to the quantities in the corresponding outer quarter circle. For example, to
express a potential V in terms of power and current, we see from the formula wheel that .

Figure 19.22 The formula wheel shows how volts, resistance, current, and power are related. The quantities in the inner quarter circles

equal the quantities in the corresponding outer quarter circles.

WORKED EXAMPLE

Find the Resistance of a Lightbulb
A typical older incandescent lightbulb was 60 W. Assuming that 120 V is applied across the lightbulb, what is the current through
the lightbulb?
STRATEGY
We are given the voltage and the power output of a simple circuit containing a lightbulb, so we can use the equation to
find the current I that flows through the lightbulb.

Solution
Solving for the current and inserting the given values for voltage and power gives

Thus, a half ampere flows through the lightbulb when 120 V is applied across it.

19.51
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Discussion
This is a significant current. Recall that household power is AC and not DC, so the 120 V supplied by household sockets is an
alternating power, not a constant power. The 120 V is actually the time-averaged power provided by such sockets. Thus, the
average current going through the light bulb over a period of time longer than a few seconds is 0.50 A.

WORKED EXAMPLE

Boot Warmers
To warm your boots on cold days, you decide to sew a circuit with some resistors into the insole of your boots. You want 10 W of
heat output from the resistors in each insole, and you want to run them from two 9-V batteries (connected in series). What total
resistance should you put in each insole?
STRATEGY
We know the desired power and the voltage (18 V, because we have two 9-V batteries connected in series), so we can use the
equation to find the requisite resistance.

Solution
Solving for the resistance and inserting the given voltage and power, we obtain

Thus, the total resistance in each insole should be 32

Discussion
Let’s see how much current would run through this circuit. We have 18 V applied across a resistance of 32 , so Ohm’s law gives

All batteries have labels that say how much charge they can deliver (in terms of a current multiplied by a time). A typical 9-V
alkaline battery can deliver a charge of 565 (so two 9 V batteries deliver 1,130 ), so this heating system would
function for a time of

WORKED EXAMPLE

Power through a Branch of a Circuit
Each resistor in the circuit below is 30 . What power is dissipated by the middle branch of the circuit?

STRATEGY
The middle branch of the circuit contains resistors in series. The voltage across this branch is 12 V. We will first find
the equivalent resistance in this branch, and then use to find the power dissipated in the branch.

Solution
The equivalent resistance is . The power dissipated by the middle branch of the
circuit is

19.52

19.53

19.54
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Discussion
Let’s see if energy is conserved in this circuit by comparing the power dissipated in the circuit to the power supplied by the
battery. First, the equivalent resistance of the left branch is

The power through the left branch is

The right branch contains only , so the equivalent resistance is . The power through the right branch is

The total power dissipated by the circuit is the sum of the powers dissipated in each branch.

The power provided by the battery is

where I is the total current flowing through the battery. We must therefore add up the currents going through each branch to
obtain I. The branches contributes currents of

The total current is

and the power provided by the battery is

This is the same power as is dissipated in the resistors of the circuit, which shows that energy is conserved in this circuit.

Practice Problems
16. What is the formula for the power dissipated in a resistor?

a. The formula for the power dissipated in a resistor is
b. The formula for the power dissipated in a resistor is
c. The formula for the power dissipated in a resistor is P = IV.
d. The formula for the power dissipated in a resistor is P = I2V.

17. What is the formula for power dissipated by a resistor given its resistance and the voltage across it?
a. The formula for the power dissipated in a resistor is

b. The formula for the power dissipated in a resistor is

c. The formula for the power dissipated in a resistor is
d. The formula for the power dissipated in a resistor is

19.55

19.56

19.57

19.58

19.59

19.60

19.61

19.62

19.63
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Check your Understanding
18. Which circuit elements dissipate power?

a. capacitors
b. inductors
c. ideal switches
d. resistors

19. Explain in words the equation for power dissipated by a given resistance.
a. Electric power is proportional to current through the resistor multiplied by the square of the voltage across the

resistor.
b. Electric power is proportional to square of current through the resistor multiplied by the voltage across the resistor.
c. Electric power is proportional to current through the resistor divided by the voltage across the resistor.
d. Electric power is proportional to current through the resistor multiplied by the voltage across the resistor.
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KEY TERMS
alternating current electric current whose direction

alternates back and forth at regular intervals
ampere unit for electric current; one ampere is one

coulomb per second ( )
circuit diagram schematic drawing of an electrical circuit

including all circuit elements, such as resistors,
capacitors, batteries, and so on

conventional current flows in the direction that a positive
charge would flow if it could move

direct current electric current that flows in a single
direction

electric circuit physical network of paths through which
electric current can flow

electric current electric charge that is moving
electric power rate at which electric energy is transferred

in a circuit
equivalent resistor resistance of a single resistor that is the

same as the combined resistance of a group of resistors
in parallel when a group of resistors are connected side by

side, with the top ends of the resistors connected
together by a wire and the bottom ends connected
together by a different wire

in series when elements in a circuit are connected one after
the other in the same branch of the circuit

nonohmic material that does not follow Ohm’s law
Ohm’s law electric current is proportional to the voltage

applied across a circuit or other path
ohmic material that obeys Ohm’s law
resistance how much a circuit element opposes the passage

of electric current; it appears as the constant of
proportionality in Ohm’s law

resistor circuit element that provides a known resistance
steady state when the characteristics of a system do not

change over time

SECTION SUMMARY
19.1 Ohm's law

• Direct current is constant over time; alternating current
alternates smoothly back and forth over time.

• Electrical resistance causes materials to extract work
from the current that flows through them.

• In ohmic materials, voltage drop along a path is
proportional to the current that runs through the path.

19.2 Series Circuits
• Circuit diagrams are schematic representations of

electric circuits.
• Resistors in series are resistors that are connected head

to tail.
• The same current runs through all resistors in series;

however, the voltage drop across each resistor can be
different.

• The voltage is the same at every point in a given wire.

19.3 Parallel Circuits
• The equivalent resistance of a group of N identical

resistors R connected in parallel is R/N.
• Connecting resistors in parallel provides more paths for

the current to go through, so the equivalent resistance
is always less than the smallest resistance of the parallel
resistors.

• The same voltage drop occurs across all resistors in
parallel; however, the current through each resistor can
differ.

19.4 Electric Power
• Electric power is dissipated in the resistances of a

circuit. Capacitors do not dissipate electric power.
• Electric power is proportional to the voltage and the

current in a circuit.
• Ohm’s law provides two extra expressions for electric

power: one that does not involve current and one that
does not involve voltage.

KEY EQUATIONS
19.1 Ohm's law

electric current I is the charge that
passes a plane per unit time

an ampere is the coulombs per unit
time that pass a plane

Ohm’s law: the current I is
proportional to the voltage V, with the
resistance R being the constant of
proportionality
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19.2 Series Circuits

the equivalent
resistance of N
resistors connected
in series

19.3 Parallel Circuits

the equivalent
resistance of N resistors
connected in parallel

19.4 Electric Power

for a given current I flowing through a
potential difference V, the electric power
dissipated

for a given current I flowing through a
resistance R, the electric power dissipated

for a given voltage difference V across a
resistor R, the electric power dissipated

CHAPTER REVIEW
Concept Items
19.1 Ohm's law
1. You connect a resistor across a battery. In which direction

do the electrons flow?
a. The electrons flow from the negative terminal of the

battery to the positive terminal of the battery.
b. The electrons flow from the positive terminal of the

battery to the negative terminal of the battery.

2. How does current depend on resistance in Ohm’s law?
a. Current is directly proportional to the resistance.
b. Current is inversely proportional to the resistance.
c. Current is proportional to the square of the

resistance.
d. Current is inversely proportional to the square of the

resistance.

3. In the context of electricity, what is resistance?
a. Resistance is the property of materials to resist the

passage of voltage.
b. Resistance is the property of materials to resist the

passage of electric current.
c. Resistance is the property of materials to increase

the passage of voltage.
d. Resistance is the property of materials to increase

the passage of electric current.

4. What is the mathematical formula for Ohm’s law?
a.
b.
c.
d.

19.2 Series Circuits
5. In which circuit are all the resistors connected in series?

a.

b.

c.

d.

6. What is the voltage and current through the capacitor in
the circuit below a long time after the switch is closed?

a. 0 V, 0 A
b. 0 V, 10 A
c. 10 V, 0 A
d. 10 V, 10 A
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19.3 Parallel Circuits
7. If you remove resistance from a circuit, does the total

resistance of the circuit always decrease? Explain.
a. No, because for parallel combination of resistors,

the resistance through the remaining circuit
increases.

b. Yes, because for parallel combination of resistors,
the resistance through the remaining circuit
increases.

8. Explain why the equivalent resistance of a parallel
combination of resistors is always less than the smallest
of the parallel resistors.
a. Adding resistors in parallel gives the current a

shorter path through which it can flow hence
decreases the overall resistance.

b. Adding resistors in parallel gives the current
another path through which it can flow hence
decreases the overall resistance.

c. Adding resistors in parallel reduce the number of
paths through which the current can flow hence

decreases the overall resistance.
d. Adding resistors in parallel gives the current longer

path through which it can flow hence decreases the
overall resistance.

19.4 Electric Power
9. To draw the most power from a battery, should you

connect a small or a large resistance across its terminals?
Explain.
a. Small resistance, because smaller resistance will

lead to the largest power
b. Large resistance, because smaller resistance will

lead to the largest power

10. If you double the current through a resistor, by what
factor does the power dissipated by the resistor change?
a. Power increases by a factor of two.
b. Power increases by a factor of four.
c. Power increases by a factor of eight.
d. Power increases by a factor of 16.

Critical Thinking Items
19.1 Ohm's law
11. An accelerator accelerates He nuclei (change = 2e) to a

speed of v = 2 × 106 m/s. What is the current if the linear
density of He nuclei is λ = 108 m–1?
a. I = 9.6 × 10–5 A
b. I = 3.2 × 10–5 A
c. I = 12.8 × 10–5 A
d. I = 6.4 × 10–5 A

12. How can you verify whether a certain material is ohmic?
a. Make a resistor from this material and measure the

current going through this resistor for several
different voltages. If the current is proportional to
the voltage, then the material is ohmic.

b. Make a resistor from this material and measure the
current going through this resistor for several
different voltages. If the current is inversely
proportional to the voltage, then the material is
ohmic.

c. Make a resistor from this material and measure the
current going through this resistor for several
different voltages. If the current is proportional to
the square of the voltage, then the material is
ohmic.

d. Make a resistor from this material and measure the
current going through this resistor for several
different voltages. If the current is inversely
proportional to the square of the voltage, then the

material is ohmic.

19.2 Series Circuits
13. Given three batteries (5V, 9V, 12V) and five resistors (10,

20, 30, 40, 50Ω) to choose from, what can you choose to
form a circuit diagram with a current of 0.175A? You do
not need to use all of the components.
a. Batteries (5V, 9V) and resistors (30Ω, 50Ω)

connected in series
b. Batteries (5V4, 12V) and resistors (10Ω, 20Ω, 40Ω,

and 50Ω) connected in series.
c. Batteries (5V, 9V, and 12V) and resistors (10Ω, 20Ω,

and 30Ω) connected in series.

14. What is the maximum resistance possible given a
resistor of and a resistor of ?
a.
b.
c.
d.

15. Rank the points A, B, C, and D in the circuit diagram
from lowest voltage to highest voltage.
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a. A, B, C, D
b. B, C, A, D
c. C, B, A, D
d. D, A, B, C

19.3 Parallel Circuits
16. Can all resistor combinations be reduced to series and

parallel combinations?
a. No, all practical resistor circuits cannot be reduced

to series and parallel combinations.
b. Yes, all practical resistor circuits can be reduced to

series and parallel combinations.

17. What is the equivalent resistance of the circuit shown
below?

Figure 19.23

a. The equivalent resistance of the circuit 14 Ω.
b. The equivalent resistance of the circuit 16.7 Ω.
c. The equivalent resistance of the circuit 140 Ω.
d. The equivalent resistance of the circuit 195 Ω.

19.4 Electric Power
18. Two lamps have different resistances. (a) If the lamps are

connected in parallel, which one is brighter, the lamp
with greater resistance or the lamp with less resistance?
(b) If the lamps are connected in series, which one is
brighter? Note that the brighter lamp dissipates more
power.
a. (a) lamp with greater resistance; (b) lamp with less

resistance
b. (a) lamp with greater resistance; (b) lamp with

greater resistance
c. (a) lamp with less resistance; (b) lamp with less

resistance
d. (a) lamp with less resistance; (b) lamp with greater

resistance

19. To measure the power consumed by your laptop
computer, you place an ammeter (a device that measures
electric current) in series with its DC power supply.
When the screen is off, the computer draws 0.40 A of
current.
When the screen is on at full brightness, it draws 0.90 A
of current. Knowing the DC power supply delivers 16 V,
how much power is used by the screen?
a. The power used by the screen is −8.0 W.
b. The power used by the screen is 0.3 W.
c. The power used by the screen is 3.2 W.
d. The power used by the screen is 8.0 W.

Problems
19.1 Ohm's law
20. What voltage is needed to make 6 C of charge traverse a

100-Ω resistor in 1 min?
a. The required voltage is 1 × 10−3 V.
b. The required voltage is 10 V.
c. The required voltage is 1,000 V.
d. The required voltage is 10,000 V.

21. Resistors typically obey Ohm’s law at low currents, but
show deviations at higher currents because of heating.
Suppose you were to conduct an experiment measuring
the voltage, V, across a resistor as a function of current,
I, including currents whose deviations from Ohm’s law
start to become apparent. For a data plot of V versus I,

which of the following functions would be best to fit the
data? Assume that a, b, and c are nonzero constants
adjusted to fit the data.
a.
b.
c.
d.

22. A battery of unknown voltage is attached across a
resistor . You add a second battery with
in series with so that the voltage across is now

and measure of current through
resistor . You add a third battery with in
series with the first two batteries so that the voltage
across is and measure of
current through . What is the resistance of ?
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a.
b.
c.
d.

19.2 Series Circuits
23. What is the voltage drop across two 80-Ω resistors

connected in series with 0.15 A flowing through them?
a. 12 V
b. 24 V
c. 36 V
d. 48 V

24. In this circuit, the voltage drop across the upper resistor
is 4.5 V. What is the battery voltage?

a. 4.5V
b. 7.5V
c. 12V
d. 18V

19.3 Parallel Circuits
25. What is the equivalent resistance of this circuit?

a. The equivalent resistance of the circuit is 32.7 Ω.
b. The equivalent resistance of the circuit is 100 Ω.
c. The equivalent resistance of the circuit is 327 Ω.
d. The equivalent resistance of the circuit is 450 Ω.

26. What is the equivalent resistance of the circuit shown
below?

a. The equivalent resistance is 25 Ω.
b. The equivalent resistance is 50 Ω.
c. The equivalent resistance is 75 Ω.
d. The equivalent resistance is 100 Ω.

19.4 Electric Power
27. When 12 V are applied across a resistor, it dissipates 120

W of power. What is the current through the resistor?
a. The current is 1,440 A.
b. The current is 10 A.
c. The current is 0.1 A.
d. The current is 0.01 A.

28. Warming 1 g of water requires 1 J of energy per . How
long would it take to warm 1 L of water from 20 to 40 °C
if you immerse in the water a 1-kW resistor connected
across a 9.0-V batteries aligned in series?
a. 10 min
b. 20 min
c. 30 min
d. 40 min

Performance Task
19.4 Electric Power
29. 1. An incandescent light bulb (i.e., an old-fashioned

light bulb with a little wire in it)
2. A lightbulb socket to hold the light bulb
3. A variable voltage source
4. An ammeter

Procedure
• Screw the lightbulb into its socket. Connect the

positive terminal of the voltage source to the input
of the ammeter. Connect the output of the
ammeter to one connection of the socket. Connect
the other connection of the socket to the negative
terminal of the voltage source. Ensure that the
voltage source is set to supply DC voltage and that
the ammeter is set to measure DC amperes. The
desired circuit is shown below.
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• On a piece of paper, make a two-column table with

10 rows. Label the left column volts and the right
column current. Adjust the voltage source so that it
supplies from between 1 and 10 volts DC. For each
voltage, write the voltage in the volts column and
the corresponding amperage measured by the
ammeter in the current column. Make a plot of
volts versus current, that is, a plot with volts on the
vertical axis and current on the horizontal axis. Use
this data and the plot to answer the following
questions:

1. What is the resistance of the lightbulb?
2. What is the range of possible error in your result

for the resistance?
3. In a single word, how would you describe the curve

formed by the data points?

TEST PREP
Multiple Choice
19.1 Ohm's law
30. What are the SI units for electric current?

a.
b.
c.
d.

31. What is the SI unit for resistance?
a.
b.
c.
d.

32. The equivalent unit for an ohm is a ________.
a. V/A
b. C/m

c.

d. V/s

33. You put DC across resistor and measure the
current through it. With the same voltage across resistor

, you measure twice the current. What is the ratio

?
a. 1
b.
c. 4
d. 2

19.2 Series Circuits
34. What does the circuit element shown represent?

a. a battery
b. a capacitor
c. the ground
d. a switch

35. How many 10-Ω resistors must be connected in series to
make an equivalent resistance of 80 Ω?
a. 80
b. 8
c. 20
d. 40

36. Which two circuit elements are represented in the
circuit diagram?

a. a battery connected in series with an inductor
b. a capacitor connected in series with a resistor
c. a resistor connected in series with a battery
d. an inductor connected in series with a resistor

37. How much current will flow through a 10-V battery with
a 100-Ω resistor connected across its terminals?
a. 0.1 A
b. 1.0 A
c. 0
d. 1,000 A

19.3 Parallel Circuits
38. A 10-Ω resistor is connected in parallel to another

resistor R . The equivalent resistance of the pair is 8 Ω.
What is the resistance R?
a. 10 Ω
b. 20 Ω
c. 30 Ω

Chapter 19 • Test Prep 643



d. 40 Ω

39. Are the resistors shown connected in parallel or in
series? Explain.

a. The resistors are connected in parallel because the
same current flows through all three resistors.

b. The resistors are connected in parallel because
different current flows through all three resistors.

c. The resistors are connected in series because the
same current flows through all three resistors.

d. The resistors are connected in series because
different current flows through all three resistors.

19.4 Electric Power
40. Which equation below for electric power is incorrect?

a.
b.

c.

d.

41. What power is dissipated in a circuit through which
flows across a potential drop of ?

a.
b.
c. Voltage drop across is .
d.

42. How does a resistor dissipate power?
a. A resistor dissipates power in the form of heat.
b. A resistor dissipates power in the form of sound.
c. A resistor dissipates power in the form of light.
d. A resistor dissipates power in the form of charge.

43. What power is dissipated in a circuit through which 0.12
A flows across a potential drop of 3.0 V?
a. 0.36 W
b. 0.011 W
c. 5 V
d. 2.5 W

Short Answer
19.1 Ohm's law
44. True or false—it is possible to produce nonzero DC

current by adding together AC currents.
a. false
b. true

45. What type of current is used in cars?
a. alternating current
b. indirect current
c. direct current
d. straight current

46. If current were represented by , voltage by , and
resistance by , what would the mathematical
expression be for Ohm’s law?
a.
b.
c.

d.

47. Give a verbal expression for Ohm’s law.
a. Ohm’s law says that the current through a resistor

equals the voltage across the resistor multiplied by
the resistance of the resistor.

b. Ohm’s law says that the voltage across a resistor
equals the current through the resistor multiplied
by the resistance of the resistor.

c. Ohm’s law says that the resistance of the resistor
equals the current through the resistor multiplied

by the voltage across a resistor.
d. Ohm’s law says that the voltage across a resistor

equals the square of the current through the
resistor multiplied by the resistance of the resistor.

48. What is the current through a 100-Ω resistor with 12 V
across it?
a. 0
b. 0.12 A
c. 8.33 A
d. 1,200 A

49. What resistance is required to produce from a
battery?

a.
b. 1
c. 60
d. 120

19.2 Series Circuits
50. Given a circuit with one 9-V battery and with its

negative terminal connected to ground. The two paths
are connected to ground from the positive terminal: the
right path with a 20-Ω and a 100-Ω resistor and the left
path with a 50-Ω resistor. How much current will flow
in the right branch?

a.

b.
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c.

d.

51. Through which branch in the circuit below does the most
current flow?

a. All of the current flows through the left branch due
to the open switch.

b. All of the current flows through the right branch
due to the open switch in the left branch.

c. All of the current flows through the middle branch
due to the open switch in the left branch

d. There will be no current in any branch of the circuit
due to the open switch.

52. What current flows through the resistor in the
circuit below?

a.
b.
c.
d.

53. What is the equivalent resistance for the circuit below if
and ?

a.
b.
c.
d.

19.3 Parallel Circuits
54. Ten 100-Ω resistors are connected in series. How can

you increase the total resistance of the circuit by about
40 percent?
a. Adding two 10-Ω resistors increases the total

resistance of the circuit by about 40 percent.
b. Removing two 10-Ω resistors increases the total

resistance of the circuit by about 40 percent.
c. Adding four 10-Ω resistors increases the total

resistance of the circuit by about 40 percent.
d. Removing four 10-Ω resistors increases the total

resistance of the circuit by about 40 percent.

55. Two identical resistors are connected in parallel across
the terminals of a battery. If you increase the resistance
of one of the resistors, what happens to the current
through and the voltage across the other resistor?
a. The current and the voltage remain the same.
b. The current decreases and the voltage remains the

same.
c. The current and the voltage increases.
d. The current increases and the voltage remains the

same.

56.

In the circuit below, through which resistor(s) does the
most current flow? Through which does the least flow?
Explain.
a. The most current flows through the 15-Ω resistor

because all the current must pass through this
resistor.

b. The most current flows through the 20-Ω resistor
because all the current must pass through this
resistor.

c. The most current flows through the 25-Ω resistor
because it is the highest resistance.

d. The same current flows through the all the resistor
because all the current must pass through each of
the resistors.

19.4 Electric Power
57. You want to increase the power dissipated in a circuit.
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You have the choice between doubling the current or
doubling the resistance, with the voltage remaining
constant. Which one would you choose?
a. doubling the resistance
b. doubling the current

58. You want to increase the power dissipated in a circuit.
You have the choice between reducing the voltage or
reducing the resistance, with the current remaining
constant. Which one would you choose?
a. reduce the voltage to increase the power
b. reduce the resistance to increase the power

59. What power is dissipated in the circuit consisting of
310-Ω resistors connected in series across a 9.0-V

battery?
a. The power dissipated is 2430 W.
b. The power dissipated is 270 W.
c. The power dissipated is 2.7 W.
d. The power dissipated is 0.37 W.

60. What power is dissipated in a circuit consisting of three
10-Ω resistors connected in parallel across a 9.0-V
battery?
a. The power dissipated is 270 W.
b. The power dissipated is 30 W.
c. The power dissipated is 24 W.
d. The power dissipated is 1/24 W.

Extended Response
19.1 Ohm's law
61. Describe the relationship between current and charge.

Include an explanation of how the direction of the
current is defined.
a. Electric current is the charge that passes through a

conductor per unit time. The direction of the
current is defined to be the direction in which
positive charge would flow.

b. Electric current is the charges that move in a
conductor. The direction of the current is defined to
be the direction in which positive charge would
flow.

c. Electric current is the charge that passes through a
conductor per unit time. The direction of the
current is defined to be the direction in which
negative charge would flow.

d. Electric current is the charges that move in a
conductor. The direction of the current is defined to
be the direction in which negative charge would
flow.

62. What could cause Ohm’s law to break down?
a. If small amount of current flows through a resistor,

the resistor will heat up so much that it will change
state, in violation of Ohm’s law.

b. If excessive amount of current flows through a
resistor, the resistor will heat up so much that it
will change state, in violation of Ohm’s law.

c. If small amount of current flows through a resistor,
the resistor will not heat up so much and it will not
change its state, in violation of Ohm’s law.

d. If excessive amount of current flows through a
resistor, the resistor will heat up so much that it
will not change its state, in violation of Ohm’s law.

63. You connect a single resistor across a battery
and find that flows through the circuit. You add

another resistor after the first resistor and find that
flows through the circuit. If you have

resistors connected in a line one after the other, what
would be their total resistance?
a.
b.
c.
d.

19.2 Series Circuits
64. Explain why the current is the same at all points in the

circuit below.

a. If the current were not constant, the mobile
charges would bunch up in places, which means
that the voltage would decrease at that point. A
lower voltage at some point would push the current
in the direction that further decreases the voltage.

b. If the current were not constant, the mobile
charges would bunch up in places, which means
that the voltage would increase at that point. But a
higher voltage at some point would push the
current in the direction that decreases the voltage.

c. If the current were not constant, the mobile
charges would bunch up in places, which mean
that the voltage would increase at that point. A
higher voltage at some point would push the
current in the direction that further increases the
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voltage.
d. If the current were not constant, the mobile

charges would bunch up in places, which mean
that the voltage would decrease at that point. But a
lower voltage at some point would push the current
in the direction that increases the voltage.

65. What is the current through each resistor in the circuit?

a. Current through resistors R1, R2, R3, and R4 is 0.48
A, 0.30 A, 1.2 A, and 0.24 A, respectively.

b. Current through resistors R1, R2, R3, and R4 is 1200
A, 1920 A, 480 A, and 2400 A, respectively.

c. Current through resistors R1, R2, R3, and is R4 2.08
A, 3.34 A, 0.833 A, and 4.17 A, respectively.

d. The same amount of current, 0.096 A, flows
through all of the resistors.

19.3 Parallel Circuits
66. In a house, a single incoming wire at a high potential

with respect to the ground provides electric power. How
are the appliances connected between this wire and the

ground, in parallel or in series? Explain.
a. The appliances are connected in parallel to provide

different voltage differences across each appliance.
b. The appliances are connected in parallel to provide

the same voltage difference across each appliance.
c. The appliances are connected in series to provide

the same voltage difference across each appliance.
d. The appliances are connected in series to provide

different voltage differences across each appliance.

19.4 Electric Power
67. A single resistor is connected across the terminals of a

battery When you attach a second resistor in parallel
with the first, does the power dissipated by the system
change?
a. No, the power dissipated remain same.
b. Yes, the power dissipated increases.
c. Yes, the power dissipated decreases.

68. In a flashlight, the batteries are normally connected in
series. Why are they not connected in parallel?
a. Batteries are connected in series for higher voltage

and power output.
b. Batteries are connected in series for lower voltage

and power output.
c. Batteries are connected in series so that power

output is a much lower for the same amount of
voltage.

d. Batteries are connected in series to reduce the
overall loss of energy from the circuit.
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INTRODUCTION

CHAPTER 20
Magnetism

20.1 Magnetic Fields, Field Lines, and Force

20.2 Motors, Generators, and Transformers

20.3 Electromagnetic Induction

You may have encountered magnets for the first time as a small child playing with magnetic toys or
refrigerator magnets. At the time, you likely noticed that two magnets that repulse each other will attract each other if you flip
one of them around. The force that acts across the air gaps between magnets is the same force that creates wonders such as the
Aurora Borealis. In fact, magnetic effects pervade our lives in myriad ways, from electric motors to medical imaging and
computer memory. In this chapter, we introduce magnets and learn how they work and how magnetic fields and electric
currents interact.

Figure 20.1 The magnificent spectacle of the Aurora Borealis, or northern lights, glows in the northern sky above
Bear Lake near Eielson Air Force Base, Alaska. Shaped by Earth’s magnetic field, this light is produced by radiation
spewed from solar storms. (credit: Senior Airman Joshua Strang, Flickr)

Chapter Outline



20.1 Magnetic Fields, Field Lines, and Force
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Summarize properties of magnets and describe how some nonmagnetic materials can become magnetized
• Describe and interpret drawings of magnetic fields around permanent magnets and current-carrying wires
• Calculate the magnitude and direction of magnetic force in a magnetic field and the force on a current-

carrying wire in a magnetic field

Section Key Terms

Curie temperature domain electromagnet electromagnetism ferromagnetic

magnetic dipole magnetic field magnetic pole magnetized north pole

permanent magnet right-hand rule solenoid south pole

Magnets and Magnetization
People have been aware of magnets and magnetism for thousands of years. The earliest records date back to ancient times,
particularly in the region of Asia Minor called Magnesia—the name of this region is the source of words like magnet. Magnetic
rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. When humans first
discovered magnetic rocks, they likely found that certain parts of these rocks attracted bits of iron or other magnetic rocks more
strongly than other parts. These areas are called the poles of a magnet. A magnetic pole is the part of a magnet that exerts the
strongest force on other magnets or magnetic material, such as iron. For example, the poles of the bar magnet shown in Figure
20.2 are where the paper clips are concentrated.

Figure 20.2 A bar magnet with paper clips attracted to the two poles.

If a bar magnet is suspended so that it rotates freely, one pole of the magnet will always turn toward the north, with the opposite
pole facing south. This discovery led to the compass, which is simply a small, elongated magnet mounted so that it can rotate
freely. An example of a compass is shown Figure 20.3. The pole of the magnet that orients northward is called the north pole,
and the opposite pole of the magnet is called the south pole.
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Figure 20.3 A compass is an elongated magnet mounted in a device that allows the magnet to rotate freely.

The discovery that one particular pole of a magnet orients northward, whereas the other pole orients southward allowed people
to identify the north and south poles of any magnet. It was then noticed that the north poles of two different magnets repel each
other, and likewise for the south poles. Conversely, the north pole of one magnet attracts the south pole of other magnets. This
situation is analogous to that of electric charge, where like charges repel and unlike charges attract. In magnets, we simply
replace charge with pole: Like poles repel and unlike poles attract. This is summarized in Figure 20.4, which shows how the force
between magnets depends on their relative orientation.

Figure 20.4 Depending on their relative orientation, magnet poles will either attract each other or repel each other.

Consider again the fact that the pole of a magnet that orients northward is called the north pole of the magnet. If unlike poles
attract, then the magnetic pole of Earth that is close to the geographic North Pole must be a magnetic south pole! Likewise, the
magnetic pole of Earth that is close to the geographic South Pole must be a magnetic north pole. This situation is depicted in
Figure 20.5, in which Earth is represented as containing a giant internal bar magnet with its magnetic south pole at the
geographic North Pole and vice versa. If we were to somehow suspend a giant bar magnet in space near Earth, then the north
pole of the space magnet would be attracted to the south pole of Earth’s internal magnet. This is in essence what happens with a
compass needle: Its magnetic north pole is attracted to the magnet south pole of Earth’s internal magnet.
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Figure 20.5 Earth can be thought of as containing a giant magnet running through its core. The magnetic south pole of Earth’s magnet is at

the geographic North Pole, so the north pole of magnets is attracted to the North Pole, which is how the north pole of magnets got their

name. Likewise, the south pole of magnets is attracted to the geographic South Pole of Earth.

What happens if you cut a bar magnet in half? Do you obtain one magnet with two south poles and one magnet with two north
poles? The answer is no: Each half of the bar magnet has a north pole and a south pole. You can even continue cutting each piece
of the bar magnet in half, and you will always obtain a new, smaller magnet with two opposite poles. As shown in Figure 20.6,
you can continue this process down to the atomic scale, and you will find that even the smallest particles that behave as magnets
have two opposite poles. In fact, no experiment has ever found any object with a single magnetic pole, from the smallest
subatomic particle such as electrons to the largest objects in the universe such as stars. Because magnets always have two poles,
they are referred to as magnetic dipoles—di means two. Below, we will see that magnetic dipoles have properties that are
analogous to electric dipoles.

Figure 20.6 All magnets have two opposite poles, from the smallest, such as subatomic particles, to the largest, such as stars.

WATCH PHYSICS

Introduction to Magnetism
This video provides an interesting introduction to magnetism and discusses, in particular, how electrons around their atoms
contribute to the magnetic effects that we observe.

Click to view content (https://www.openstax.org/l/28_intro_magn)

GRASP CHECK
Toward which magnetic pole of Earth is the north pole of a compass needle attracted?
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a. The north pole of a compass needle is attracted to the north magnetic pole of Earth, which is located near the
geographic North Pole of Earth.

b. The north pole of a compass needle is attracted to the south magnetic pole of Earth, which is located near the
geographic North Pole of Earth.

c. The north pole of a compass needle is attracted to the north magnetic pole of Earth, which is located near the
geographic South Pole of Earth.

d. The north pole of a compass needle is attracted to the south magnetic pole of Earth, which is located near the
geographic South Pole of Earth.

Only certain materials, such as iron, cobalt, nickel, and gadolinium, exhibit strong magnetic effects. Such materials are called
ferromagnetic, after the Latin word ferrum for iron. Other materials exhibit weak magnetic effects, which are detectable only
with sensitive instruments. Not only do ferromagnetic materials respond strongly to magnets—the way iron is attracted to
magnets—but they can also be magnetized themselves—that is, they can be induced to be magnetic or made into permanent
magnets (Figure 20.7). A permanent magnet is simply a material that retains its magnetic behavior for a long time, even when
exposed to demagnetizing influences.

Figure 20.7 An unmagnetized piece of iron is placed between two magnets, heated, and then cooled, or simply tapped when cold. The iron

becomes a permanent magnet with the poles aligned as shown: Its south pole is adjacent to the north pole of the original magnet, and its

north pole is adjacent to the south pole of the original magnet. Note that attractive forces are created between the central magnet and the

outer magnets.

When a magnet is brought near a previously unmagnetized ferromagnetic material, it causes local magnetization of the
material with unlike poles closest, as in the right side of Figure 20.7. This causes an attractive force, which is why unmagnetized
iron is attracted to a magnet.

What happens on a microscopic scale is illustrated in Figure 7(a). Regions within the material called domains act like small bar
magnets. Within domains, the magnetic poles of individual atoms are aligned. Each atom acts like a tiny bar magnet. Domains
are small and randomly oriented in an unmagnetized ferromagnetic object. In response to an external magnetic field, the
domains may grow to millimeter size, aligning themselves, as shown in Figure 7(b). This induced magnetization can be made
permanent if the material is heated and then cooled, or simply tapped in the presence of other magnets.

Figure 20.8 (a) An unmagnetized piece of iron—or other ferromagnetic material—has randomly oriented domains. (b) When magnetized by

an external magnet, the domains show greater alignment, and some grow at the expense of others. Individual atoms are aligned within
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domains; each atom acts like a tiny bar magnet.

Conversely, a permanent magnet can be demagnetized by hard blows or by heating it in the absence of another magnet.
Increased thermal motion at higher temperature can disrupt and randomize the orientation and size of the domains. There is a
well-defined temperature for ferromagnetic materials, which is called the Curie temperature, above which they cannot be
magnetized. The Curie temperature for iron is 1,043 K (770 ), which is well above room temperature. There are several
elements and alloys that have Curie temperatures much lower than room temperature and are ferromagnetic only below those
temperatures.

Magnetic Fields
We have thus seen that forces can be applied between magnets and between magnets and ferromagnetic materials without any
contact between the objects. This is reminiscent of electric forces, which also act over distances. Electric forces are described
using the concept of the electric field, which is a force field around electric charges that describes the force on any other charge
placed in the field. Likewise, a magnet creates a magnetic field around it that describes the force exerted on other magnets
placed in the field. As with electric fields, the pictorial representation of magnetic field lines is very useful for visualizing the
strength and direction of the magnetic field.

As shown in Figure 20.9, the direction of magnetic field lines is defined to be the direction in which the north pole of a compass
needle points. If you place a compass near the north pole of a magnet, the north pole of the compass needle will be repelled and
point away from the magnet. Thus, the magnetic field lines point away from the north pole of a magnet and toward its south
pole.

Figure 20.9 The black lines represent the magnetic field lines of a bar magnet. The field lines point in the direction that the north pole of a

small compass would point, as shown at left. Magnetic field lines never stop, so the field lines actually penetrate the magnet to form

complete loops, as shown at right.

Snap Lab

Refrigerator Magnets
We know that like magnetic poles repel and unlike poles attract. See if you can show this for two refrigerator magnets. Will
the magnets stick if you turn them over? Why do they stick to the refrigerator door anyway? What can you say about the
magnetic properties of the refrigerator door near the magnet? Do refrigerator magnets stick to metal or plastic spoons? Do
they stick to all types of metal?

GRASP CHECK
You have one magnet with the north and south poles labeled. How can you use this magnet to identify the north and
south poles of other magnets?
a. If the north pole of a known magnet is repelled by a pole of an unknown magnet on bringing them closer, that pole

of unknown magnet is its north pole; otherwise, it is its south pole.
b. If the north pole of known magnet is attracted to a pole of an unknown magnet on bringing them closer, that pole

of unknown magnet is its north pole; otherwise, it is its south pole.
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Magnetic field lines can be mapped out using a small compass. The compass is moved from point to point around a magnet, and
at each point, a short line is drawn in the direction of the needle, as shown in Figure 20.10. Joining the lines together then
reveals the path of the magnetic field line. Another way to visualize magnetic field lines is to sprinkle iron filings around a
magnet. The filings will orient themselves along the magnetic field lines, forming a pattern such as that shown on the right in
Figure 20.10.

Figure 20.10 Magnetic field lines can be drawn by moving a small compass from point to point around a magnet. At each point, draw a

short line in the direction of the compass needle. Joining the points together reveals the path of the magnetic field lines. Another way to

visualize magnetic field lines is to sprinkle iron filings around a magnet, as shown at right.

When two magnets are brought close together, the magnetic field lines are perturbed, just as happens for electric field lines
when two electric charges are brought together. Bringing two north poles together—or two south poles—will cause a repulsion,
and the magnetic field lines will bend away from each other. This is shown in Figure 20.11, which shows the magnetic field lines
created by the two closely separated north poles of a bar magnet. When opposite poles of two magnets are brought together, the

Virtual Physics

Using a Compass to Map Out the Magnetic Field
Click to view content (http://www.openstax.org/l/28magcomp)
This simulation presents you with a bar magnet and a small compass. Begin by dragging the compass around the bar
magnet to see in which direction the magnetic field points. Note that the strength of the magnetic field is represented by the
brightness of the magnetic field icons in the grid pattern around the magnet. Use the magnetic field meter to check the field
strength at several points around the bar magnet. You can also flip the polarity of the magnet, or place Earth on the image to
see how the compass orients itself.

GRASP CHECK
With the slider at the top right of the simulation window, set the magnetic field strength to 100 percent . Now use the
magnetic field meter to answer the following question: Near the magnet, where is the magnetic field strongest and
where is it weakest? Don’t forget to check inside the bar magnet.
a. The magnetic field is strongest at the center and weakest between the two poles just outside the bar magnet. The

magnetic field lines are densest at the center and least dense between the two poles just outside the bar magnet.
b. The magnetic field is strongest at the center and weakest between the two poles just outside the bar magnet. The

magnetic field lines are least dense at the center and densest between the two poles just outside the bar magnet.
c. The magnetic field is weakest at the center and strongest between the two poles just outside the bar magnet. The

magnetic field lines are densest at the center and least dense between the two poles just outside the bar magnet.
d. The magnetic field is weakest at the center and strongest between the two poles just outside the bar magnet and the

magnetic field lines are least dense at the center and densest between the two poles just outside the bar magnet.
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magnetic field lines join together and become denser between the poles. This situation is shown in Figure 20.11.

Figure 20.11 (a) When two north poles are approached together, the magnetic field lines repel each other and the two magnets experience

a repulsive force. The same occurs if two south poles are approached together. (b) If opposite poles are approached together, the magnetic

field lines become denser between the poles and the magnets experience an attractive force.

Like the electric field, the magnetic field is stronger where the lines are denser. Thus, between the two north poles in Figure
20.11, the magnetic field is very weak because the density of the magnetic field is almost zero. A compass placed at that point
would essentially spin freely if we ignore Earth’s magnetic field. Conversely, the magnetic field lines between the north and
south poles in Figure 20.11 are very dense, indicating that the magnetic field is very strong in this region. A compass placed here
would quickly align with the magnetic field and point toward the south pole on the right.

Note that magnets are not the only things that make magnetic fields. Early in the nineteenth century, people discovered that
electrical currents cause magnetic effects. The first significant observation was by the Danish scientist Hans Christian Oersted
(1777–1851), who found that a compass needle was deflected by a current-carrying wire. This was the first significant evidence
that the movement of electric charges had any connection with magnets. An electromagnet is a device that uses electric current
to make a magnetic field. These temporarily induced magnets are called electromagnets. Electromagnets are employed for
everything from a wrecking yard crane that lifts scrapped cars to controlling the beam of a 90-km-circumference particle
accelerator to the magnets in medical-imaging machines (see Figure 20.12).

Figure 20.12 Instrument for magnetic resonance imaging (MRI). The device uses a cylindrical-coil electromagnet to produce for the main

magnetic field. The patient goes into the tunnel on the gurney. (credit: Bill McChesney, Flickr)

The magnetic field created by an electric current in a long straight wire is shown in Figure 20.13. The magnetic field lines form
concentric circles around the wire. The direction of the magnetic field can be determined using the right-hand rule. This rule
shows up in several places in the study of electricity and magnetism. Applied to a straight current-carrying wire, the right-hand
rule says that, with your right thumb pointed in the direction of the current, the magnetic field will be in the direction in which
your right fingers curl, as shown in Figure 20.13. If the wire is very long compared to the distance r from the wire, the strength B
of the magnetic field is given by

where I is the current in the wire in amperes. The SI unit for magnetic field is the tesla (T). The symbol —read “mu-zero”—is
a constant called the “permeability of free space” and is given by

20.1

20.2
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Figure 20.13 This image shows how to use the right-hand rule to determine the direction of the magnetic field created by current flowing

through a straight wire. Point your right thumb in the direction of the current, and the magnetic field will be in the direction in which your

fingers curl.

WATCH PHYSICS

Magnetic Field Due to an Electric Current
This video describes the magnetic field created by a straight current-carrying wire. It goes over the right-hand rule to determine
the direction of the magnetic field, and presents and discusses the formula for the strength of the magnetic field due to a
straight current-carrying wire.

Click to view content (https://www.openstax.org/l/28magfield)

GRASP CHECK
A long straight wire is placed on a table top and electric current flows through the wire from right to left. If you look at the
wire end-on from the left end, does the magnetic field go clockwise or counterclockwise?
a. By pointing your right-hand thumb in the direction opposite of current, the right-hand fingers will curl

counterclockwise, so the magnetic field will be in the counterclockwise direction.
b. By pointing your right-hand thumb in the direction opposite of current, the right-hand fingers will curl clockwise, so

the magnetic field will be in the clockwise direction.
c. By pointing your right-hand thumb in the direction of current, the right-hand fingers will curl counterclockwise, so the

magnetic field will be in the counterclockwise direction.
d. By pointing your right-hand thumb in the direction of current, the right-hand fingers will curl clockwise, so the

magnetic field will be in the clockwise direction.

Now imagine winding a wire around a cylinder with the cylinder then removed. The result is a wire coil, as shown in Figure
20.14. This is called a solenoid. To find the direction of the magnetic field produced by a solenoid, apply the right-hand rule to
several points on the coil. You should be able to convince yourself that, inside the coil, the magnetic field points from left to
right. In fact, another application of the right-hand rule is to curl your right-hand fingers around the coil in the direction in
which the current flows. Your right thumb then points in the direction of the magnetic field inside the coil: left to right in this
case.

Figure 20.14 A wire coil with current running through as shown produces a magnetic field in the direction of the red arrow.

Each loop of wire contributes to the magnetic field inside the solenoid. Because the magnetic field lines must form closed loops,
the field lines close the loop outside the solenoid. The magnetic field lines are much denser inside the solenoid than outside the
solenoid. The resulting magnetic field looks very much like that of a bar magnet, as shown in Figure 20.15. The magnetic field
strength deep inside a solenoid is
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where N is the number of wire loops in the solenoid and is the length of the solenoid.

Figure 20.15 Iron filings show the magnetic field pattern around (a) a solenoid and (b) a bar magnet. The fields patterns are very similar,

especially near the ends of the solenoid and bar magnet.

Magnetic Force
If a moving electric charge, that is electric current, produces a magnetic field that can exert a force on another magnet, then the
reverse should be true by Newton’s third law. In other words, a charge moving through the magnetic field produced by another
object should experience a force—and this is exactly what we find. As a concrete example, consider Figure 20.16, which shows a

20.3

Virtual Physics

Electromagnets
Click to view content (http://www.openstax.org/l/28elec_magnet)
Use this simulation to visualize the magnetic field made from a solenoid. Be sure to click on the tab that says
Electromagnet. You can drive AC or DC current through the solenoid by choosing the appropriate current source. Use the
field meter to measure the strength of the magnetic field and then change the number of loops in the solenoid to see how
this affects the magnetic field strength.

GRASP CHECK
Choose the battery as current source and set the number of wire loops to four. With a nonzero current going through the
solenoid, measure the magnetic field strength at a point. Now decrease the number of wire loops to two. How does the
magnetic field strength change at the point you chose?
a. There will be no change in magnetic field strength when number of loops reduces from four to two.
b. The magnetic field strength decreases to half of its initial value when number of loops reduces from four to two.
c. The magnetic field strength increases to twice of its initial value when number of loops reduces from four to two.
d. The magnetic field strength increases to four times of its initial value when number of loops reduces from four to

two.
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charge q moving with velocity through a magnetic field between the poles of a permanent magnet. The magnitude F of the
force experienced by this charge is

where is the angle between the velocity of the charge and the magnetic field.

The direction of the force may be found by using another version of the right-hand rule: First, we join the tails of the velocity

vector and a magnetic field vector, as shown in step 1 of Figure 20.16. We then curl our right fingers from to , as indicated
in step (2) of Figure 20.16. The direction in which the right thumb points is the direction of the force. For the charge in Figure
20.16, we find that the force is directed into the page.

Note that the factor in the equation means that zero force is applied on a charge that moves parallel to a
magnetic field because and . The maximum force a charge can experience is when it moves perpendicular to
the magnetic field, because and

Figure 20.16 (a) An electron moves through a uniform magnetic field. (b) Using the right-hand rule, the force on the electron is found to be

directed into the page.

LINKS TO PHYSICS

Magnetohydrodynamic Drive
In Tom Clancy’s Cold War novel “The Hunt for Red October,” the Soviet Union built a submarine (see Figure 20.17) with a
magnetohydrodynamic drive that was so silent it could not be detected by surface ships. The only conceivable purpose to build
such a submarine was to give the Soviet Union first-strike capability, because this submarine could sneak close to the coast of
the United States and fire its ballistic missiles, destroying key military and government installations to prevent an American
counterattack.

Figure 20.17 A Typhoon-class Russian ballistic-missile submarine on which the fictional submarine Red October was based.

A magnetohydrodynamic drive is supposed to be silent because it has no moving parts. Instead, it uses the force experienced by
charged particles that move in a magnetic field. The basic idea behind such a drive is depicted in Figure 20.18. Salt water flows
through a channel that runs from the front to the back of the submarine. A magnetic field is applied horizontally across the
channel, and a voltage is applied across the electrodes on the top and bottom of the channel to force a downward electric current
through the water. The charge carriers are the positive sodium ions and the negative chlorine ions of salt. Using the right-hand

20.4

20.1 • Magnetic Fields, Field Lines, and Force 659



rule, the force on the charge carriers is found to be toward the rear of the vessel. The accelerated charges collide with water
molecules and transfer their momentum, creating a jet of water that is propelled out the rear of the channel. By Newton’s third
law, the vessel experiences a force of equal magnitude, but in the opposite direction.

Figure 20.18 A schematic drawing of a magnetohydrodynamic drive showing the water channel, the current direction, the magnetic field

direction, and the resulting force.

Fortunately for all involved, it turns out that such a propulsion system is not very practical. Some back-of-the-envelope
calculations show that, to power a submarine, either extraordinarily high magnetic fields or extraordinarily high electric
currents would be required to obtain a reasonable thrust. In addition, prototypes of magnetohydrodynamic drives show that
they are anything but silent. Electrolysis caused by running a current through salt water creates bubbles of hydrogen and
oxygen, which makes this propulsion system quite noisy. The system also leaves a trail of chloride ions and metal chlorides that
can easily be detected to locate the submarine. Finally, the chloride ions are extremely reactive and very quickly corrode metal
parts, such as the electrode or the water channel itself. Thus, the Red October remains in the realm of fiction, but the physics
involved is quite real.

GRASP CHECK
If the magnetic field is downward, in what direction must the current flow to obtain rearward-pointing force?
a. The current must flow vertically from up to down when viewed from the rear of the boat.
b. The current must flow vertically from down to up when viewed from the rear of the boat.
c. The current must flow horizontally from left to right when viewed from the rear of the boat.
d. The current must flow horizontally from right to left when viewed from the rear of the boat.

Instead of a single charge moving through a magnetic field, consider now a steady current I moving through a straight wire. If
we place this wire in a uniform magnetic field, as shown in Figure 20.19, what is the force on the wire or, more precisely, on the
electrons in the wire? An electric current involves charges that move. If the charges q move a distance in a time t, then their
speed is Inserting this into the equation gives

The factor q/t in this equation is nothing more than the current in the wire. Thus, using , we obtain

This equation gives the force on a straight current-carrying wire of length in a magnetic field of strength B. The angle is the
angle between the current vector and the magnetic field vector. Note that is the length of wire that is in the magnetic field and
for which as shown in Figure 20.19.

The direction of the force is determined in the same way as for a single charge. Curl your right fingers from the vector for I to the
vector for B, and your right thumb will point in the direction of the force on the wire. For the wire shown in Figure 20.19, the
force is directed into the page.
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Figure 20.19 A straight wire carrying current I in a magnetic field B. The force exerted on the wire is directed into the page. The length is

the length of the wire that is in the magnetic field.

Throughout this section, you may have noticed the symmetries between magnetic effects and electric effects. These effects all fall
under the umbrella of electromagnetism, which is the study of electric and magnetic phenomena. We have seen that electric
charges produce electric fields, and moving electric charges produce magnetic fields. A magnetic dipole produces a magnetic
field, and, as we will see in the next section, moving magnetic dipoles produce an electric field. Thus, electricity and magnetism
are two intimately related and symmetric phenomena.

WORKED EXAMPLE

Trajectory of Electron in Magnetic Field
A proton enters a region of constant magnetic field, as shown in Figure 20.20. The magnetic field is coming out of the page. If
the electron is moving at and the magnetic field strength is 2.0 T, what is the magnitude and direction of the
force on the proton?

Figure 20.20 A proton enters a region of uniform magnetic field. The magnetic field is coming out of the page—the circles with dots

represent vector arrow heads coming out of the page.

STRATEGY
Use the equation to find the magnitude of the force on the proton. The angle between the magnetic field vectors
and the velocity vector of the proton is The direction of the force may be found by using the right-hand rule.

Solution
The charge of the proton is . Entering this value and the given velocity and magnetic field strength into
the equation gives

To find the direction of the force, first join the velocity vector end to end with the magnetic field vector, as shown in Figure 20.21.
Now place your right hand so that your fingers point in the direction of the velocity and curl them upward toward the magnetic
field vector. The force is in the direction in which your thumb points. In this case, the force is downward in the plane of the paper
in the -direction, as shown in Figure 20.21.
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Figure 20.21 The velocity vector and a magnetic field vector from Figure 20.20 are placed end to end. A right hand is shown with the fingers

curling up from the velocity vector toward the magnetic field vector. The thumb points in the direction of the resulting force, which is the

-direction in this case.

Thus, combining the magnitude and the direction, we find that the force on the proton is

Discussion
This seems like a very small force. However, the proton has a mass of , so its acceleration is

, or about ten thousand billion times the acceleration due to gravity!

We found that the proton’s initial acceleration as it enters the magnetic field is downward in the plane of the page. Notice that,
as the proton accelerates, its velocity remains perpendicular to the magnetic field, so the magnitude of the force does not
change. In addition, because of the right-hand rule, the direction of the force remains perpendicular to the velocity. This force is
nothing more than a centripetal force: It has a constant magnitude and is always perpendicular to the velocity. Thus, the
magnitude of the velocity does not change, and the proton executes circular motion. The radius of this circle may be found by
using the kinematics relationship.

The path of the proton in the magnetic field is shown in Figure 20.22.

Figure 20.22 When traveling perpendicular to a constant magnetic field, a charged particle will execute circular motion, as shown here for a

proton.

WORKED EXAMPLE

Wire with Current in Magnetic Field
Now suppose we run a wire through the uniform magnetic field from the previous example, as shown. If the wire carries a
current of 1.0 A in the -direction, and the region with magnetic field is 4.0 cm long, what is the force on the wire?
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STRATEGY
Use equation to find the magnitude of the force on the wire. The length of the wire inside the magnetic field is
4.0 cm, and the angle between the current direction and the magnetic field direction is 90°. To find the direction of the force,
use the right-hand rule as explained just after the equation

Solution
Insert the given values into equation to find the magnitude of the force

To find the direction of the force, begin by placing the current vector end to end with a vector for the magnetic field. The result is

as shown in the figure in the previous Worked Example with replaced by . Curl your right-hand fingers from to and
your right thumb points down the page, again as shown in the figure in the previous Worked Example. Thus, the direction of the
force is in the -direction. The complete force is thus .

Discussion
The direction of the force is the same as the initial direction of the force was in the previous example for a proton. However,
because the current in a wire is confined to a wire, the direction in which the charges move does not change. Instead, the entire
wire accelerates in the -direction. The force on a current-carrying wire in a magnetic field is the basis of all electrical motors,
as we will see in the upcoming sections.

Practice Problems
1. What is the magnitude of the force on an electron moving at 1.0 × 106 m/s perpendicular to a 1.0-T magnetic field?

a. 0.8 × 10–13 N
b. 1.6 × 10–14 N
c. 0.8 × 10–14 N
d. 1.6 × 10–13 N

2. A straight 10 cm wire carries 0.40 A and is oriented perpendicular to a magnetic field. If the force on the wire is 0.022 N,
what is the magnitude of the magnetic field?
a. 1.10 × 10–2 T
b. 0.55 × 10–2 T
c. 1.10 T
d. 0.55 T

Check Your Understanding
3. If two magnets repel each other, what can you conclude about their relative orientation?

a. Either the south pole of magnet 1 is closer to the north pole of magnet 2 or the north pole of magnet 1 is closer to the
south pole of magnet 2.

b. Either the south poles of both the magnet 1 and magnet 2 are closer to each other or the north poles of both the magnet 1
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and magnet 2 are closer to each other.

4. Describe methods to demagnetize a ferromagnet.
a. by cooling, heating, or submerging in water
b. by heating, hammering, and spinning it in external magnetic field
c. by hammering, heating, and rubbing with cloth
d. by cooling, submerging in water, or rubbing with cloth

5. What is a magnetic field?
a. The directional lines present inside and outside the magnetic material that indicate the magnitude and direction of the

magnetic force.
b. The directional lines present inside and outside the magnetic material that indicate the magnitude of the magnetic

force.
c. The directional lines present inside the magnetic material that indicate the magnitude and the direction of the

magnetic force.
d. The directional lines present outside the magnetic material that indicate the magnitude and the direction of the

magnetic force.

6. Which of the following drawings is correct?

a.

b.

c.

d.
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20.2 Motors, Generators, and Transformers
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain how electric motors, generators, and transformers work
• Explain how commercial electric power is produced, transmitted, and distributed

Section Key Terms

electric motor generator transformer

Electric Motors, Generators, and Transformers
As we learned previously, a current-carrying wire in a magnetic field experiences a force—recall . Electric
motors, which convert electrical energy into mechanical energy, are the most common application of magnetic force on current-
carrying wires. Motors consist of loops of wire in a magnetic field. When current is passed through the loops, the magnetic field
exerts a torque on the loops, which rotates a shaft. Electrical energy is converted to mechanical work in the process. Figure 20.23
shows a schematic drawing of an electric motor.

Figure 20.23 Torque on a current loop. A vertical loop of wire in a horizontal magnetic field is attached to a vertical shaft. When current is

passed through the wire loop, torque is exerted on it, making it turn the shaft.

Let us examine the force on each segment of the loop in Figure 20.23 to find the torques produced about the axis of the vertical
shaft—this will lead to a useful equation for the torque on the loop. We take the magnetic field to be uniform over the
rectangular loop, which has width w and height as shown in the figure. First, consider the force on the top segment of the
loop. To determine the direction of the force, we use the right-hand rule. The current goes from left to right into the page, and
the magnetic field goes from left to right in the plane of the page. Curl your right fingers from the current vector to the magnetic
field vector and your right thumb points down. Thus, the force on the top segment is downward, which produces no torque on
the shaft. Repeating this analysis for the bottom segment—neglect the small gap where the lead wires go out—shows that the
force on the bottom segment is upward, again producing no torque on the shaft.

Consider now the left vertical segment of the loop. Again using the right-hand rule, we find that the force exerted on this
segment is perpendicular to the magnetic field, as shown in Figure 20.23. This force produces a torque on the shaft. Repeating
this analysis on the right vertical segment of the loop shows that the force on this segment is in the direction opposite that of the
force on the left segment, thereby producing an equal torque on the shaft. The total torque on the shaft is thus twice the toque
on one of the vertical segments of the loop.

To find the magnitude of the torque as the wire loop spins, consider Figure 20.24, which shows a view of the wire loop from
above. Recall that torque is defined as where F is the applied force, r is the distance from the pivot to where the
force is applied, and θ is the angle between r and F. Notice that, as the loop spins, the current in the vertical loop segments is
always perpendicular to the magnetic field. Thus, the equation gives the magnitude of the force on each vertical
segment as The distance r from the shaft to where this force is applied is w/2, so the torque created by this force is

Because there are two vertical segments, the total torque is twice this, or

If we have a multiple loop with N turns, we get N times the torque of a single loop. Using the fact that the area of the loop is
the expression for the torque becomes
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This is the torque on a current-carrying loop in a uniform magnetic field. This equation can be shown to be valid for a loop of any
shape.

Figure 20.24 View from above of the wire loop from Figure 20.23. The magnetic field generates a force F on each vertical segment of the

wire loop, which generates a torque on the shaft. Notice that the currents have the same magnitude because they both

represent the current flowing in the wire loop, but flows into the page and flows out of the page.

From the equation we see that the torque is zero when As the wire loop rotates, the torque increases to
a maximum positive torque of when The torque then decreases back to zero as the wire loop rotates to

From to the torque is negative. Thus, the torque changes sign every half turn, so the wire loop
will oscillate back and forth.

For the coil to continue rotating in the same direction, the current is reversed as the coil passes through
using automatic switches called brushes, as shown in Figure 20.25.

Figure 20.25 (a) As the angular momentum of the coil carries it through the brushes reverse the current and the torque remains

clockwise. (b) The coil rotates continuously in the clockwise direction, with the current reversing each half revolution to maintain the

clockwise torque.

Consider now what happens if we run the motor in reverse; that is, we attach a handle to the shaft and mechanically force the
coil to rotate within the magnetic field, as shown in Figure 20.26. As per the equation —where is the angle

between the vectors and in the wires of the loop experience a magnetic force because they are moving in a

magnetic field. Again using the right-hand rule, where we curl our fingers from vector to vector , we find that charges in
the top and bottom segments feel a force perpendicular to the wire, which does not cause a current. However, charges in the
vertical wires experience forces parallel to the wire, causing a current to flow through the wire and through an external circuit if
one is connected. A device such as this that converts mechanical energy into electrical energy is called a generator.
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Figure 20.26 When this coil is rotated through one-fourth of a revolution, the magnetic flux Φ changes from its maximum to zero, inducing

an emf, which drives a current through an external circuit.

Because current is induced only in the side wires, we can find the induced emf by only considering these wires. As explained in
Induced Current in a Wire, motional emf in a straight wire moving at velocity v through a magnetic field B is where
the velocity is perpendicular to the magnetic field. In the generator, the velocity makes an angle with B (see Figure 20.27), so
the velocity component perpendicular to B is Thus, in this case, the emf induced on each vertical wire segment is

and they are in the same direction. The total emf around the loop is then

Although this expression is valid, it does not give the emf as a function of time. To find how the emf evolves in time, we assume
that the coil is rotated at a constant angular velocity The angle is related to the angular velocity by so that

Recall that tangential velocity v is related to angular velocity by Here, , so that and

Noting that the area of the loop is and allowing for N wire loops, we find that

is the emf induced in a generator coil of N turns and area A rotating at a constant angular velocity in a uniform magnetic field
B. This can also be expressed as

where

is the maximum (peak) emf.
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Figure 20.27 The instantaneous velocity of the vertical wire segments makes an angle with the magnetic field. The velocity is shown in

the figure by the green arrow, and the angle is indicated.

Figure 20.28 shows a generator connected to a light bulb and a graph of the emf vs. time. Note that the emf oscillates from a
positive maximum of to a negative maximum of In between, the emf goes through zero, which means that zero
current flows through the light bulb at these times. Thus, the light bulb actually flickers on and off at a frequency of 2f, because
there are two zero crossings per period. Since alternating current such as this is used in homes around the world, why do we not
notice the lights flickering on and off? In the United States, the frequency of alternating current is 60 Hz, so the lights flicker on
and off at a frequency of 120 Hz. This is faster than the refresh rate of the human eye, so you don’t notice the flicker of the lights.
Also, other factors prevent various different types of light bulbs from switching on and off so fast, so the light output is
smoothed out a bit.

Figure 20.28 The emf of a generator is sent to a light bulb with the system of rings and brushes shown. The graph gives the emf of the

generator as a function of time. is the peak emf. The period is where f is the frequency at which the coil is rotated in

the magnetic field.

Virtual Physics

Generator
Click to view content (http://www.openstax.org/l/28gen)
Use this simulation to discover how an electrical generator works. Control the water supply that makes a water wheel turn a
magnet. This induces an emf in a nearby wire coil, which is used to light a light bulb. You can also replace the light bulb with
a voltmeter, which allows you to see the polarity of the voltage, which changes from positive to negative.

GRASP CHECK
Set the number of wire loops to three, the bar-magnet strength to about 50 percent, and the loop area to 100 percent.
Note the maximum voltage on the voltmeter. Assuming that one major division on the voltmeter is 5V, what is the
maximum voltage when using only a single wire loop instead of three wire loops?
a. 5 V
b. 15 V
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In real life, electric generators look a lot different than the figures in this section, but the principles are the same. The source of
mechanical energy that turns the coil can be falling water—hydropower—steam produced by the burning of fossil fuels, or the
kinetic energy of wind. Figure 20.29 shows a cutaway view of a steam turbine; steam moves over the blades connected to the
shaft, which rotates the coil within the generator.

Figure 20.29 Steam turbine generator. The steam produced by burning coal impacts the turbine blades, turning the shaft which is

connected to the generator. (credit: Nabonaco, Wikimedia Commons)

Another very useful and common device that exploits magnetic induction is called a transformer. Transformers do what their
name implies—they transform voltages from one value to another; the term voltage is used rather than emf because
transformers have internal resistance. For example, many cell phones, laptops, video games, power tools, and small appliances
have a transformer built into their plug-in unit that changes 120 V or 240 V AC into whatever voltage the device uses. Figure
20.30 shows two different transformers. Notice the wire coils that are visible in each device. The purpose of these coils is
explained below.

Figure 20.30 On the left is a common laminated-core transformer, which is widely used in electric power transmission and electrical

appliances. On the right is a toroidal transformer, which is smaller than the laminated-core transformer for the same power rating but is

more expensive to make because of the equipment required to wind the wires in the doughnut shape.

Figure 20.31 shows a laminated-coil transformer, which is based on Faraday’s law of induction and is very similar in
construction to the apparatus Faraday used to demonstrate that magnetic fields can generate electric currents. The two wire
coils are called the primary and secondary coils. In normal use, the input voltage is applied across the primary coil, and the
secondary produces the transformed output voltage. Not only does the iron core trap the magnetic field created by the primary
coil, but also its magnetization increases the field strength, which is analogous to how a dielectric increases the electric field
strength in a capacitor. Since the input voltage is AC, a time-varying magnetic flux is sent through the secondary coil, inducing
an AC output voltage.

c. 125 V
d. 53 V
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Figure 20.31 A typical construction of a simple transformer has two coils wound on a ferromagnetic core. The magnetic field created by the

primary coil is mostly confined to and increased by the core, which transmits it to the secondary coil. Any change in current in the primary

coil induces a current in the secondary coil.

LINKS TO PHYSICS

Magnetic Rope Memory
To send men to the moon, the Apollo program had to design an onboard computer system that would be robust, consume little
power, and be small enough to fit onboard the spacecraft. In the 1960s, when the Apollo program was launched, entire buildings
were regularly dedicated to housing computers whose computing power would be easily outstripped by today’s most basic
handheld calculator.

To address this problem, engineers at MIT and a major defense contractor turned to magnetic rope memory, which was an
offshoot of a similar technology used prior to that time for creating random access memories. Unlike random access memory,
magnetic rope memory was read-only memory that contained not only data but instructions as well. Thus, it was actually more
than memory: It was a hard-wired computer program.

The components of magnetic rope memory were wires and iron rings—which were called cores. The iron cores served as
transformers, such as that shown in the previous figure. However, instead of looping the wires multiple times around the core,
individual wires passed only a single time through the cores, making these single-turn transformers. Up to 63 word wires could
pass through a single core, along with a single bit wire. If a word wire passed through a given core, a voltage pulse on this wire
would induce an emf in the bit wire, which would be interpreted as a one. If the word wire did not pass through the core, no emf
would be induced on the bit wire, which would be interpreted as a zero.

Engineers would create programs that would be hard wired into these magnetic rope memories. The wiring process could take
as long as a month to complete as workers painstakingly threaded wires through some cores and around others. If any mistakes
were made either in the programming or the wiring, debugging would be extraordinarily difficult, if not impossible.

These modules did their job quite well. They are credited with correcting an astronaut mistake in the lunar landing procedure,
thereby allowing Apollo 11 to land on the moon. It is doubtful that Michael Faraday ever imagined such an application for
magnetic induction when he discovered it.

GRASP CHECK
If the bit wire were looped twice around each core, how would the voltage induced in the bit wire be affected?
a. If number of loops around the wire is doubled, the emf is halved.
b. If number of loops around the wire is doubled, the emf is not affected.
c. If number of loops around the wire is doubled, the emf is also doubled.
d. If number of loops around the wire is doubled, the emf is four times the initial value.

For the transformer shown in Figure 20.31, the output voltage from the secondary coil depends almost entirely on the input
voltage across the primary coil and the number of loops in the primary and secondary coils. Faraday’s law of induction for
the secondary coil gives its induced output voltage to be
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where is the number of loops in the secondary coil and is the rate of change of magnetic flux. The output voltage
equals the induced emf provided coil resistance is small—a reasonable assumption for transformers. The cross-
sectional area of the coils is the same on each side, as is the magnetic field strength, and so is the same on each side. The
input primary voltage is also related to changing flux by

Taking the ratio of these last two equations yields the useful relationship

This is known as the transformer equation. It simply states that the ratio of the secondary voltage to the primary voltage in a
transformer equals the ratio of the number of loops in secondary coil to the number of loops in the primary coil.

Transmission of Electrical Power
Transformers are widely used in the electric power industry to increase voltages—called step-up transformers—before long-
distance transmission via high-voltage wires. They are also used to decrease voltages—called step-down transformers—to
deliver power to homes and businesses. The overwhelming majority of electric power is generated by using magnetic induction,
whereby a wire coil or copper disk is rotated in a magnetic field. The primary energy required to rotate the coils or disk can be
provided by a variety of means. Hydroelectric power plants use the kinetic energy of water to drive electric generators. Coal or
nuclear power plants create steam to drive steam turbines that turn the coils. Other sources of primary energy include wind,
tides, or waves on water.

Once power is generated, it must be transmitted to the consumer, which often means transmitting power over hundreds of
kilometers. To do this, the voltage of the power plant is increased by a step-up transformer, that is stepped up, and the current
decreases proportionally because

The lower current in the transmission wires reduces the Joule losses, which is heating of the wire due to a current
flow. This heating is caused by the small, but nonzero, resistance of the transmission wires. The power lost to the
environment through this heat is

which is proportional to the current squared in the transmission wire. This is why the transmitted current must be as
small as possible and, consequently, the voltage must be large to transmit the power

Voltages ranging from 120 to 700 kV are used for transmitting power over long distances. The voltage is stepped up at the exit of
the power station by a step-up transformer, as shown in Figure 20.32.

Figure 20.32 Transformers change voltages at several points in a power distribution system. Electric power is usually generated at greater

than 10 kV, and transmitted long distances at voltages ranging from 120 kV to 700 kV to limit energy losses. Local power distribution to

neighborhoods or industries goes through a substation and is sent short distances at voltages ranging from 5 to 13 kV. This is reduced to

120, 240, or 480 V for safety at the individual user site.

Once the power has arrived at a population or industrial center, the voltage is stepped down at a substation to between 5 and 30

20.20

20.21

20.22

20.23

20.2 • Motors, Generators, and Transformers 671



kV. Finally, at individual homes or businesses, the power is stepped down again to 120, 240, or 480 V. Each step-up and step-
down transformation is done with a transformer designed based on Faradays law of induction. We’ve come a long way since
Queen Elizabeth asked Faraday what possible use could be made of electricity.

Check Your Understanding
7. What is an electric motor?

a. An electric motor transforms electrical energy into mechanical energy.
b. An electric motor transforms mechanical energy into electrical energy.
c. An electric motor transforms chemical energy into mechanical energy.
d. An electric motor transforms mechanical energy into chemical energy.

8. What happens to the torque provided by an electric motor if you double the number of coils in the motor?
a. The torque would be doubled.
b. The torque would be halved.
c. The torque would be quadrupled.
d. The torque would be tripled.

9. What is a step-up transformer?
a. A step-up transformer decreases the current to transmit power over short distance with minimum loss.
b. A step-up transformer increases the current to transmit power over short distance with minimum loss.
c. A step-up transformer increases voltage to transmit power over long distance with minimum loss.
d. A step-up transformer decreases voltage to transmit power over short distance with minimum loss.

10. What should be the ratio of the number of output coils to the number of input coil in a step-up transformer to increase the
voltage fivefold?
a. The ratio is five times.
b. The ratio is 10 times.
c. The ratio is 15 times.
d. The ratio is 20 times.

20.3 Electromagnetic Induction
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain how a changing magnetic field produces a current in a wire
• Calculate induced electromotive force and current

Section Key Terms

emf induction magnetic flux

Changing Magnetic Fields
In the preceding section, we learned that a current creates a magnetic field. If nature is symmetrical, then perhaps a magnetic
field can create a current. In 1831, some 12 years after the discovery that an electric current generates a magnetic field, English
scientist Michael Faraday (1791–1862) and American scientist Joseph Henry (1797–1878) independently demonstrated that
magnetic fields can produce currents. The basic process of generating currents with magnetic fields is called induction; this
process is also called magnetic induction to distinguish it from charging by induction, which uses the electrostatic Coulomb
force.

When Faraday discovered what is now called Faraday’s law of induction, Queen Victoria asked him what possible use was
electricity. “Madam,” he replied, “What good is a baby?” Today, currents induced by magnetic fields are essential to our
technological society. The electric generator—found in everything from automobiles to bicycles to nuclear power plants—uses
magnetism to generate electric current. Other devices that use magnetism to induce currents include pickup coils in electric
guitars, transformers of every size, certain microphones, airport security gates, and damping mechanisms on sensitive
chemical balances.
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One experiment Faraday did to demonstrate magnetic induction was to move a bar magnet through a wire coil and measure the
resulting electric current through the wire. A schematic of this experiment is shown in Figure 20.33. He found that current is
induced only when the magnet moves with respect to the coil. When the magnet is motionless with respect to the coil, no
current is induced in the coil, as in Figure 20.33. In addition, moving the magnet in the opposite direction (compare Figure
20.33 with Figure 20.33) or reversing the poles of the magnet (compare Figure 20.33 with Figure 20.33) results in a current in the
opposite direction.

Figure 20.33 Movement of a magnet relative to a coil produces electric currents as shown. The same currents are produced if the coil is

moved relative to the magnet. The greater the speed, the greater the magnitude of the current, and the current is zero when there is no

motion. The current produced by moving the magnet upward is in the opposite direction as the current produced by moving the magnet

downward.

Induced Electromotive Force
If a current is induced in the coil, Faraday reasoned that there must be what he called an electromotive force pushing the
charges through the coil. This interpretation turned out to be incorrect; instead, the external source doing the work of moving
the magnet adds energy to the charges in the coil. The energy added per unit charge has units of volts, so the electromotive force
is actually a potential. Unfortunately, the name electromotive force stuck and with it the potential for confusing it with a real
force. For this reason, we avoid the term electromotive force and just use the abbreviation emf, which has the mathematical
symbol The emf may be defined as the rate at which energy is drawn from a source per unit current flowing through a circuit.
Thus, emf is the energy per unit charge added by a source, which contrasts with voltage, which is the energy per unit charge

Virtual Physics

Faraday’s Law
Click to view content (http://www.openstax.org/l/faradays-law)
Try this simulation to see how moving a magnet creates a current in a circuit. A light bulb lights up to show when current is
flowing, and a voltmeter shows the voltage drop across the light bulb. Try moving the magnet through a four-turn coil and
through a two-turn coil. For the same magnet speed, which coil produces a higher voltage?

GRASP CHECK
With the north pole to the left and moving the magnet from right to left, a positive voltage is produced as the magnet
enters the coil. What sign voltage will be produced if the experiment is repeated with the south pole to the left?
a. The sign of voltage will change because the direction of current flow will change by moving south pole of the magnet

to the left.
b. The sign of voltage will remain same because the direction of current flow will not change by moving south pole of

the magnet to the left.
c. The sign of voltage will change because the magnitude of current flow will change by moving south pole of the

magnet to the left.
d. The sign of voltage will remain same because the magnitude of current flow will not change by moving south pole of

the magnet to the left.
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released as the charges flow through a circuit.

To understand why an emf is generated in a coil due to a moving magnet, consider Figure 20.34, which shows a bar magnet
moving downward with respect to a wire loop. Initially, seven magnetic field lines are going through the loop (see left-hand
image). Because the magnet is moving away from the coil, only five magnetic field lines are going through the loop after a short
time (see right-hand image). Thus, when a change occurs in the number of magnetic field lines going through the area
defined by the wire loop, an emf is induced in the wire loop. Experiments such as this show that the induced emf is proportional
to the rate of change of the magnetic field. Mathematically, we express this as

where is the change in the magnitude in the magnetic field during time and A is the area of the loop.

Figure 20.34 The bar magnet moves downward with respect to the wire loop, so that the number of magnetic field lines going through the

loop decreases with time. This causes an emf to be induced in the loop, creating an electric current.

Note that magnetic field lines that lie in the plane of the wire loop do not actually pass through the loop, as shown by the left-
most loop in Figure 20.35. In this figure, the arrow coming out of the loop is a vector whose magnitude is the area of the loop
and whose direction is perpendicular to the plane of the loop. In Figure 20.35, as the loop is rotated from to
the contribution of the magnetic field lines to the emf increases. Thus, what is important in generating an emf in the wire loop is
the component of the magnetic field that is perpendicular to the plane of the loop, which is

This is analogous to a sail in the wind. Think of the conducting loop as the sail and the magnetic field as the wind. To maximize
the force of the wind on the sail, the sail is oriented so that its surface vector points in the same direction as the winds, as in the
right-most loop in Figure 20.35. When the sail is aligned so that its surface vector is perpendicular to the wind, as in the left-
most loop in Figure 20.35, then the wind exerts no force on the sail.

Thus, taking into account the angle of the magnetic field with respect to the area, the proportionality becomes

Figure 20.35 The magnetic field lies in the plane of the left-most loop, so it cannot generate an emf in this case. When the loop is rotated so

that the angle of the magnetic field with the vector perpendicular to the area of the loop increases to (see right-most loop), the

magnetic field contributes maximally to the emf in the loop. The dots show where the magnetic field lines intersect the plane defined by the

loop.
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Another way to reduce the number of magnetic field lines that go through the conducting loop in Figure 20.35 is not to move the
magnet but to make the loop smaller. Experiments show that changing the area of a conducting loop in a stable magnetic field
induces an emf in the loop. Thus, the emf produced in a conducting loop is proportional to the rate of change of the product of
the perpendicular magnetic field and the loop area

where is the perpendicular magnetic field and A is the area of the loop. The product is very important. It is
proportional to the number of magnetic field lines that pass perpendicularly through a surface of area A. Going back to our sail
analogy, it would be proportional to the force of the wind on the sail. It is called the magnetic flux and is represented by .

The unit of magnetic flux is the weber (Wb), which is magnetic field per unit area, or T/m2. The weber is also a volt second (Vs).

The induced emf is in fact proportional to the rate of change of the magnetic flux through a conducting loop.

Finally, for a coil made from N loops, the emf is N times stronger than for a single loop. Thus, the emf induced by a changing
magnetic field in a coil of N loops is

The last question to answer before we can change the proportionality into an equation is “In what direction does the current
flow?” The Russian scientist Heinrich Lenz (1804–1865) explained that the current flows in the direction that creates a magnetic
field that tries to keep the flux constant in the loop. For example, consider again Figure 20.34. The motion of the bar magnet
causes the number of upward-pointing magnetic field lines that go through the loop to decrease. Therefore, an emf is generated
in the loop that drives a current in the direction that creates more upward-pointing magnetic field lines. By using the right-
hand rule, we see that this current must flow in the direction shown in the figure. To express the fact that the induced emf acts
to counter the change in the magnetic flux through a wire loop, a minus sign is introduced into the proportionality

, which gives Faraday’s law of induction.

Lenz’s law is very important. To better understand it, consider Figure 20.36, which shows a magnet moving with respect to a
wire coil and the direction of the resulting current in the coil. In the top row, the north pole of the magnet approaches the coil,

so the magnetic field lines from the magnet point toward the coil. Thus, the magnetic field pointing to the
right increases in the coil. According to Lenz’s law, the emf produced in the coil will drive a current in the direction that creates a

magnetic field inside the coil pointing to the left. This will counter the increase in magnetic flux pointing to

the right. To see which way the current must flow, point your right thumb in the desired direction of the magnetic field
and the current will flow in the direction indicated by curling your right fingers. This is shown by the image of the right hand in
the top row of Figure 20.36. Thus, the current must flow in the direction shown in Figure 4(a).

In Figure 4(b), the direction in which the magnet moves is reversed. In the coil, the right-pointing magnetic field due to
the moving magnet decreases. Lenz’s law says that, to counter this decrease, the emf will drive a current that creates an

additional right-pointing magnetic field in the coil. Again, point your right thumb in the desired direction of the
magnetic field, and the current will flow in the direction indicate by curling your right fingers (Figure 4(b)).

Finally, in Figure 4(c), the magnet is reversed so that the south pole is nearest the coil. Now the magnetic field points
toward the magnet instead of toward the coil. As the magnet approaches the coil, it causes the left-pointing magnetic field in the
coil to increase. Lenz’s law tells us that the emf induced in the coil will drive a current in the direction that creates a magnetic
field pointing to the right. This will counter the increasing magnetic flux pointing to the left due to the magnet. Using the right-
hand rule again, as indicated in the figure, shows that the current must flow in the direction shown in Figure 4(c).
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Figure 20.36 Lenz’s law tells us that the magnetically induced emf will drive a current that resists the change in the magnetic flux through a

circuit. This is shown in panels (a)–(c) for various magnet orientations and velocities. The right hands at right show how to apply the right-

hand rule to find in which direction the induced current flows around the coil.

Virtual Physics

Faraday’s Electromagnetic Lab
Click to view content (http://www.openstax.org/l/Faraday-EM-lab)
This simulation proposes several activities. For now, click on the tab Pickup Coil, which presents a bar magnet that you can
move through a coil. As you do so, you can see the electrons move in the coil and a light bulb will light up or a voltmeter will
indicate the voltage across a resistor. Note that the voltmeter allows you to see the sign of the voltage as you move the
magnet about. You can also leave the bar magnet at rest and move the coil, although it is more difficult to observe the
results.

GRASP CHECK
Orient the bar magnet with the north pole facing to the right and place the pickup coil to the right of the bar magnet.
Now move the bar magnet toward the coil and observe in which way the electrons move. This is the same situation as
depicted below. Does the current in the simulation flow in the same direction as shown below? Explain why or why not.
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WATCH PHYSICS

Induced Current in a Wire
This video explains how a current can be induced in a straight wire by moving it through a magnetic field. The lecturer uses the
cross product, which a type of vector multiplication. Don’t worry if you are not familiar with this, it basically combines the right-
hand rule for determining the force on the charges in the wire with the equation

Click to view content (https://www.openstax.org/l/induced-current)

GRASP CHECK
What emf is produced across a straight wire 0.50 m long moving at a velocity of (1.5 m/s) through a uniform magnetic field
(0.30 T)ẑ? The wire lies in the ŷ-direction. Also, which end of the wire is at the higher potential—let the lower end of the wire
be at y = 0 and the upper end at y = 0.5 m)?
a. 0.15 V and the lower end of the wire will be at higher potential
b. 0.15 V and the upper end of the wire will be at higher potential
c. 0.075 V and the lower end of the wire will be at higher potential
d. 0.075 V and the upper end of the wire will be at higher potential

WORKED EXAMPLE

EMF Induced in Conducing Coil by Moving Magnet
Imagine a magnetic field goes through a coil in the direction indicated in Figure 20.37. The coil diameter is 2.0 cm. If the
magnetic field goes from 0.020 to 0.010 T in 34 s, what is the direction and magnitude of the induced current? Assume the coil
has a resistance of 0.1

a. Yes, the current in the simulation flows as shown because the direction of current is opposite to the direction of
flow of electrons.

b. No, current in the simulation flows in the opposite direction because the direction of current is same to the
direction of flow of electrons.
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Figure 20.37 A coil through which passes a magnetic field B.

STRATEGY
Use the equation to find the induced emf in the coil, where . Counting the number of loops in the
solenoid, we find it has 16 loops, so Use the equation to calculate the magnetic flux

where d is the diameter of the solenoid and we have used Because the area of the solenoid does not vary, the change
in the magnetic of the flux through the solenoid is

Once we find the emf, we can use Ohm’s law, to find the current.

Finally, Lenz’s law tells us that the current should produce a magnetic field that acts to oppose the decrease in the applied
magnetic field. Thus, the current should produce a magnetic field to the right.

Solution
Combining equations and gives

Solving Ohm’s law for the current and using this result gives

Lenz’s law tells us that the current must produce a magnetic field to the right. Thus, we point our right thumb to the right and
curl our right fingers around the solenoid. The current must flow in the direction in which our fingers are pointing, so it enters
at the left end of the solenoid and exits at the right end.

Discussion
Let’s see if the minus sign makes sense in Faraday’s law of induction. Define the direction of the magnetic field to be the positive
direction. This means the change in the magnetic field is negative, as we found above. The minus sign in Faraday’s law of
induction negates the negative change in the magnetic field, leaving us with a positive current. Therefore, the current must flow
in the direction of the magnetic field, which is what we found.

Now try defining the positive direction to be the direction opposite that of the magnetic field, that is positive is to the left in
Figure 20.37. In this case, you will find a negative current. But since the positive direction is to the left, a negative current must
flow to the right, which again agrees with what we found by using Lenz’s law.

WORKED EXAMPLE

Magnetic Induction due to Changing Circuit Size
The circuit shown in Figure 20.38 consists of a U-shaped wire with a resistor and with the ends connected by a sliding
conducting rod. The magnetic field filling the area enclosed by the circuit is constant at 0.01 T. If the rod is pulled to the right at
speed what current is induced in the circuit and in what direction does the current flow?
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Figure 20.38 A slider circuit. The magnetic field is constant and the rod is pulled to the right at speed v. The changing area enclosed by

the circuit induces an emf in the circuit.

STRATEGY
We again use Faraday’s law of induction, although this time the magnetic field is constant and the area enclosed

by the circuit changes. The circuit contains a single loop, so The rate of change of the area is Thus the rate of
change of the magnetic flux is

where we have used the fact that the angle between the area vector and the magnetic field is 0°. Once we know the emf, we can
find the current by using Ohm’s law. To find the direction of the current, we apply Lenz’s law.

Solution
Faraday’s law of induction gives

Solving Ohm’s law for the current and using the previous result for emf gives

As the rod slides to the right, the magnetic flux passing through the circuit increases. Lenz’s law tells us that the current induced
will create a magnetic field that will counter this increase. Thus, the magnetic field created by the induced current must be into
the page. Curling your right-hand fingers around the loop in the clockwise direction makes your right thumb point into the
page, which is the desired direction of the magnetic field. Thus, the current must flow in the clockwise direction around the
circuit.

Discussion
Is energy conserved in this circuit? An external agent must pull on the rod with sufficient force to just balance the force on a
current-carrying wire in a magnetic field—recall that The rate at which this force does work on the rod should
be balanced by the rate at which the circuit dissipates power. Using the force required to pull the wire at a
constant speed v is

where we used the fact that the angle between the current and the magnetic field is Inserting our expression above for
the current into this equation gives

The power contributed by the agent pulling the rod is

20.34

20.35

20.36

20.37

20.38

20.3 • Electromagnetic Induction 679



The power dissipated by the circuit is

We thus see that which means that power is conserved in the system consisting of the circuit and the
agent that pulls the rod. Thus, energy is conserved in this system.

Practice Problems
11. The magnetic flux through a single wire loop changes from 3.5 Wb to 1.5 Wb in 2.0 s. What emf is induced in the loop?

a. –2.0 V
b. –1.0 V
c. +1.0 V
d. +2.0 V

12. What is the emf for a 10-turn coil through which the flux changes at 10 Wb/s?
a. –100 V
b. –10 V
c. +10 V
d. +100 V

Check Your Understanding
13. Given a bar magnet, how can you induce an electric current in a wire loop?

a. An electric current is induced if a bar magnet is placed near the wire loop.
b. An electric current is induced if wire loop is wound around the bar magnet.
c. An electric current is induced if a bar magnet is moved through the wire loop.
d. An electric current is induced if a bar magnet is placed in contact with the wire loop.

14. What factors can cause an induced current in a wire loop through which a magnetic field passes?
a. Induced current can be created by changing the size of the wire loop only.
b. Induced current can be created by changing the orientation of the wire loop only.
c. Induced current can be created by changing the strength of the magnetic field only.
d. Induced current can be created by changing the strength of the magnetic field, changing the size of the wire loop, or

changing the orientation of the wire loop.
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KEY TERMS
Curie temperature well-defined temperature for

ferromagnetic materials above which they cannot be
magnetized

domain region within a magnetic material in which the
magnetic poles of individual atoms are aligned

electric motor device that transforms electrical energy into
mechanical energy

electromagnet device that uses electric current to make a
magnetic field

electromagnetism study of electric and magnetic
phenomena

emf rate at which energy is drawn from a source per unit
current flowing through a circuit

ferromagnetic material such as iron, cobalt, nickel, or
gadolinium that exhibits strong magnetic effects

generator device that transforms mechanical energy into
electrical energy

induction rate at which energy is drawn from a source per
unit current flowing through a circuit

magnetic dipole term that describes magnets because they
always have two poles: north and south

magnetic field directional lines around a magnetic
material that indicates the direction and magnitude of

the magnetic force
magnetic flux component of the magnetic field

perpendicular to the surface area through which it passes
and multiplied by the area

magnetic pole part of a magnet that exerts the strongest
force on other magnets or magnetic material

magnetized material that is induced to be magnetic or that
is made into a permanent magnet

north pole part of a magnet that orients itself toward the
geographic North Pole of Earth

permanent magnet material that retains its magnetic
behavior for a long time, even when exposed to
demagnetizing influences

right-hand rule rule involving curling the right-hand
fingers from one vector to another; the direction in which
the right thumb points is the direction of the resulting
vector

solenoid uniform cylindrical coil of wire through which
electric current is passed to produce a magnetic field

south pole part of a magnet that orients itself toward the
geographic South Pole of Earth

transformer device that transforms voltages from one
value to another

SECTION SUMMARY
20.1 Magnetic Fields, Field Lines,
and Force

• All magnets have two poles: a north pole and a south
pole. If the magnet is free to move, its north pole orients
itself toward the geographic North Pole of Earth, and
the south pole orients itself toward the geographic
South Pole of Earth.

• A repulsive force occurs between the north poles of two
magnets and likewise for two south poles. However, an
attractive force occurs between the north pole of one
magnet and the south pole of another magnet.

• A charged particle moving through a magnetic field
experiences a force whose direction is determined by
the right-hand rule.

• An electric current generates a magnetic field.
• Electromagnets are magnets made by passing a current

through a system of wires.

20.2 Motors, Generators, and
Transformers

• Electric motors contain wire loops in a magnetic field.
Current is passed through the wire loops, which forces
them to rotate in the magnetic field. The current is
reversed every half rotation so that the torque on the
loop is always in the same direction.

• Electric generators contain wire loops in a magnetic
field. An external agent provides mechanical energy to
force the loops to rotate in the magnetic field, which
produces an AC voltage that drives an AC current
through the loops.

• Transformers contain a ring made of magnetic material
and, on opposite sides of the ring, two windings of wire
wrap around the ring. A changing current in one wire
winding creates a changing magnetic field, which is
trapped in the ring and thus goes through the second
winding and induces an emf in the second winding. The
voltage in the second winding is proportional to the
ratio of the number of loops in each winding.

• Transformers are used to step up and step down the
voltage for power transmission.

• Over long distances, electric power is transmitted at
high voltage to minimize the current and thereby
minimize the Joule losses due to resistive heating.

20.3 Electromagnetic Induction
• Faraday’s law of induction states that a changing

magnetic flux that occurs within an area enclosed by a
conducting loop induces an electric current in the loop.

• Lenz’ law states that an induced current flows in the
direction such that it opposes the change that induced
it.
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KEY EQUATIONS
20.1 Magnetic Fields, Field Lines,
and Force

the magnitude of the force on an
electric charge

the force on a wire carrying
current

the magnitude of the magnetic
field created by a long, straight
current-carrying wire

the magnitude of the magnetic
field inside a solenoid

20.3 Electromagnetic Induction

magnetic flux

emf

CHAPTER REVIEW
Concept Items
20.1 Magnetic Fields, Field Lines, and Force
1. If you place a small needle between the north poles of two

bar magnets, will the needle become magnetized?
a. Yes, the magnetic fields from the two north poles

will point in the same directions.
b. Yes, the magnetic fields from the two north poles

will point in opposite directions.
c. No, the magnetic fields from the two north poles will

point in opposite directions.
d. No, the magnetic fields from the two north poles will

point in the same directions.

2. If you place a compass at the three points in the figure, at
which point will the needle experience the greatest
torque? Why?

a. The density of the magnetic field is minimized at B,
so the magnetic compass needle will experience the

greatest torque at B.
b. The density of the magnetic field is minimized at C,

so the magnetic compass needle will experience the
greatest torque at C.

c. The density of the magnetic field is maximized at B,
so the magnetic compass needle will experience the
greatest torque at B.

d. The density of the magnetic field is maximized at A,
so the magnetic compass needle will experience the
greatest torque at A.

3. In which direction do the magnetic field lines point near
the south pole of a magnet?
a. Outside the magnet the direction of magnetic field

lines is towards the south pole of the magnet.
b. Outside the magnet the direction of magnetic field

lines is away from the south pole of the magnet.

20.2 Motors, Generators, and Transformers
4. Consider the angle between the area vector and the

magnetic field in an electric motor. At what angles is the
torque on the wire loop the greatest?
a. and
b. and
c. and
d. and

5. What is a voltage transformer?
a. A transformer is a device that transforms current to

voltage.
b. A transformer is a device that transforms voltages

from one value to another.
c. A transformer is a device that transforms resistance

of wire to voltage.

6. Why is electric power transmitted at high voltage?
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a. To increase the current for the transmission
b. To reduce energy loss during transmission
c. To increase resistance during transmission
d. To reduce resistance during transmission

20.3 Electromagnetic Induction
7. Yes or no—Is an emf induced in the coil shown when it is

stretched? If so, state why and give the direction of the
induced current.

a. No, because induced current does not depend upon the
area of the coil.

b. Yes, because area of the coil increases; the direction of
the induced current is counterclockwise.

c. Yes, because area of the coil increases; the direction of
the induced current is clockwise.

d. Yes, because the area of the coil does not change; the
direction of the induced current is clockwise.

8. What is Lenz’s law?

a. If induced current flows, its direction is such that it
adds to the changes which induced it.

b. If induced current flows, its direction is such that it
opposes the changes which induced it.

c. If induced current flows, its direction is always
clockwise to the changes which induced it.

d. If induced current flows, its direction is always
counterclockwise to the changes which induced it.

9. Explain how magnetic flux can be zero when the
magnetic field is not zero.
a. If angle between magnetic field and area vector is

0°, then its sine is also zero, which means that there
is zero flux.

b. If angle between magnetic field and area vector is
45°, then its sine is also zero, which means that there
is zero flux.

c. If angle between magnetic field and area vector is
60°, then its cosine is also zero, which means that
there is zero flux.

d. If the angle between magnetic field and area vector
is 90°, then its cosine is also zero, which means that
there is zero flux.

Critical Thinking Items
20.1 Magnetic Fields, Field Lines, and Force
10. True or false—It is not recommended to place credit

cards with magnetic strips near permanent magnets.
a. false
b. true

11. True or false—A square magnet can have sides that
alternate between north and south poles.
a. false
b. true

12. You move a compass in a circular plane around a planar
magnet. The compass makes four complete revolutions.
How many poles does the magnet have?
a. two poles
b. four poles
c. eight poles
d. 12 poles

20.2 Motors, Generators, and Transformers
13. How can you maximize the peak emf from a generator?

a. The peak emf from a generator can be maximized
only by maximizing number of turns.

b. The peak emf from a generator can be maximized
only by maximizing area of the wired loop.

c. The peak emf from a generator can be maximized
only by maximizing frequency.

d. The peak emf from a generator can be maximized
by maximizing number of turns, maximizing area
of the wired loop or maximizing frequency.

14. Explain why power is transmitted over long distances at
high voltages.
a. Plost = Itransmitted Vtransmitted, so to maximize

current, the voltage must be maximized
b. Ptransmitted = Itransmitted Vtransmitted, so to maximize

current, the voltage must be maximized
c. Plost = Itransmitted Vtransmitted, so to minimize

current, the voltage must be maximized
d. Ptransmitted = Itransmitted Vtransmitted, so to minimize

current, the voltage must be maximized

20.3 Electromagnetic Induction
15. To obtain power from the current in the wire of your

vacuum cleaner, you place a loop of wire near it to obtain
an induced emf. How do you place and orient the loop?
a. A loop of wire should be placed nearest to the

vacuum cleaner wire to maximize the magnetic flux
through the loop.

b. A loop of wire should be placed farthest to the
vacuum cleaner wire to maximize the magnetic flux
through the loop.
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c. A loop of wire should be placed perpendicular to the
vacuum cleaner wire to maximize the magnetic flux
through the loop.

d. A loop of wire should be placed at angle greater
than 90° to the vacuum cleaner wire to maximize
the magnetic flux through the loop.

16. A magneto is a device that creates a spark across a gap
by creating a large voltage across the gap. To do this, the
device spins a magnet very quickly in front of a wire coil,
with the ends of the wires forming the gap. Explain how
this creates a sufficiently large voltage to produce a
spark.
a. The electric field in the coil increases rapidly due to

spinning of magnet which creates an emf in the coil

that is proportional to the rate of change of the
magnetic flux.

b. The magnetic field in the coil changes rapidly due to
spinning of magnet which creates an emf in the coil
that is proportional to the rate of change of the
magnetic flux.

17. If you drop a copper tube over a bar magnet with its
north pole up, is a current induced in the copper tube? If
so, in what direction? Consider when the copper tube is
approaching the bar magnet.
a. Yes, the induced current will be produced in the

clockwise direction when viewed from above.
b. No, the induced current will not be produced.

Problems
20.1 Magnetic Fields, Field Lines, and Force
18. A straight wire segment carries 0.25 A. What length

would it need to be to exert a 4.0-mN force on a magnet
that produces a uniform magnetic field of 0.015 T that is
perpendicular to the wire?
a. 0.55 m
b. 1.10 m
c. 2.20 m
d. 4.40 m

20.3 Electromagnetic Induction
19. What is the current in a wire loop of resistance 10 Ω

through which the magnetic flux changes from zero to

10 Wb in 1.0 s?
a. –100 A
b. –2.0 A
c. –1.0 A
d. +1.0 A

20. An emf is induced by rotating a 1,000 turn, 20.0 cm
diameter coil in Earth’s 5.00 × 10–5 T magnetic field.
What average emf is induced, given the plane of the coil
is originally perpendicular to Earth’s field and is rotated
to be parallel to the field in 10.0 ms?
a. –1.6 × 10-4 V
b. +1.6 × 10-4 V
c. +1.6 × 10-1 V
d. –1.6 × 10-1 V

Performance Task
20.2 Motors, Generators, and Transformers
21. Your family takes a trip to Cuba, and rents an old car to

drive into the countryside to see the sights.
Unfortunately, the next morning you find yourself deep
in the countryside and the car won’t start because the
battery is too weak. Wanting to jump-start the car, you
open the hood and find that you can’t tell which battery

terminal is positive and which is negative. However, you
do have a bar magnet with the north and south poles
labeled and you manage to find a short wire. How do you
use these to determine which terminal is which? For
starters, how do you determine the direction of a
magnetic field around a current-carrying wire? And in
which direction will the force be on another magnet
placed in this field? Do you need to worry about the sign
of the mobile charge carriers in the wire?

TEST PREP
Multiple Choice
20.1 Magnetic Fields, Field Lines, and Force
22. For a magnet, a domain refers to ______.

a. the region between the poles of the magnet
b. the space around the magnet that is affected by the

magnetic field
c. the region within the magnet in which the

magnetic poles of individual atoms are aligned
d. the region from which the magnetic material is

mined

23. In the region just outside the south pole of a magnet,
the magnetic field lines ______.
a. point away from the south pole
b. go around the south pole
c. are less concentrated than at the north pole
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d. point toward the south pole

24. Which equation gives the force for a charge moving
through a magnetic field?
a.
b.
c.
d.

25. Can magnetic field lines cross each other? Explain why
or why not.
a. Yes, magnetic field lines can cross each other

because that point of intersection indicates two
possible directions of magnetic field, which is
possible.

b. No, magnetic field lines cannot cross each other
because that point of intersection indicates two
possible directions of magnetic field, which is not
possible.

26. True or false—If a magnet shatters into many small
pieces, all the pieces will have north and south poles
a. true
b. false

20.2 Motors, Generators, and Transformers
27. An electrical generator ________.

a. is a generator powered by electricity
b. must be turned by hand
c. converts other sources of power into electrical

power
d. uses magnetism to create electrons

28. A step-up transformer increases the
a. voltage from power lines for use in homes
b. current from the power lines for use in homes
c. current from the electrical generator for

transmission along power lines
d. voltage from the electrical power plant for

transmission along power lines

29. What would be the effect on the torque of an electric
motor of doubling the width of the current loop in the
motor?
a. Torque remains the same.

b. Torque is doubled.
c. Torque is quadrupled.
d. Torque is halved.

30. Why are the coils of a transformer wrapped around a
loop of ferrous material?
a. The magnetic field from the source coil is trapped

and also increased in strength.
b. The magnetic field from the source coil is dispersed

and also increased in strength.
c. The magnetic field from the source coil is trapped

and also decreased in strength.
d. Magnetic field from the source coil is dispersed and

also decreased in strength.

20.3 Electromagnetic Induction
31. What does emf stand for?

a. electromotive force
b. electro motion force
c. electromagnetic factor
d. electronic magnetic factor

32. Which formula gives magnetic flux?

a.
b.
c.
d.

33. What is the relationship between the number of coils in
a solenoid and the emf induced in it by a change in the
magnetic flux through the solenoid?
a. The induced emf is inversely proportional to the

number of coils in a solenoid.
b. The induced emf is directly proportional to the

number of coils in a solenoid.
c. The induced emf is inversely proportional to the

square of the number of coils in a solenoid.
d. The induced emf is proportional to square of the

number of coils in a solenoid.

34. True or false—If you drop a bar magnet through a
copper tube, it induces an electric current in the tube.
a. false
b. true

Short Answer
20.1 Magnetic Fields, Field Lines, and Force
35. Given a bar magnet, a needle, a cork, and a bowl full of

water, describe how to make a compass.
a. Magnetize the needle by holding it perpendicular

to a bar magnet’s north pole and pierce the cork
along its longitudinal axis by the needle and place

the needle-cork combination in the water. The
needle now orients itself along the magnetic field
lines of Earth.

b. Magnetize the needle by holding it perpendicular
to a bar magnet’s north pole and pierce the cork
along its longitudinal axis by the needle and place
the needle-cork combination in the water. The
needle now orients itself perpendicular to the
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magnetic field lines of Earth.
c. Magnetize the needle by holding its axis parallel to

the axis of a bar magnet and pierce the cork along
its longitudinal axis by the needle and place the
needle-cork combination in the water. The needle
now orients itself along the magnetic field lines of
Earth.

d. Magnetize the needle by holding its axis parallel to
the axis of a bar magnet and pierce the cork along
its longitudinal axis by the needle and place the
needle-cork combination in the water. The needle
now orients itself perpendicular to the magnetic
field lines of Earth.

36. Give two differences between electric field lines and
magnetic field lines.
a. Electric field lines begin and end on opposite

charges and the electric force on a charge is in the
direction of field, while magnetic fields form a loop
and the magnetic force on a charge is
perpendicular to the field.

b. Electric field lines form a loop and the electric force
on a charge is in the direction of field, while
magnetic fields begin and end on opposite charge
and the magnetic force on a charge is
perpendicular to the field.

c. Electric field lines begin and end on opposite
charges and the electric force on a charge is in the
perpendicular direction of field, while magnetic
fields form a loop and the magnetic force on a
charge is in the direction of the field.

d. Electric field lines form a loop and the electric force
on a charge is in the perpendicular direction of
field, while magnetic fields begin and end on
opposite charge and the magnetic force on a charge
is in the direction of the field.

37. To produce a magnetic field of 0.0020 T, what current is
required in a 500-turn solenoid that is 25 cm long?
a. 0.80 A
b. 1.60 A
c. 80 A
d. 160 A

38. You magnetize a needle by aligning it along the axis of a
bar magnet and just outside the north pole of the
magnet. Will the point of the needle that was closest to
the bar magnet then be attracted to or repelled from the
south pole of another magnet?
a. The needle will magnetize and the point of needle

kept closer to the north pole will act as a south pole.
Hence, it will repel the south pole of other magnet.

b. The needle will magnetize and the point of needle
kept closer to the north pole will act as a south pole.

Hence, it will attract the south pole of other
magnet.

c. The needle will magnetize and the point of a needle
kept closer to the north pole will act as a north pole.
Hence, it will repel the south pole of the other
magnet.

d. The needle will magnetize and the point of needle
kept closer to the north pole will act as a north pole.
Hence, it will attract the south pole of other
magnet.

39. Using four solenoids of the same size, describe how to
orient them and in which direction the current should
flow to make a magnet with two opposite-facing north
poles and two opposite-facing south poles.
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40. How far from a straight wire carrying 0.45 A is the
magnetic field strength 0.040 T?
a. 0.23 µm
b. 0.72 µm
c. 2.3 µm
d. 7.2 µm

20.2 Motors, Generators, and Transformers
41. A laminated-coil transformer has a wire coiled 12 times

around one of its sides. How many coils should you wrap
around the opposite side to get a voltage output that is
one half of the input voltage? Explain.
a. six output coils because the ratio of output to input

voltage is the same as the ratio of number of output
coils to input coils

b. 12 output coils because the ratio of output to input
voltage is the same as the ratio of number of output
coils to input coils

c. 24 output coils because the ratio of output to input
voltage is half the ratio of the number of output
coils to input coils

d. 36 output coils because the ratio of output to input
voltage is three times the ratio of the number of
output coils to input coils

42. Explain why long-distance electrical power lines are
designed to carry very high voltages.
a. Ptransmitted = Itransmitted>

2 Rwire and Plost = Itransmitted

Vtransmitted, so V must be low to make the current
transmitted as high as possible.

b. Ptransmitted = Itransmitted>
2 Rwire and Plost = Ilost Vlost,

so V must be low to make the current transmitted
as high as possible.

c. Ptransmitted = Itransmitted>
2 Rwire and Plost = Itransmitted

Vtransmitted, so V must be high to make the current
transmitted as low as possible

d. Plost = Itransmitted
2 Rwire and Ptransmitted = Itransmitted

Vtransmitted, so V must be high to make the current
transmitted as low as possible.

43. How is the output emf of a generator affected if you
double the frequency of rotation of its coil?

a. The output emf will be doubled.
b. The output emf will be halved.
c. The output emf will be quadrupled.
d. The output emf will be tripled.

44. In a hydroelectric dam, what is used to power the
electrical generators that provide electric power?
Explain.
a. The electric potential energy of stored water is used

to produce emf with the help of a turbine.
b. The electric potential energy of stored water is used

to produce resistance with the help of a turbine.
c. Gravitational potential energy of stored water is

used to produce resistance with the help of a
turbine.

d. Gravitational potential energy of stored water is
used to produce emf with the help of a turbine.

20.3 Electromagnetic Induction
45. A uniform magnetic field is perpendicular to the plane

of a wire loop. If the loop accelerates in the direction of
the field, will a current be induced in the loop? Explain
why or why not.
a. No, because magnetic flux through the loop

remains constant.
b. No, because magnetic flux through the loop

changes continuously.
c. Yes, because magnetic flux through the loop

remains constant.
d. Yes, because magnetic flux through the loop

changes continuously.

46. The plane of a square wire circuit with side 4.0 cm long
is at an angle of 45° with respect to a uniform magnetic
field of 0.25 T. The wires have a resistance per unit
length of 0.2. If the field drops to zero in 2.5 s, what
magnitude current is induced in the square circuit?
a. 35 µA
b. 87.5 µA
c. 3.5 mA
d. 35 A

47. Yes or no—If a bar magnet moves through a wire loop as
shown in the figure, is a current induced in the loop?
Explain why or why not.

a. No, because the net magnetic field passing through
the loop is zero.

b. No, because the net magnetic field passing through
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the loop is nonzero.
c. Yes, because the net magnetic field passing

through the loop is zero.
d. Yes, because the net magnetic field line passing

through the loop is nonzero.

48. What is the magnetic flux through an equilateral

triangle with side 60 cm long and whose plane makes a
60° angle with a uniform magnetic field of 0.33 T?
a. 0.045 Wb
b. 0.09 Wb
c. 0.405 Wb
d. 4.5 Wb

Extended Response
20.1 Magnetic Fields, Field Lines, and Force
49. Summarize the properties of magnets.

a. A magnet can attract metals like iron, nickel, etc.,
but cannot attract nonmetals like piece of plastic or
wood, etc. If free to rotate, an elongated magnet
will orient itself so that its north pole will face the
magnetic south pole of Earth.

b. A magnet can attract metals like iron, nickel, etc.,
but cannot attract nonmetals like piece of plastic or
wood, etc. If free to rotate, an elongated magnet
will orient itself so that its north pole will face the
magnetic north pole of Earth.

c. A magnet can attract metals like iron, nickel, etc.,
and nonmetals like piece of plastic or wood, etc. If
free to rotate, an elongated magnet will orient itself
so that its north pole will face the magnetic south
pole of Earth.

d. A magnet can attract metals like iron, nickel, etc.,
and nonmetals like piece of plastic or wood, etc. If
free to rotate, an elongated magnet will orient itself
so that its north pole will face the magnetic north
pole of Earth.

50. The magnetic field shown in the figure is formed by
current flowing in two rings that intersect the page at
the dots. Current flows into the page at the dots with
crosses (right side) and out of the page at the dots with
points (left side).

Where is the field strength the greatest and in what
direction do the magnetic field lines point?
a. The magnetic field strength is greatest where the

magnetic field lines are less dense; magnetic field
lines points up the page.

b. The magnetic field strength is greatest where the
magnetic field lines are most dense; magnetic field
lines points up the page.

c. The magnetic field strength is greatest where the
magnetic field lines are most dense; magnetic field
lines points down the page.

d. The magnetic field strength is greatest where the
magnetic field lines are less dense; magnetic field
lines points down the page.

51. The forces shown below are exerted on an electron as it
moves through the magnetic field. In each case, what
direction does the electron move?

a. (a) left to right, (b) out of the page, (c) upwards
b. (a) left to right, (b) into the page, (c) downwards
c. (a) right to left, (b) out of the page, (c) upwards
d. (a) right to left, (b) into the page, (c) downwards

20.2 Motors, Generators, and Transformers
52. Explain why increasing the frequency of rotation of the

coils in an electrical generator increases the output emf.
a. The induced emf is proportional to the rate of

change of magnetic flux with respect to distance.
b. The induced emf is inversely proportional to the

rate of change of magnetic flux with respect to
distance.

c. The induced emf is inversely proportional to the
rate of change of magnetic flux with respect to
time.

d. The induced emf is proportional to the rate of
change of magnetic flux with respect to time.

53. Your friend tells you that power lines must carry a
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maximum current because P = I2R, where R is the
resistance of the transmission line. What do you tell her?
a. Ptransmitted = Itransmitted

2Rwire and Plost = Itransmitted

Vtransmitted, so I must be high to reduce power lost
due to transmission.

b. Plost = Itransmitted
2Rwire and Plost = Itransmitted

Vtransmitted, so I must be high to reduce power lost
due to transmission.

c. Ptransmitted = Itransmitted
2Rwire and Plost = Itransmitted

Vtransmitted, so I must be low to reduce power lost
due to transmission.

d. Plost = Itransmitted
2Rwire and Plost = Itransmitted

Vtransmitted, so I must be low to reduce power lost
due to transmission.

20.3 Electromagnetic Induction
54. When you insert a copper ring between the poles of two

bar magnets as shown in the figure, do the magnets
exert an attractive or repulsive force on the ring? Explain
your reasoning.

a. Magnets exert an attractive force, because
magnetic field due to induced current is repulsed
by the magnetic field of the magnets.

b. Magnets exert an attractive force, because

magnetic field due to induced current is attracted
by the magnetic field of the magnets.

c. Magnets exert a repulsive force, because magnetic
field due to induced current is repulsed by the
magnetic field of the magnets.

d. Magnets exert a repulsive force, because magnetic
field due to induced current is attracted by the
magnetic field of the magnets.

55. The figure shows a uniform magnetic field passing
through a closed wire circuit. The wire circuit rotates at
an angular frequency of about the axis shown by the
dotted line in the figure.

What is an expression for the magnetic flux through the
circuit as a function of time?
a. expression for the magnetic flux through the

circuit Φ(t) = BAcos ωt
b. expression for the magnetic flux through the

circuit
c. expression for the magnetic flux through the

circuit
d. expression for the magnetic flux through the

circuit Φ(t) = 2BA cosωt
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INTRODUCTION

CHAPTER 21
The Quantum Nature of Light

21.1 Planck and Quantum Nature of Light

21.2 Einstein and the Photoelectric Effect

21.3 The Dual Nature of Light

At first glance, the quantum nature of light can be a strange and bewildering concept. Between light acting as
discrete chunks, massless particles providing momenta, and fundamental particles behaving like waves, it may often seem like
something out of Alice in Wonderland.

For many, the study of this branch of physics can be as enthralling as Lewis Carroll’s classic novel. Recalling the works of
legendary characters and brilliant scientists such as Einstein, Planck, and Compton, the study of light’s quantum nature will
provide you an interesting tale of how a clever interpretation of some small details led to the most important discoveries of the
past 150 years. From the electronics revolution of the twentieth century to our future progress in solar energy and space
exploration, the quantum nature of light should yield a rabbit hole of curious consequence, within which lie some of the most
fascinating truths of our time.

Figure 21.1 In Lewis Carroll’s classic text Alice’s Adventures in Wonderland, Alice follows a rabbit down a hole into a
land of curiosity. While many of her interactions in Wonderland are of surprising consequence, they follow a certain
inherent logic. (credit: modification of work by John Tenniel, Wikimedia Commons)

Chapter Outline



21.1 Planck and Quantum Nature of Light
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe blackbody radiation
• Define quantum states and their relationship to modern physics
• Calculate the quantum energy of lights
• Explain how photon energies vary across divisions of the electromagnetic spectrum

Section Key Terms

blackbody quantized quantum ultraviolet catastrophe

Blackbodies
Our first story of curious significance begins with a T-shirt. You are likely aware that wearing a tight black T-shirt outside on a
hot day provides a significantly less comfortable experience than wearing a white shirt. Black shirts, as well as all other black
objects, will absorb and re-emit a significantly greater amount of radiation from the sun. This shirt is a good approximation of
what is called a blackbody.

A perfect blackbody is one that absorbs and re-emits all radiated energy that is incident upon it. Imagine wearing a tight shirt
that did this! This phenomenon is often modeled with quite a different scenario. Imagine carving a small hole in an oven that
can be heated to very high temperatures. As the temperature of this container gets hotter and hotter, the radiation out of this
dark hole would increase as well, re-emitting all energy provided it by the increased temperature. The hole may even begin to
glow in different colors as the temperature is increased. Like a burner on your stove, the hole would glow red, then orange, then
blue, as the temperature is increased. In time, the hole would continue to glow but the light would be invisible to our eyes. This
container is a good model of a perfect blackbody.

It is the analysis of blackbodies that led to one of the most consequential discoveries of the twentieth century. Take a moment to
carefully examine Figure 21.2. What relationships exist? What trends can you see? The more time you spend interpreting this
figure, the closer you will be to understanding quantum physics!

Figure 21.2 Graphs of blackbody radiation (from an ideal radiator) at three different radiator temperatures. The intensity or rate of radiation

emission increases dramatically with temperature, and the peak of the spectrum shifts toward the visible and ultraviolet parts of the

spectrum. The shape of the spectrum cannot be described with classical physics.

TIPS FOR SUCCESS
When encountering a new graph, it is best to try to interpret the graph before you read about it. Doing this will make the
following text more meaningful and will help to remind yourself of some of the key concepts within the section.
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Understanding Blackbody Graphs
Figure 21.2 is a plot of radiation intensity against radiated wavelength. In other words, it shows how the intensity of radiated
light changes when a blackbody is heated to a particular temperature.

It may help to just follow the bottom-most red line labeled 3,000 K, red hot. The graph shows that when a blackbody acquires a
temperature of 3,000 K, it radiates energy across the electromagnetic spectrum. However, the energy is most intensely emitted
at a wavelength of approximately 1000 nm. This is in the infrared portion of the electromagnetic spectrum. While a body at this
temperature would appear red-hot to our eyes, it would truly appear ‘infrared-hot’ if we were able to see the entire spectrum.

A few other important notes regarding Figure 21.2:

• As temperature increases, the total amount of energy radiated increases. This is shown by examining the area underneath
each line.

• Regardless of temperature, all red lines on the graph undergo a consistent pattern. While electromagnetic radiation is
emitted throughout the spectrum, the intensity of this radiation peaks at one particular wavelength.

• As the temperature changes, the wavelength of greatest radiation intensity changes. At 4,000 K, the radiation is most
intense in the yellow-green portion of the spectrum. At 6,000 K, the blackbody would radiate white hot, due to intense
radiation throughout the visible portion of the electromagnetic spectrum. Remember that white light is the emission of all
visible colors simultaneously.

• As the temperature increases, the frequency of light providing the greatest intensity increases as well. Recall the equation
Because the speed of light is constant, frequency and wavelength are inversely related. This is verified by the

leftward movement of the three red lines as temperature is increased.

While in science it is important to categorize observations, theorizing as to why the observations exist is crucial to scientific
advancement. Why doesn’t a blackbody emit radiation evenly across all wavelengths? Why does the temperature of the body
change the peak wavelength that is radiated? Why does an increase in temperature cause the peak wavelength emitted to
decrease? It is questions like these that drove significant research at the turn of the twentieth century. And within the context of
these questions, Max Planck discovered something of tremendous importance.

Planck’s Revolution
The prevailing theory at the time of Max Planck’s discovery was that intensity and frequency were related by the equation

This equation, derived from classical physics and using wave phenomena, infers that as wavelength increases, the

intensity of energy provided will decrease with an inverse-squared relationship. This relationship is graphed in Figure 21.3 and
shows a troubling trend. For starters, it should be apparent that the graph from this equation does not match the blackbody
graphs found experimentally. Additionally, it shows that for an object of any temperature, there should be an infinite amount of
energy quickly emitted in the shortest wavelengths. When theory and experimental results clash, it is important to re-evaluate
both models. The disconnect between theory and reality was termed the ultraviolet catastrophe.
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Figure 21.3 The graph above shows the true spectral measurements by a blackbody against those predicted by the classical theory at the

time. The discord between the predicted classical theory line and the actual results is known as the ultraviolet catastrophe.

Due to concerns over the ultraviolet catastrophe, Max Planck began to question whether another factor impacted the
relationship between intensity and wavelength. This factor, he posited, should affect the probability that short wavelength light
would be emitted. Should this factor reduce the probability of short wavelength light, it would cause the radiance curve to not
progress infinitely as in the classical theory, but would instead cause the curve to precipitate back downward as is shown in the
5,000 K, 4,000 K, and 3,000 K temperature lines of the graph in Figure 21.3. Planck noted that this factor, whatever it may be,
must also be dependent on temperature, as the intensity decreases at lower and lower wavelengths as the temperature
increases.

The determination of this probability factor was a groundbreaking discovery in physics, yielding insight not just into light but
also into energy and matter itself. It would be the basis for Planck’s 1918 Nobel Prize in Physics and would result in the transition
of physics from classical to modern understanding. In an attempt to determine the cause of the probability factor, Max Planck
constructed a new theory. This theory, which created the branch of physics called quantum mechanics, speculated that the
energy radiated by the blackbody could exist only in specific numerical, or quantum, states. This theory is described by the
equation where n is any nonnegative integer (0, 1, 2, 3, …) and h is Planck’s constant, given by

and f is frequency.

Through this equation, Planck’s probability factor can be more clearly understood. Each frequency of light provides a specific
quantized amount of energy. Low frequency light, associated with longer wavelengths would provide a smaller amount of
energy, while high frequency light, associated with shorter wavelengths, would provide a larger amount of energy. For specified
temperatures with specific total energies, it makes sense that more low frequency light would be radiated than high frequency
light. To a degree, the relationship is like pouring coins through a funnel. More of the smaller pennies would be able to pass
through the funnel than the larger quarters. In other words, because the value of the coin is somewhat related to the size of the
coin, the probability of a quarter passing through the funnel is reduced!

Furthermore, an increase in temperature would signify the presence of higher energy. As a result, the greater amount of total
blackbody energy would allow for more of the high frequency, short wavelength, energies to be radiated. This permits the peak
of the blackbody curve to drift leftward as the temperature increases, as it does from the 3,000 K to 4,000 K to 5,000 K values.
Furthering our coin analogy, consider a wider funnel. This funnel would permit more quarters to pass through and allow for a
reduction in concern about the probability factor.

In summary, it is the interplay between the predicted classical model and the quantum probability that creates the curve
depicted in Figure 21.3. Just as quarters have a higher currency denomination than pennies, higher frequencies come with larger
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amounts of energy. However, just as the probability of a quarter passing through a fixed diameter funnel is reduced, so is the
probability of a high frequency light existing in a fixed temperature object. As is often the case in physics, it is the balancing of
multiple incredible ideas that finally allows for better understanding.

Quantization
It may be helpful at this point to further consider the idea of quantum states. Atoms, molecules, and fundamental electron and
proton charges are all examples of physical entities that are quantized—that is, they appear only in certain discrete values and
do not have every conceivable value. On the macroscopic scale, this is not a revolutionary concept. A standing wave on a string
allows only particular harmonics described by integers. Going up and down a hill using discrete stair steps causes your potential
energy to take on discrete values as you move from step to step. Furthermore, we cannot have a fraction of an atom, or part of an
electron’s charge, or 14.33 cents. Rather, everything is built of integral multiples of these substructures.

That said, to discover quantum states within a phenomenon that science had always considered continuous would certainly be
surprising. When Max Planck was able to use quantization to correctly describe the experimentally known shape of the
blackbody spectrum, it was the first indication that energy was quantized on a small scale as well. This discovery earned Planck
the Nobel Prize in Physics in 1918 and was such a revolutionary departure from classical physics that Planck himself was
reluctant to accept his own idea. The general acceptance of Planck’s energy quantization was greatly enhanced by Einstein’s
explanation of the photoelectric effect (discussed in the next section), which took energy quantization a step further.

Figure 21.4 The German physicist Max Planck had a major influence on the early development of quantum mechanics, being the first to

recognize that energy is sometimes quantized. Planck also made important contributions to special relativity and classical physics. (credit:

Library of Congress, Prints and Photographs Division, Wikimedia Commons)

WORKED EXAMPLE

How Many Photons per Second Does a Typical Light Bulb Produce?
Assuming that 10 percent of a 100-W light bulb’s energy output is in the visible range (typical for incandescent bulbs) with an
average wavelength of 580 nm, calculate the number of visible photons emitted per second.
Strategy
The number of visible photons per second is directly related to the amount of energy emitted each second, also known as the
bulb’s power. By determining the bulb’s power, the energy emitted each second can be found. Since the power is given in watts,
which is joules per second, the energy will be in joules. By comparing this to the amount of energy associated with each photon,
the number of photons emitted each second can be determined.

Solution
The power in visible light production is 10.0 percent of 100 W, or 10.0 J/s. The energy of the average visible photon is found by
substituting the given average wavelength into the formula

By rearranging the above formula to determine energy per photon, this produces

The number of visible photons per second is thus

21.1
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Discussion
This incredible number of photons per second is verification that individual photons are insignificant in ordinary human
experience. However, it is also a verification of our everyday experience—on the macroscopic scale, photons are so small that
quantization becomes essentially continuous.

WORKED EXAMPLE

How does Photon Energy Change with Various Portions of the EM Spectrum?
Refer to the Graphs of Blackbody Radiation shown in the first figure in this section. Compare the energy necessary to radiate
one photon of infrared light and one photon of visible light.
Strategy
To determine the energy radiated, it is necessary to use the equation It is also necessary to find a representative
frequency for infrared light and visible light.

Solution
According to the first figure in this section, one representative wavelength for infrared light is 2000 nm (2.000 × 10-6 m). The
associated frequency of an infrared light is

Using the equation , the energy associated with one photon of representative infrared light is

The same process above can be used to determine the energy associated with one photon of representative visible light.
According to the first figure in this section, one representative wavelength for visible light is 500 nm.

Discussion
This example verifies that as the wavelength of light decreases, the quantum energy increases. This explains why a fire burning
with a blue flame is considered more dangerous than a fire with a red flame. Each photon of short-wavelength blue light emitted
carries a greater amount of energy than a long-wavelength red light. This example also helps explain the differences in the 3,000
K, 4,000 K, and 6,000 K lines shown in the first figure in this section. As the temperature is increased, more energy is available
for a greater number of short-wavelength photons to be emitted.

Practice Problems
1. An AM radio station broadcasts at a frequency of 1,530 kHz . What is the energy in Joules of a photon emitted from this

station?
a. 10.1 × 10-26 J
b. 1.01 × 10-28 J
c. 1.01 × 10-29 J
d. 1.01 × 10-27 J

2. A photon travels with energy of 1.0 eV. What type of EM radiation is this photon?
a. visible radiation

21.2

21.3

21.4

21.5
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b. microwave radiation
c. infrared radiation
d. ultraviolet radiation

Check Your Understanding
3. Do reflective or absorptive surfaces more closely model a perfect blackbody?

a. reflective surfaces
b. absorptive surfaces

4. A black T-shirt is a good model of a blackbody. However, it is not perfect. What prevents a black T-shirt from being
considered a perfect blackbody?
a. The T-shirt reflects some light.
b. The T-shirt absorbs all incident light.
c. The T-shirt re-emits all the incident light.
d. The T-shirt does not reflect light.

5. What is the mathematical relationship linking the energy of a photon to its frequency?

a.
b.

c.
d.

6. Why do we not notice quantization of photons in everyday experience?
a. because the size of each photon is very large
b. because the mass of each photon is so small
c. because the energy provided by photons is very large
d. because the energy provided by photons is very small

7. Two flames are observed on a stove. One is red while the other is blue. Which flame is hotter?
a. The red flame is hotter because red light has lower frequency.
b. The red flame is hotter because red light has higher frequency.
c. The blue flame is hotter because blue light has lower frequency.
d. The blue flame is hotter because blue light has higher frequency.

8. Your pupils dilate when visible light intensity is reduced. Does wearing sunglasses that lack UV blockers increase or decrease
the UV hazard to your eyes? Explain.
a. Increase, because more high-energy UV photons can enter the eye.
b. Increase, because less high-energy UV photons can enter the eye.
c. Decrease, because more high-energy UV photons can enter the eye.
d. Decrease, because less high-energy UV photons can enter the eye.

9. The temperature of a blackbody radiator is increased. What will happen to the most intense wavelength of light emitted as
this increase occurs?
a. The wavelength of the most intense radiation will vary randomly.
b. The wavelength of the most intense radiation will increase.
c. The wavelength of the most intense radiation will remain unchanged.
d. The wavelength of the most intense radiation will decrease.
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21.2 Einstein and the Photoelectric Effect
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe Einstein’s explanation of the photoelectric effect
• Describe how the photoelectric effect could not be explained by classical physics
• Calculate the energy of a photoelectron under given conditions
• Describe use of the photoelectric effect in biological applications, photoelectric devices and movie soundtracks

Section Key Terms

electric eye photoelectric effect photoelectron photon

The Photoelectric Effect
Teacher Support
[EL]Ask the students what they think the term photoelectric means. How does the term relate to its definition?

When light strikes certain materials, it can eject electrons from them. This is called the photoelectric effect, meaning that light
(photo) produces electricity. One common use of the photoelectric effect is in light meters, such as those that adjust the
automatic iris in various types of cameras. Another use is in solar cells, as you probably have in your calculator or have seen on a
rooftop or a roadside sign. These make use of the photoelectric effect to convert light into electricity for running different
devices.

Figure 21.5 The photoelectric effect can be observed by allowing light to fall on the metal plate in this evacuated tube. Electrons ejected by

the light are collected on the collector wire and measured as a current. A retarding voltage between the collector wire and plate can then be

adjusted so as to determine the energy of the ejected electrons. (credit: P. P. Urone)

Revolutionary Properties of the Photoelectric Effect
When Max Planck theorized that energy was quantized in a blackbody radiator, it is unlikely that he would have recognized just
how revolutionary his idea was. Using tools similar to the light meter in Figure 21.5, it would take a scientist of Albert Einstein’s
stature to fully discover the implications of Max Planck’s radical concept.

Through careful observations of the photoelectric effect, Albert Einstein realized that there were several characteristics that
could be explained only if EM radiation is itself quantized. While these characteristics will be explained a bit later in this
section, you can already begin to appreciate why Einstein’s idea is very important. It means that the apparently continuous
stream of energy in an EM wave is actually not a continuous stream at all. In fact, the EM wave itself is actually composed of tiny
quantum packets of energy called photons.

In equation form, Einstein found the energy of a photon or photoelectron to be

where E is the energy of a photon of frequency f and h is Planck’s constant. A beam from a flashlight, which to this point had
been considered a wave, instead could now be viewed as a series of photons, each providing a specific amount of energy see
Figure 21.6. Furthermore, the amount of energy within each individual photon is based upon its individual frequency, as

698 Chapter 21 • The Quantum Nature of Light

Access for free at openstax.org.



dictated by As a result, the total amount of energy provided by the beam could now be viewed as the sum of all
frequency-dependent photon energies added together.

Figure 21.6 An EM wave of frequency f is composed of photons, or individual quanta of EM radiation. The energy of each photon is ,

where h is Planck’s constant and f is the frequency of the EM radiation. Higher intensity means more photons per unit area per second. The

flashlight emits large numbers of photons of many different frequencies, hence others have energy , and so on.

Just as with Planck’s blackbody radiation, Einstein’s concept of the photon could take hold in the scientific community only if it
could succeed where classical physics failed. The photoelectric effect would be a key to demonstrating Einstein’s brilliance.

Consider the following five properties of the photoelectric effect. All of these properties are consistent with the idea that
individual photons of EM radiation are absorbed by individual electrons in a material, with the electron gaining the photon’s
energy. Some of these properties are inconsistent with the idea that EM radiation is a simple wave. For simplicity, let us
consider what happens with monochromatic EM radiation in which all photons have the same energy hf.

Figure 21.7 Incident radiation strikes a clean metal surface, ejecting multiple electrons from it. The manner in which the frequency and

intensity of the incoming radiation affect the ejected electrons strongly suggests that electromagnetic radiation is quantized. This event,

called the photoelectric effect, is strong evidence for the existence of photons.

1. If we vary the frequency of the EM radiation falling on a clean metal surface, we find the following: For a given material,
there is a threshold frequency f0 for the EM radiation below which no electrons are ejected, regardless of intensity. Using
the photon model, the explanation for this is clear. Individual photons interact with individual electrons. Thus if the energy
of an individual photon is too low to break an electron away, no electrons will be ejected. However, if EM radiation were a
simple wave, sufficient energy could be obtained simply by increasing the intensity.

2. Once EM radiation falls on a material, electrons are ejected without delay. As soon as an individual photon of sufficiently
high frequency is absorbed by an individual electron, the electron is ejected. If the EM radiation were a simple wave,
several minutes would be required for sufficient energy to be deposited at the metal surface in order to eject an electron.

3. The number of electrons ejected per unit time is proportional to the intensity of the EM radiation and to no other
characteristic. High-intensity EM radiation consists of large numbers of photons per unit area, with all photons having the
same characteristic energy, hf. The increased number of photons per unit area results in an increased number of electrons
per unit area ejected.

4. If we vary the intensity of the EM radiation and measure the energy of ejected electrons, we find the following: The
maximum kinetic energy of ejected electrons is independent of the intensity of the EM radiation. Instead, as noted in point
3 above, increased intensity results in more electrons of the same energy being ejected. If EM radiation were a simple wave,
a higher intensity could transfer more energy, and higher-energy electrons would be ejected.

5. The kinetic energy KE of an ejected electron equals the photon energy minus the binding energy BE of the electron in the
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specific material. An individual photon can give all of its energy to an electron. The photon’s energy is partly used to break
the electron away from the material. The remainder goes into the ejected electron’s kinetic energy. In equation form, this is
given by

where is the maximum kinetic energy of the ejected electron, is the photon’s energy, and BE is the binding energy of the
electron to the particular material. This equation explains the properties of the photoelectric effect quantitatively and
demonstrates that BE is the minimum amount of energy necessary to eject an electron. If the energy supplied is less than BE,
the electron cannot be ejected. The binding energy can also be written as where is the threshold frequency for the
particular material. Figure 21.8 shows a graph of maximum versus the frequency of incident EM radiation falling on a
particular material.

Figure 21.8 A graph of the kinetic energy of an ejected electron, KEe, versus the frequency of EM radiation impinging on a certain material.

There is a threshold frequency below which no electrons are ejected, because the individual photon interacting with an individual electron

has insufficient energy to break it away. Above the threshold energy, KEe increases linearly with f, consistent with KEe = hf − BE. The slope

of this line is h, so the data can be used to determine Planck’s constant experimentally.

TIPS FOR SUCCESS
The following five pieces of information can be difficult to follow without some organization. It may be useful to create a
table of expected results of each of the five properties, with one column showing the classical wave model result and one
column showing the modern photon model result.
The table may look something like Table 21.1

Classical Wave Model Modern Photon Model

Threshold Frequency

Electron Ejection Delay

Intensity of EM Radiation

Speed of Ejected Electrons

Relationship between Kinetic Energy and Binding Energy

Table 21.1 Table of Expected Results

21.6

Virtual Physics

Photoelectric Effect
Click to view content (http://www.openstax.org/l/28photoelectric)
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WORKED EXAMPLE

Photon Energy and the Photoelectric Effect: A Violet Light
(a) What is the energy in joules and electron volts of a photon of 420-nm violet light? (b) What is the maximum kinetic energy of
electrons ejected from calcium by 420 nm violet light, given that the binding energy of electrons for calcium metal is 2.71 eV?
Strategy
To solve part (a), note that the energy of a photon is given by . For part (b), once the energy of the photon is calculated, it
is a straightforward application of to find the ejected electron’s maximum kinetic energy, since BE is given.

Solution for (a)
Photon energy is given by

Since we are given the wavelength rather than the frequency, we solve the familiar relationship for the frequency,
yielding

Combining these two equations gives the useful relationship

Now substituting known values yields

Converting to eV, the energy of the photon is

Solution for (b)
Finding the kinetic energy of the ejected electron is now a simple application of the equation . Substituting
the photon energy and binding energy yields

Discussion
The energy of this 420 nm photon of violet light is a tiny fraction of a joule, and so it is no wonder that a single photon would be
difficult for us to sense directly—humans are more attuned to energies on the order of joules. But looking at the energy in
electron volts, we can see that this photon has enough energy to affect atoms and molecules. A DNA molecule can be broken with
about 1 eV of energy, for example, and typical atomic and molecular energies are on the order of eV, so that the photon in this
example could have biological effects, such as sunburn. The ejected electron has rather low energy, and it would not travel far,

In this demonstration, see how light knocks electrons off a metal target, and recreate the experiment that spawned the field
of quantum mechanics.

GRASP CHECK
In the circuit provided, what are the three ways to increase the current?
a. decrease the intensity, decrease the frequency, alter the target
b. decrease the intensity, decrease the frequency, don’t alter the target
c. increase the intensity, increase the frequency, alter the target
d. increase the intensity, increase the frequency, alter the target

21.7

21.8

21.9

21.10

21.11
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except in a vacuum. The electron would be stopped by a retarding potential of only 0.26 eV, a slightly larger KE than calculated
above. In fact, if the photon wavelength were longer and its energy less than 2.71 eV, then the formula would give a negative
kinetic energy, an impossibility. This simply means that the 420 nm photons with their 2.96 eV energy are not much above the
frequency threshold. You can see for yourself that the threshold wavelength is 458 nm (blue light). This means that if calcium
metal were used in a light meter, the meter would be insensitive to wavelengths longer than those of blue light. Such a light
meter would be completely insensitive to red light, for example.

Practice Problems
10. What is the longest-wavelength EM radiation that can eject a photoelectron from silver, given that the bonding energy is

4.73 eV ? Is this radiation in the visible range?
a. 2.63 × 10−7 m; No, the radiation is in microwave region.
b. 2.63 × 10−7 m; No, the radiation is in visible region.
c. 2.63 × 10−7 m; No, the radiation is in infrared region.
d. 2.63 × 10-7 m; No, the radiation is in ultraviolet region.

11. What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 450-nm EM radiation, given that the
binding energy is 2.28 eV?
a. 0.48 V
b. 0.82 eV
c. 1.21 eV
d. 0.48 eV

Technological Applications of the Photoelectric Effect
While Einstein’s understanding of the photoelectric effect was a transformative discovery in the early 1900s, its presence is
ubiquitous today. If you have watched streetlights turn on automatically in response to the setting sun, stopped elevator doors
from closing simply by putting your hands between them, or turned on a water faucet by sliding your hands near it, you are
familiar with the electric eye, a name given to a group of devices that use the photoelectric effect for detection.

All these devices rely on photoconductive cells. These cells are activated when light is absorbed by a semi-conductive material,
knocking off a free electron. When this happens, an electron void is left behind, which attracts a nearby electron. The movement
of this electron, and the resultant chain of electron movements, produces a current. If electron ejection continues, further holes
are created, thereby increasing the electrical conductivity of the cell. This current can turn switches on and off and activate
various familiar mechanisms.

One such mechanism takes place where you may not expect it. Next time you are at the movie theater, pay close attention to the
sound coming out of the speakers. This sound is actually created using the photoelectric effect! The audiotape in the projector
booth is a transparent piece of film of varying width. This film is fed between a photocell and a bright light produced by an
exciter lamp. As the transparent portion of the film varies in width, the amount of light that strikes the photocell varies as well.
As a result, the current in the photoconductive circuit changes with the width of the filmstrip. This changing current is
converted to a changing frequency, which creates the soundtrack commonly heard in the theater.

WORK IN PHYSICS

Solar Energy Physicist
According to the U.S. Department of Energy, Earth receives enough sunlight each hour to power the entire globe for a year.
While converting all of this energy is impossible, the job of the solar energy physicist is to explore and improve upon solar
energy conversion technologies so that we may harness more of this abundant resource.

The field of solar energy is not a new one. For over half a century, satellites and spacecraft have utilized photovoltaic cells to
create current and power their operations. As time has gone on, scientists have worked to adapt this process so that it may be
used in homes, businesses, and full-scale power stations using solar cells like the one shown in Figure 21.9.
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Figure 21.9 A solar cell is an example of a photovoltaic cell. As light strikes the cell, the cell absorbs the energy of the photons. If this

energy exceeds the binding energy of the electrons, then electrons will be forced to move in the cell, thereby producing a current. This

current may be used for a variety of purposes. (credit: U.S. Department of Energy)

Solar energy is converted to electrical energy in one of two manners: direct transfer through photovoltaic cells or thermal
conversion through the use of a CSP, concentrating solar power, system. Unlike electric eyes, which trip a mechanism when
current is lost, photovoltaic cells utilize semiconductors to directly transfer the electrons released through the photoelectric
effect into a directed current. The energy from this current can then be converted for storage, or immediately used in an electric
process. A CSP system is an indirect method of energy conversion. In this process, light from the Sun is channeled using
parabolic mirrors. The light from these mirrors strikes a thermally conductive material, which then heats a pool of water. This
water, in turn, is converted to steam, which turns a turbine and creates electricity. While indirect, this method has long been the
traditional means of large-scale power generation.

There are, of course, limitations to the efficacy of solar power. Cloud cover, nightfall, and incident angle strike at high altitudes
are all factors that directly influence the amount of light energy available. Additionally, the creation of photovoltaic cells requires
rare-earth minerals that can be difficult to obtain. However, the major role of a solar energy physicist is to find ways to improve
the efficiency of the solar energy conversion process. Currently, this is done by experimenting with new semi conductive
materials, by refining current energy transfer methods, and by determining new ways of incorporating solar structures into the
current power grid.

Additionally, many solar physicists are looking into ways to allow for increased solar use in impoverished, more remote
locations. Because solar energy conversion does not require a connection to a large-scale power grid, research into thinner,
more mobile materials will permit remote cultures to use solar cells to convert sunlight collected during the day into stored
energy that can then be used at night.

Regardless of the application, solar energy physicists are an important part of the future in responsible energy growth. While a
doctoral degree is often necessary for advanced research applications, a bachelor's or master's degree in a related science or
engineering field is typically enough to gain access into the industry. Computer skills are very important for energy modeling,
including knowledge of CAD software for design purposes. In addition, the ability to collaborate and communicate with others
is critical to becoming a solar energy physicist.

GRASP CHECK
What role does the photoelectric effect play in the research of a solar energy physicist?
a. The understanding of photoelectric effect allows the physicist to understand the generation of light energy when using

photovoltaic cells.
b. The understanding of photoelectric effect allows the physicist to understand the generation of electrical energy when

using photovoltaic cells.
c. The understanding of photoelectric effect allows the physicist to understand the generation of electromagnetic energy

when using photovoltaic cells.
d. The understanding of photoelectric effect allows the physicist to understand the generation of magnetic energy when

using photovoltaic cells.
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Check Your Understanding
12. How did Einstein’s model of photons change the view of a beam of energy leaving a flashlight?

a. A beam of light energy is now considered a continual stream of wave energy, not photons.
b. A beam of light energy is now considered a collection of photons, each carrying its own individual energy.

13. True or false—Visible light is the only type of electromagnetic radiation that can cause the photoelectric effect.
a. false
b. true

14. Is the photoelectric effect a direct consequence of the wave character of EM radiation or the particle character of EM
radiation?
a. The photoelectric effect is a direct consequence of the particle nature of EM radiation.
b. The photoelectric effect is a direct consequence of the wave nature of EM radiation.
c. The photoelectric effect is a direct consequence of both the wave and particle nature of EM radiation.
d. The photoelectric effect is a direct consequence of neither the wave nor the particle nature of EM radiation.

15. Which aspects of the photoelectric effect can only be explained using photons?
a. aspects 1, 2, and 3
b. aspects 1, 2, and 4
c. aspects 1, 2, 4 and 5
d. aspects 1, 2, 3, 4 and 5

16. In a photovoltaic cell, what energy transformation takes place?
a. Solar energy transforms into electric energy.
b. Solar energy transforms into mechanical energy.
c. Solar energy transforms into thermal energy.
d. In a photovoltaic cell, thermal energy transforms into electric energy.

17. True or false—A current is created in a photoconductive cell, even if only one electron is expelled from a photon strike.
a. false
b. true

18. What is a photon and how is it different from other fundamental particles?
a. A photon is a quantum packet of energy; it has infinite mass.
b. A photon is a quantum packet of energy; it is massless.
c. A photon is a fundamental particle of an atom; it has infinite mass.
d. A photon is a fundamental particle of an atom; it is massless.

21.3 The Dual Nature of Light
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the Compton effect
• Calculate the momentum of a photon
• Explain how photon momentum is used in solar sails
• Explain the particle-wave duality of light

Section Key Terms

Compton effect particle-wave duality photon momentum

Photon Momentum
Do photons abide by the fundamental properties of physics? Can packets of electromagnetic energy possibly follow the same
rules as a ping-pong ball or an electron? Although strange to consider, the answer to both questions is yes.

Despite the odd nature of photons, scientists prior to Einstein had long suspected that the fundamental particle of
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electromagnetic radiation shared properties with our more macroscopic particles. This is no clearer than when considering the
photoelectric effect, where photons knock electrons out of a substance. While it is strange to think of a massless particle
exhibiting momentum, it is now a well-established fact within the scientific community. Figure 21.10 shows macroscopic
evidence of photon momentum.

Figure 21.10 The tails of the Hale-Bopp comet point away from the Sun, evidence that light has momentum. Dust emanating from the body

of the comet forms this tail. Particles of dust are pushed away from the Sun by light reflecting from them. The blue, ionized gas tail is also

produced by photons interacting with atoms in the comet material. (credit: Geoff Chester, U.S. Navy, via Wikimedia Commons)

Figure 21.10 shows a comet with two prominent tails. Comet tails are composed of gases and dust evaporated from the body of
the comet and ionized gas. What most people do not know about the tails is that they always point away from the Sun rather
than trailing behind the comet. This can be seen in the diagram.

Why would this be the case? The evidence indicates that the dust particles of the comet are forced away from the Sun when
photons strike them. Evidently, photons carry momentum in the direction of their motion away from the Sun, and some of this
momentum is transferred to dust particles in collisions. The blue tail is caused by the solar wind, a stream of plasma consisting
primarily of protons and electrons evaporating from the corona of the Sun.

Momentum, The Compton Effect, and Solar Sails
Momentum is conserved in quantum mechanics, just as it is in relativity and classical physics. Some of the earliest direct
experimental evidence of this came from the scattering of X-ray photons by electrons in substances, a phenomenon discovered
by American physicist Arthur H. Compton (1892–1962). Around 1923, Compton observed that X-rays reflecting from materials
had decreased energy and correctly interpreted this as being due to the scattering of the X-ray photons by electrons. This
phenomenon could be handled as a collision between two particles—a photon and an electron at rest in the material. After
careful observation, it was found that both energy and momentum were conserved in the collision. See Figure 21.11. For the
discovery of this conserved scattering, now known as the Compton effect, Arthur Compton was awarded the Nobel Prize in
1929.

Shortly after the discovery of Compton scattering, the value of the photon momentum,

was determined by Louis de Broglie. In this equation, called the de Broglie relation, h represents Planck’s constant and λ is the
photon wavelength.

Figure 21.11 The Compton effect is the name given to the scattering of a photon by an electron. Energy and momentum are conserved,

resulting in a reduction of both for the scattered photon.
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We can see that photon momentum is small, since and h is very small. It is for this reason that we do not ordinarily
observe photon momentum. Our mirrors do not recoil when light reflects from them, except perhaps in cartoons. Compton saw
the effects of photon momentum because he was observing X-rays, which have a small wavelength and a relatively large
momentum, interacting with the lightest of particles, the electron.

WORKED EXAMPLE

Electron and Photon Momentum Compared
(a) Calculate the momentum of a visible photon that has a wavelength of 500 nm. (b) Find the velocity of an electron having the
same momentum. (c) What is the energy of the electron, and how does it compare with the energy of the photon?
Strategy
Finding the photon momentum is a straightforward application of its definition: If we find the photon momentum is
small, we can assume that an electron with the same momentum will be nonrelativistic, making it easy to find its velocity and
kinetic energy from the classical formulas.

Solution for (a)
Photon momentum is given by the de Broglie relation.

Entering the given photon wavelength yields

Solution for (b)
Since this momentum is indeed small, we will use the classical expression to find the velocity of an electron with this
momentum. Solving for v and using the known value for the mass of an electron gives

Solution for (c)
The electron has kinetic energy, which is classically given by

Thus,

Converting this to eV by multiplying by yields

The photon energy E is

which is about five orders of magnitude greater.

Discussion
Even in huge numbers, the total momentum that photons carry is small. An electron that carries the same momentum as a
500-nm photon will have a 1,460 m/s velocity, which is clearly nonrelativistic. This is borne out by the experimental observation
that it takes far less energy to give an electron the same momentum as a photon. That said, for high-energy photons interacting
with small masses, photon momentum may be significant. Even on a large scale, photon momentum can have an effect if there
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are enough of them and if there is nothing to prevent the slow recoil of matter. Comet tails are one example, but there are also
proposals to build space sails that use huge low-mass mirrors (made of aluminized Mylar) to reflect sunlight. In the vacuum of
space, the mirrors would gradually recoil and could actually accelerate spacecraft within the solar system. See the following
figure.

TIPS FOR SUCCESS
When determining energies in particle physics, it is more sensible to use the unit eV instead of Joules. Using eV will help you
to recognize differences in magnitude more easily and will make calculations simpler. Also, eV is used by scientists to
describe the binding energy of particles and their rest mass, so using eV will eliminate the need to convert energy quantities.
Finally, eV is a convenient unit when linking electromagnetic forces to particle physics, as one eV is the amount energy given
to an electron when placed in a field of 1-V potential difference.

Practice Problems
19. Find the momentum of a 4.00-cm wavelength microwave photon.

a. 0.83 × 10−32 kg ⋅ m/s
b. 1.66 × 10−34 kg ⋅ m/s
c. 0.83 × 10−34 kg ⋅ m/s
d. 1.66 × 10-32 kg ⋅ m/s

20. Calculate the wavelength of a photon that has the same momentum of a proton moving at 1.00 percent of the speed of light.
a. 2.43 × 10−10 m
b. 2.43 × 10−12 m
c. 1.32 × 10−15 m
d. 1.32 × 10−13 m

Figure 21.12 (a) Space sails have been proposed that use the momentum of sunlight reflecting from gigantic low-mass sails to propel

spacecraft about the solar system. A Russian test model of this (the Cosmos 1) was launched in 2005, but did not make it into orbit due to a

rocket failure. (b) A U.S. version of this, labeled LightSail-1, is scheduled for trial launches in 2016. It will have a 40 m2 sail. (credit: Kim

Newton/NASA)

LINKS TO PHYSICS

LightSail-1 Project
“Provide ships or sails adapted to the heavenly breezes, and there will be some who will brave even that void.”

— Johannes Kepler (in a letter to Galileo Galilei in 1608)
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Figure 21.13 NASA’s NanoSail-D, a precursor to LightSail-1, with its sails deployed. The Planetary Society will be launching LightSail-1 in

early 2016. (credit: NASA/MSFC/D, Wikimedia Commons)

Traversing the Solar System using nothing but the Sun’s power has long been a fantasy of scientists and science fiction writers
alike. Though physicists like Compton, Einstein, and Planck all provided evidence of light’s propulsive capacity, it is only recently
that the technology has become available to truly put these visions into motion. In 2016, by sending a lightweight satellite into
space, the LightSail-1 project is designed to do just that.

A citizen-funded project headed by the Planetary Society, the 5.45-million-dollar LightSail-1 project is set to launch two crafts
into orbit around the Earth. Each craft is equipped with a 32-square-meter solar sail prepared to unfurl once a rocket has
launched it to an appropriate altitude. The sails are made of large mirrors, each a quarter of the thickness of a trash bag, which
will receive an impulse from the Sun’s reflecting photons. Each time the Sun’s photon strikes the craft’s reflective surface and
bounces off, it will provide a momentum to the sail much greater than if the photon were simply absorbed.

Attached to three tiny satellites called CubeSats, whose combined volume is no larger than a loaf of bread, the received
momentum from the Sun’s photons should be enough to record a substantial increase in orbital speed. The intent of the
LightSail-1 mission is to prove that the technology behind photon momentum travel is sound and can be done cheaply. A test
flight in May 2015 showed that the craft’s Mylar sails could unfurl on command. With another successful result in 2016, the
Planetary Society will be planning future versions of the craft with the hopes of eventually achieving interplanetary satellite
travel. Though a few centuries premature, Kepler’s fantastic vision may not be that far away.

If eventually set into interplanetary launch, what will be the effect of continual photon bombardment on the motion of a craft
similar to LightSail-1?
a. It will result in continual acceleration of the craft.
b. It will first accelerate and then decelerate the craft.
c. It will first decelerate and then accelerate the craft.
d. It will result in the craft moving at constant velocity.

Particle-Wave Duality
We have long known that EM radiation is like a wave, capable of interference and diffraction. We now see that light can also be
modeled as particles—massless photons of discrete energy and momentum. We call this twofold nature the particle-wave
duality, meaning that EM radiation has properties of both particles and waves. This may seem contradictory, since we ordinarily
deal with large objects that never act like both waves and particles. An ocean wave, for example, looks nothing like a grain of
sand. However, this so-called duality is simply a term for properties of the photon analogous to phenomena we can observe
directly, on a macroscopic scale. See Figure 21.14. If this term seems strange, it is because we do not ordinarily observe details on
the quantum level directly, and our observations yield either particle-like or wave-like properties, but never both
simultaneously.
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Figure 21.14 (a) The interference pattern for light through a double slit is a wave property understood by analogy to water waves. (b) The

properties of photons having quantized energy and momentum and acting as a concentrated unit are understood by analogy to

macroscopic particles.

Since we have a particle-wave duality for photons, and since we have seen connections between photons and matter in that both
have momentum, it is reasonable to ask whether there is a particle-wave duality for matter as well. If the EM radiation we once
thought to be a pure wave has particle properties, is it possible that matter has wave properties? The answer, strangely, is yes.
The consequences of this are tremendous, as particle-wave duality has been a constant source of scientific wonder during the
twentieth and twenty-first centuries.

Check Your Understanding
21. What fundamental physics properties were found to be conserved in Compton scattering?

a. energy and wavelength
b. energy and momentum
c. mass and energy
d. energy and angle

22. Why do classical or relativistic momentum equations not work in explaining the conservation of momentum that occurs in
Compton scattering?
a. because neither classical nor relativistic momentum equations utilize mass as a variable in their equations
b. because relativistic momentum equations utilize mass as a variable in their formulas but classical momentum

equations do not
c. because classical momentum equations utilize mass as a variable in their formulas but relativistic momentum

equations do not
d. because both classical and relativistic momentum equations utilize mass as a variable in their formulas

23. If solar sails were constructed with more massive materials, how would this influence their effectiveness?
a. The effect of the momentum would increase due to the decreased inertia of the sails.
b. The effect of the momentum would reduce due to the decreased inertia of the sails.
c. The effect of the momentum would increase due to the increased inertia of the sails.
d. The effect of the momentum would be reduced due to the increased inertia of the sails.

24. True or false—It is possible to propel a solar sail craft using just particles within the solar wind.
a. true
b. false

25. True or false—Photon momentum more directly supports the wave model of light.
a. false
b. true
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26. True or false—wave-particle duality exists for objects on the macroscopic scale.
a. false
b. true

27. What type of electromagnetic radiation was used in Compton scattering?
a. visible light
b. ultraviolet radiation
c. radio waves
d. X-rays
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KEY TERMS
blackbody object that absorbs all radiated energy that

strikes it and also emits energy across all wavelengths of
the electromagnetic spectrum

Compton effect phenomenon whereby X-rays scattered
from materials have decreased energy

electric eye group of devices that use the photoelectric
effect for detection

particle-wave duality property of behaving like either a
particle or a wave; the term for the phenomenon that all
particles have wave-like characteristics and waves have
particle-like characteristics

photoelectric effect phenomenon whereby some materials
eject electrons when exposed to light

photoelectron electron that has been ejected from a

material by a photon of light
photon a quantum, or particle, of electromagnetic

radiation
photon momentum amount of momentum of a photon,

calculated by
quantized the fact that certain physical entities exist only

with particular discrete values and not every conceivable
value

quantum discrete packet or bundle of a physical entity such
as energy

ultraviolet catastrophe misconception that blackbodies
would radiate high frequency energy at a much higher
rate than energy radiated at lower frequencies

SECTION SUMMARY
21.1 Planck and Quantum Nature of
Light

• A blackbody will radiate energy across all wavelengths
of the electromagnetic spectrum.

• Radiation of a blackbody will peak at a particular
wavelength, dependent on the temperature of the
blackbody.

• Analysis of blackbody radiation led to the field of
quantum mechanics, which states that radiated energy
can only exist in discrete quantum states.

21.2 Einstein and the Photoelectric
Effect

• The photoelectric effect is the process in which EM
radiation ejects electrons from a material.

• Einstein proposed photons to be quanta of EM
radiation having energy where f is the
frequency of the radiation.

• All EM radiation is composed of photons. As Einstein

explained, all characteristics of the photoelectric effect
are due to the interaction of individual photons with
individual electrons.

• The maximum kinetic energy KEe of ejected electrons
(photoelectrons) is given by where hf
is the photon energy and BE is the binding energy (or
work function) of the electron in the particular
material.

21.3 The Dual Nature of Light
• Compton scattering provided evidence that photon-

electron interactions abide by the principles of
conservation of momentum and conservation of energy.

• The momentum of individual photons, quantified by
, can be used to explain observations of comets

and may lead to future space technologies.
• Electromagnetic waves and matter have both wave-like

and particle-like properties. This phenomenon is
defined as particle-wave duality.

KEY EQUATIONS
21.1 Planck and Quantum Nature of
Light

quantum energy

21.2 Einstein and the Photoelectric
Effect

energy of a photon

maximum kinetic energy of a
photoelectron

binding energy of an electron

21.3 The Dual Nature of Light

momentum of a photon (deBroglie relation)
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CHAPTER REVIEW
Concept Items
21.1 Planck and Quantum Nature of Light
1. What aspect of the blackbody spectrum forced Planck to

propose quantization of energy levels in atoms and
molecules?
a. Radiation occurs at a particular frequency that does

not change with the energy supplied.
b. Certain radiation occurs at a particular frequency

that changes with the energy supplied.
c. Maximum radiation would occur at a particular

frequency that does not change with the energy
supplied.

d. Maximum radiation would occur at a particular
frequency that changes with the energy supplied.

2. Two lasers shine red light at 650 nm. One laser is twice as
bright as the other. Explain this difference using photons
and photon energy.
a. The brighter laser emits twice the number of

photons and more energy per photon.
b. The brighter laser emits twice the number of

photons and less energy per photon.
c. Both lasers emit equal numbers of photons and

equivalent amounts of energy per photon.
d. The brighter laser emits twice the number of

photons but both lasers emit equivalent amounts of
energy per photon.

3. Consider four stars in the night sky: red, yellow, orange,
and blue. The photons of which star will carry the
greatest amount of energy?
a. blue
b. orange
c. red
d. yellow

4. A lightbulb is wired to a variable resistor. What will
happen to the color spectrum emitted by the bulb as the
resistance of the circuit is increased?
a. The bulb will emit greener light.
b. The bulb will emit bluer light.
c. The bulb will emit more ultraviolet light.
d. The bulb will emit redder light.

21.2 Einstein and the Photoelectric Effect
5. Light is projected onto a semi-conductive surface.

However, no electrons are ejected. What will happen
when the light intensity is increased?
a. An increase in light intensity decreases the number

of photons. However, no electrons are ejected.

b. Increase in light intensity increases the number of
photons, so electrons with higher kinetic energy are
ejected.

c. An increase in light intensity increases the number
of photons, so electrons will be ejected.

d. An increase in light intensity increases the number
of photons. However, no electrons are ejected.

6. True or false—The concept of a work function (or binding
energy) is permissible under the classical wave model.
a. false
b. true

7. Can a single microwave photon cause cell damage?
a. No, there is not enough energy associated with a

single microwave photon to result in cell damage.
b. No, there is zero energy associated with a single

microwave photon, so it does not result in cell
damage.

c. Yes, a single microwave photon causes cell damage
because it does not have high energy.

d. Yes, a single microwave photon causes cell damage
because it has enough energy.

21.3 The Dual Nature of Light
8. Why don’t we feel the momentum of sunlight when we

are on the beach?
a. The momentum of a singular photon is incredibly

small.
b. The momentum is not felt because very few photons

strike us at any time, and not all have momentum.
c. The momentum of a singular photon is large, but

very few photons strike us at any time.
d. A large number of photons strike us at any time, and

so their combined momentum is incredibly large.

9. If a beam of helium atoms is projected through two slits
and onto a screen, will an interference pattern emerge?
a. No, an interference pattern will not emerge because

helium atoms will strike a variety of locations on the
screen.

b. No, an interference pattern will not emerge because
helium atoms will strike at certain locations on the
screen.

c. Yes, an interference pattern will emerge because
helium atoms will strike a variety of locations on the
screen.

d. Yes, an interference pattern will emerge because
helium atoms will strike at certain locations on the
screen.
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Critical Thinking Items
21.1 Planck and Quantum Nature of Light
10. Explain why the frequency of a blackbody does not

double when the temperature is doubled.
a. Frequency is inversely proportional to temperature.
b. Frequency is directly proportional to temperature.
c. Frequency is directly proportional to the square of

temperature.
d. Frequency is directly proportional to the fourth

power of temperature.

11. Why does the intensity shown in the blackbody radiation
graph decrease after its peak frequency is achieved?

a. Because after reaching the peak frequency, the
photons created at a particular frequency are too
many for energy intensity to continue to decrease.

b. Because after reaching the peak frequency, the
photons created at a particular frequency are too
few for energy intensity to continue to decrease.

c. Because after reaching the peak frequency, the
photons created at a particular frequency are too
many for energy intensity to continue to increase.

d. Because after reaching the peak frequency, the
photons created at a particular frequency are too
few for energy intensity to continue to increase.

12. Shortly after the introduction of photography, it was
found that photographic emulsions were more sensitive
to blue and violet light than they were to red light.
Explain why this was the case.
a. Blue-violet light contains greater amount of energy

than red light.
b. Blue-violet light contains lower amount of energy

than red light.
c. Both blue-violet light and red light have the same

frequency but contain different amounts of energy.
d. Blue-violet light frequency is lower than the

frequency of red light.

13. Why is it assumed that a perfect absorber of light (like a
blackbody) must also be a perfect emitter of light?
a. To achieve electrostatic equilibrium with its

surroundings
b. To achieve thermal equilibrium with its

surroundings
c. To achieve mechanical equilibrium with its

surroundings
d. To achieve chemical equilibrium with its

surroundings

21.2 Einstein and the Photoelectric Effect
14. Light is projected onto a semi-conductive surface. If the

intensity is held constant but the frequency of light is
increased, what will happen?
a. As frequency is increased, electrons will stop being

ejected from the surface.
b. As frequency is increased, electrons will begin to be

ejected from the surface.
c. As frequency is increased, it will have no effect on

the electrons being ejected as the intensity is the
same.

d. As frequency is increased, the rate at which the
electrons are being ejected will increase.

15. Why is it important to consider what material to use
when designing a light meter? Consider the worked
example from Section 21-2 for assistance.
a. A light meter should contain material that responds

only to high frequency light.
b. A light meter should contain material that responds

to low frequency light.
c. A light meter should contain material that has high

binding energy.
d. A light meter should contain a material that does

not show any photoelectric effect.

16. Why does overexposure to UV light often result in
sunburn when overexposure to visible light does not?
This is why you can get burnt even on a cloudy day.
a. UV light carries less energy than visible light and

can penetrate our body.
b. UV light carries more energy than visible light, so it

cannot break bonds at the cellular level.
c. UV light carries more energy than visible light and

can break bonds at the cellular level.
d. UV light carries less energy than visible light and

cannot penetrate the human body.

17. If you pick up and shake a piece of metal that has
electrons in it free to move as a current, no electrons fall
out. Yet if you heat the metal, electrons can be boiled off.
Explain both of these facts as they relate to the amount
and distribution of energy involved with shaking the
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object as compared with heating it.
a. Thermal energy is added to the metal at a much

higher rate than energy added due to shaking.
b. Thermal energy is added to the metal at a much

lower rate than energy added due to shaking.
c. If the thermal energy added is below the binding

energy of the electrons, they may be boiled off.
d. If the mechanical energy added is below the

binding energy of the electrons, they may be boiled
off.

21.3 The Dual Nature of Light
18. In many macroscopic collisions, a significant amount of

kinetic energy is converted to thermal energy. Explain
why this is not a concern for Compton scattering.
a. Because, photons and electrons do not exist on the

molecular level, all energy of motion is considered
kinetic energy.

b. Because, photons exist on the molecular level while
electrons do not exist on the molecular level, all
energy of motion is considered kinetic energy.

c. Because, electrons exist on the molecular level
while photons do not exist on the molecular level,
all energy of motion is considered kinetic energy.

d. Because, photons and electrons exist on the
molecular level, all energy of motion is considered
kinetic energy.

19. In what region of the electromagnetic spectrum will
photons be most effective in accelerating a solar sail?
a. ultraviolet rays
b. infrared rays
c. X-rays
d. gamma rays

20. True or false—Electron microscopes can resolve images
that are smaller than the images resolved by light
microscopes.
a. false
b. true

21. How would observations of Compton scattering change
if ultraviolet light were used in place of X-rays?
a. Ultraviolet light carries less energy than X-rays. As

a result, Compton scattering would be easier to
detect.

b. Ultraviolet light carries less energy than X-rays. As
a result, Compton scattering would be more
difficult to detect.

c. Ultraviolet light carries more energy than X-rays.
As a result, Compton scattering would be easier to
detect.

d. Ultraviolet light has higher energy than X-rays. As a
result, Compton scattering would be more difficult
to detect.

Problems
21.1 Planck and Quantum Nature of Light
22. How many X-ray photons per second are created by an

X-ray tube that produces a flux of X-rays having a power
of 1.00 W? Assume the average energy per photon is
75.0 keV.
a. 8.33 × 1015 photons
b. 9.1 × 107 photons
c. 9.1 × 108 photons
d. 8.33 × 1013 photons

23. What is the frequency of a photon produced in a CRT
using a 25.0-kV accelerating potential? This is similar to
the layout as in older color television sets.
a. 6.04 × 10−48 Hz
b. 2.77 × 10−48 Hz
c. 3.02 × 1018 Hz
d. 6.04 × 1018 Hz

21.2 Einstein and the Photoelectric Effect
24. What is the binding energy in eV of electrons in

magnesium, if the longest-wavelength photon that can
eject electrons is 337 nm?

a. 7.44 × 10−19 J
b. 7.44 × 10−49 J
c. 5.90 × 10−17 J
d. 5.90 × 10−19 J

25. Photoelectrons from a material with a binding energy of
2.71 eV are ejected by 420-nm photons. Once ejected,
how long does it take these electrons to travel 2.50 cm to
a detection device?
a. 8.5 × 10−6 s
b. 3.5 × 10−7 s
c. 43.5 × 10−9 s
d. 8.5 × 10−8 s

21.3 The Dual Nature of Light
26. What is the momentum of a 0.0100-nm-wavelength

photon that could detect details of an atom?
a. 6.626 × 10−27 kg ⋅ m/s
b. 6.626 × 10−32 kg ⋅ m/s
c. 6.626 × 10−34 kg ⋅ m/s
d. 6.626 × 10-23 kg ⋅ m/s

27. The momentum of light is exactly reversed when
reflected straight back from a mirror, assuming
negligible recoil of the mirror. Thus the change in
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momentum is twice the initial photon momentum.
Suppose light of intensity 1.00 kW/m2 reflectsfrom a
mirror of area 2.00 m2 each second. Using the most
general form of Newton’s second law, what is the force
on the mirror?

a. 1.33 × 10-5 N
b. 1.33 × 10−6 N
c. 1.33 × 10−7 N
d. 1.33 × 10−8 N

Performance Task
21.3 The Dual Nature of Light
28. Our scientific understanding of light has changed over

time. There is evidence to support the wave model of
light, just as there is evidence to support the particle
model of light.

1. Construct a demonstration that supports the wave
model of light. Note—One possible method is to
use a piece of aluminum foil, razor blade, and laser
to demonstrate wave interference. Can you arrange
these materials to create an effective
demonstration? In writing, explain how evidence

from your demonstration supports the wave model
of light.

2. Construct a demonstration that supports the
particle model of light. Note—One possible
method is to use a negatively charged electroscope,
zinc plate, and three light sources of different
frequencies. A red laser, a desk lamp, and
ultraviolet lamp are typically used. Can you arrange
these materials to demonstrate the photoelectric
effect? In writing, explain how evidence from your
demonstration supports the particle model of
light.

TEST PREP
Multiple Choice
21.1 Planck and Quantum Nature of Light
29. A perfect blackbody is a perfect absorber of energy

transferred by what method?
a. conduction
b. convection
c. induction
d. radiation

30. Which of the following is a physical entity that is
quantized?
a. electric charge of an ion
b. frequency of a sound
c. speed of a car

31. Find the energy in joules of photons of radio waves that
leave an FM station that has a 90.0-MHz broadcast
frequency.
a. 1.8 × 10−25 J
b. 1.11 × 10−25 J
c. 7.1 × 10−43 J
d. 5.96 × 10-26 J

32. Which region of the electromagnetic spectrum will
provide photons of the least energy?
a. infrared light
b. radio waves
c. ultraviolet light
d. X-rays

33. A hot, black coffee mug is sitting on a kitchen table in a
dark room. Because it cannot be seen, one assumes that

it is not emitting energy in the form of light. Explain the
fallacy in this logic.
a. Not all heat is in the form of light energy.
b. Not all light energy falls in the visible portion of the

electromagnetic spectrum.
c. All heat is in the form of light energy.
d. All light energy falls in the visible portion of the

electromagnetic spectrum.

34. Given two stars of equivalent size, which will have a
greater temperature: a red dwarf or a yellow dwarf?
Explain. Note—Our sun is considered a yellow dwarf.
a. a yellow dwarf, because yellow light has lower

frequency
b. a red dwarf, because red light has lower frequency
c. a red dwarf, because red light has higher frequency
d. a yellow dwarf, because yellow light has higher

frequency

21.2 Einstein and the Photoelectric Effect
35. What is a quantum of light called?

a. electron
b. neutron
c. photon
d. proton

36. Which of the following observations from the
photoelectric effect is not a violation of classical physics?
a. Electrons are ejected immediately after impact

from light.
b. Light can eject electrons from a semi-conductive
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material.
c. Light intensity does not influence the kinetic

energy of ejected electrons.
d. No electrons are emitted if the light frequency is

too low.

37. If of energy is supplied to an electron with a
binding energy of , with what kinetic energy will
the electron be launched?
a.
b.
c.
d.

38. Which of the following terms translates to light-
producing voltage?
a. photoelectric
b. quantum mechanics
c. photoconductive
d. photovoltaic

39. Why is high frequency EM radiation considered more
dangerous than long wavelength EM radiation?
a. Long wavelength EM radiation photons carry less

energy and therefore have greater ability to disrupt
materials through the photoelectric effect.

b. Long wavelength EM radiation photons carry more
energy and therefore have greater ability to disrupt
materials through the photoelectric effect.

c. High frequency EM radiation photons carry less
energy and therefore have lower ability to disrupt
materials through the photoelectric effect.

d. High frequency EM radiation photons carry more
energy and therefore have greater ability to disrupt
materials through the photoelectric effect.

40. Why are UV, X-rays, and gamma rays considered
ionizing radiation?
a. UV, X-rays, and gamma rays are capable of ejecting

photons from a surface.
b. UV, X-rays, and gamma rays are capable of ejecting

neutrons from a surface.
c. UV, X-rays, and gamma rays are capable of ejecting

protons from a surface.
d. UV, X-rays, and gamma rays are capable of ejecting

electrons from a surface.

21.3 The Dual Nature of Light
41. What two particles interact in Compton scattering?

a. photon and electron
b. proton and electron
c. neutron and electron
d. proton and neutron

42. What is the momentum of a 500-nm photon?
a. 8.35 × 10−26 kg ⋅ m/s
b. 3.31 × 10−40 kg ⋅ m/s
c. 7.55 × 1026 kg ⋅ m/s
d. 1.33 × 10-27 kg ⋅ m/s

43. The conservation of what fundamental physics principle
is behind the technology of solar sails?
a. charge
b. mass
c. momentum
d. angular momentum

44. Terms like frequency, amplitude, and period are tied to
what component of wave-particle duality?
a. neither the particle nor the wave model of light
b. both the particle and wave models of light
c. the particle model of light
d. the wave model of light

45. Why was it beneficial for Compton to scatter electrons
using X-rays and not another region of light like
microwaves?
a. because X-rays are more penetrating than

microwaves
b. because X-rays have lower frequency than

microwaves
c. because microwaves have shorter wavelengths than

X-rays
d. because X-rays have shorter wavelength than

microwaves

Short Answer
21.1 Planck and Quantum Nature of Light
46. Scientists once assumed that all frequencies of light

were emitted with equal probability. Explain what the
blackbody radiation curve would look like if this were
the case.
a. The blackbody radiation curve would look like a

circular path.
b. The blackbody radiation curve would look like an

elliptical path.
c. The blackbody radiation curve would look like a

vertical line.
d. The blackbody radiation curve would look like a

horizontal line.

47. Because there are more gradations to high frequency
radiation than low frequency radiation, scientists also
thought it possible that a curve titled the ultraviolet
catastrophe would occur. Explain what the blackbody
radiation curve would look like if this were the case.
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a. The curve would steadily increase in intensity with
increasing frequency.

b. The curve would steadily decrease in intensity with
increasing frequency.

c. The curve would be much steeper than in the
blackbody radiation graph.

d. The curve would be much flatter than in the
blackbody radiation graph.

48. Energy provided by a light exists in the following
quantities: 150 J, 225 J, 300 J. Define one possible
quantum of energy and provide an energy state that
cannot exist with this quantum.
a. 65 J; 450 J cannot exist
b. 70 J; 450 J cannot exist
c. 75 J; 375 J cannot exist
d. 75 J; 100 J cannot exist

49. Why is Planck’s recognition of quantum particles
considered the dividing line between classical and
modern physics?
a. Planck recognized that energy is quantized, which

was in sync with the classical physics concepts but
not in agreement with modern physics concepts.

b. Planck recognized that energy is quantized, which
was in sync with modern physics concepts but not
in agreement with classical physics concepts.

c. Prior to Planck’s hypothesis, all the classical
physics calculations were valid for subatomic
particles, but quantum physics calculations were
not valid.

d. Prior to Planck’s hypothesis, all the classical
physics calculations were not valid for macroscopic
particles, but quantum physics calculations were
valid.

50. How many 500-mm microwave photons are needed to
supply the 8 kJ of energy necessary to heat a cup of
water by 10 degrees Celsius?
a. 8.05 × 1028 photons
b. 8.05 × 1026 photons
c. 2.01 × 1026 photons
d. 2.01 × 1028 photons

51. What is the efficiency of a 100-W, 550-nm lightbulb if a
photometer finds that 1 × 1020 photons are emitted each
second?
a. 101 percent
b. 72 percent
c. 18 percent
d. 36 percent

52. Rank the following regions of the electromagnetic
spectrum by the amount of energy provided per photon:
gamma, infrared, microwave, ultraviolet, radio, visible,
X-ray.

a. radio, microwave, infrared, visible, ultraviolet, X-
ray, gamma

b. radio, infrared, microwave, ultraviolet, visible, X-
ray, gamma

c. radio, visible, microwave, infrared, ultraviolet, X-
ray, gamma

d. radio, microwave, infrared, visible, ultraviolet,
gamma, X-ray

53. Why are photons of gamma rays and X-rays able to
penetrate objects more successfully than ultraviolet
radiation?
a. Photons of gamma rays and X-rays carry with them

less energy.
b. Photons of gamma rays and X-rays have longer

wavelengths.
c. Photons of gamma rays and X-rays have lower

frequencies.
d. Photons of gamma rays and X-rays carry with them

more energy.

21.2 Einstein and the Photoelectric Effect
54. According to wave theory, what is necessary to eject

electrons from a surface?
a. Enough energy to overcome the binding energy of

the electrons at the surface
b. A frequency that is higher than that of the electrons

at the surface
c. Energy that is lower than the binding energy of the

electrons at the surface
d. A very small number of photons

55. What is the wavelength of EM radiation that ejects
2.00-eV electrons from calcium metal, given that the
binding energy is 2.71 eV?
a. 16.1 × 105 m
b. 6.21 × 10−5 m
c. 9.94 × 10−26 m
d. 2.63 × 10-7 m

56. Find the wavelength of photons that eject
electrons from potassium, given that the binding energy
is .
a.
b.
c.
d.

57. How do solar cells utilize the photoelectric effect?
a. A solar cell converts all photons that it absorbs to

electrical energy using the photoelectric effect.
b. A solar cell converts all electrons that it absorbs to

electrical energy using the photoelectric effect.
c. A solar cell absorbs the photons with energy less
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than the energy gap of the material of the solar cell
and converts it to electrical energy using the
photoelectric effect.

d. A solar cell absorbs the photons with energy greater
than the energy gap of the material of the solar cell
and converts it to electrical energy using the
photoelectric effect.

58. Explain the advantages of the photoelectric effect to
other forms of energy transformation.
a. The photoelectric effect is able to work on the Sun’s

natural energy.
b. The photoelectric effect is able to work on energy

generated by burning fossil fuels.
c. The photoelectric effect can convert heat energy

into electrical energy.
d. The photoelectric effect can convert electrical

energy into light energy.

21.3 The Dual Nature of Light
59. Upon collision, what happens to the frequency of a

photon?
a. The frequency of the photon will drop to zero.
b. The frequency of the photon will remain the same.
c. The frequency of the photon will increase.
d. The frequency of the photon will decrease.

60. How does the momentum of a photon compare to the
momentum of an electron of identical energy?
a. Momentum of the photon is greater than the

momentum of an electron.
b. Momentum of the photon is less than the

momentum of an electron.
c. Momentum of the photon is equal to the

momentum of an electron.
d. Momentum of the photon is zero due to zero rest

mass but the momentum of an electron is finite.

61. A 500-nm photon strikes an electron and loses 20
percent of its energy. What is the new momentum of the
photon?
a. 4.24 × 10−27 kg ⋅ m/s
b. 3.18 × 10−27 kg ⋅ m/s
c. 2.12 × 10−27 kg ⋅ m/s
d. 1.06 × 10−27 kg ⋅ m/s

62. A 500-nm photon strikes an electron and loses 20
percent of its energy. What is the speed of the recoiling
electron?
a. 7.18 × 105 m/s
b. 6.18 × 105 m/s

c. 5.18 × 105 m/s
d. 4.18 × 105 m/s

63. When a photon strikes a solar sail, what is the direction
of impulse on the photon?
a. parallel to the sail
b. perpendicular to the sail
c. tangential to the sail
d. opposite to the sail

64. What is a fundamental difference between solar sails
and sails that are used on sailboats?
a. Solar sails rely on disorganized strikes from light

particles, while sailboats rely on disorganized
strikes from air particles.

b. Solar sails rely on disorganized strikes from air
particles, while sailboats rely on disorganized
strikes from light particles.

c. Solar sails rely on organized strikes from air
particles, while sailboats rely on organized strikes
from light particles.

d. Solar sails rely on organized strikes from light
particles, while sailboats rely on organized strikes
from air particles.

65. The wavelength of a particle is called the de Broglie
wavelength, and it can be found with the equation

.
Yes or no—Can the wavelength of an electron match
that of a proton?
a. Yes, a slow-moving electron can achieve the same

momentum as a slow-moving proton.
b. No, a fast-moving electron cannot achieve the same

momentum, and hence the same wavelength, as a
proton.

c. No, an electron can achieve the same momentum,
and hence not the same wavelength, as a proton.

d. Yes, a fast-moving electron can achieve the same
momentum, and hence have the same wavelength,
as a slow-moving proton.

66. Large objects can move with great momentum. Why
then is it difficult to see their wave-like nature?
a. Their wavelength is equal to the object’s size.
b. Their wavelength is very small compared to the

object’s size.
c. Their wavelength is very large compared to the

object’s size.
d. Their frequency is very small compared to the

object’s size.
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Extended Response
21.1 Planck and Quantum Nature of Light
67. Some television tubes are CRTs. They use an

approximately 30-kV accelerating potential to send
electrons to the screen, where the electrons stimulate
phosphors to emit the light that forms the pictures we
watch. Would you expect X-rays also to be created?
Explain.
a. No, because the full spectrum of EM radiation is

not emitted at any temperature.
b. No, because the full spectrum of EM radiation is

not emitted at certain temperatures.
c. Yes, because the full spectrum of EM radiation is

emitted at any temperature.
d. Yes, because the full spectrum of EM radiation is

emitted at certain temperatures.

68. If Planck’s constant were large, say times greater
than it is, we would observe macroscopic entities to be
quantized. Describe the motion of a child’s swing under
such circumstances.
a. The child would not be able to swing with

particular energies.
b. The child could be released from any height.
c. The child would be able to swing with constant

velocity.
d. The child could be released only from particular

heights.

69. What is the accelerating voltage of an X-ray tube that
produces X-rays with the shortest wavelength of 0.0103
nm?
a. 1.21 × 1010 V
b. 2.4 × 105 V
c. 3.0 × 10−33 V
d. 1.21 × 105 V

70. Patients in a doctor’s office are rightly concerned about
receiving a chest X-ray. Yet visible light is also a form of
electromagnetic radiation and they show little concern
about sitting under the bright lights of the waiting
room. Explain this discrepancy.
a. X-ray photons carry considerably more energy so

they can harm the patients.
b. X-ray photons carry considerably less energy so

they can harm the patients.
c. X-ray photons have considerably longer

wavelengths so they cannot harm the patients.
d. X-ray photons have considerably lower frequencies

so they can harm the patients.

21.2 Einstein and the Photoelectric Effect
71. When increasing the intensity of light shining on a

metallic surface, it is possible to increase the current
created on that surface. Classical theorists would argue
that this is evidence that intensity causes charge to move
with a greater kinetic energy. Argue this logic from the
perspective of a modern physicist.
a. The increased intensity increases the number of

ejected electrons. The increased current is due to
the increase in the number of electrons.

b. The increased intensity decreases the number of
ejected electrons. The increased current is due to
the decrease in the number of electrons ejected.

c. The increased intensity does not alter the number
of electrons ejected. The increased current is due to
the increase in the kinetic energy of electrons.

d. The increased intensity alters the number of
electrons ejected, but an increase in the current is
due to an increase in the kinetic energy of
electrons.

72. What impact does the quantum nature of
electromagnetic radiation have on the understanding of
speed at the particle scale?
a. Speed must also be quantized at the particle scale.
b. Speed will not be quantized at the particle scale.
c. Speed must be zero at the particle scale.
d. Speed will be infinite at the particle scale.

73. A 500 nm photon of light strikes a semi-conductive
surface with a binding energy of 2 eV. With what velocity
will an electron be emitted from the semi-conductive
surface?
a. 8.38 × 105 m/s
b. 9.33 × 105 m/s
c. 3 × 108 m/s
d. 4.11 × 105 m/s

74. True or false—Treating food with ionizing radiation
helps keep it from spoiling.
a. true
b. false

21.3 The Dual Nature of Light
75. When testing atomic bombs, scientists at Los Alamos

recognized that huge releases of energy resulted in
problems with power and communications systems in
the area surrounding the blast site. Explain the possible
tie to Compton scattering.
a. The release of light energy caused large-scale

emission of electrons.
b. The release of light energy caused large-scale

emission of protons.
c. The release of light energy caused large-scale

emission of neutrons.
d. The release of light energy caused large-scale
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emission of photons.

76. Sunlight above the Earth’s atmosphere has an intensity
of 1.30 kW/m2 . If this is reflected straight back from a
mirror that has only a small recoil, the light’s
momentum is exactly reversed, giving the mirror twice
the incident momentum. If the mirror were attached to
a solar sail craft, how fast would the craft be moving
after 24 hr? Note—The average mass per square meter of
the craft is 0.100 kg.
a. 8.67 × 10−5 m/s2

b. 8.67 × 10−6 m/s2

c. 94.2 m/s
d. 7.49 m/s

77. Consider the counter-clockwise motion of LightSail-1
around Earth. When will the satellite move the fastest?

a. point A
b. point B
c. point C
d. point D

78. What will happen to the interference pattern created by
electrons when their velocities are increased?
a. There will be more zones of constructive

interference and fewer zones of destructive
interference.

b. There will be more zones of destructive
interference and fewer zones of constructive
interference.

c. There will be more zones of constructive and
destructive interference.

d. There will be fewer zones of constructive and
destructive interference.
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INTRODUCTION

CHAPTER 22
The Atom

22.1 The Structure of the Atom

22.2 Nuclear Forces and Radioactivity

22.3 Half Life and Radiometric Dating

22.4 Nuclear Fission and Fusion

22.5 Medical Applications of Radioactivity: Diagnostic Imaging and Radiation

From childhood on, we learn that atoms are a substructure of all things around us, from the air we breathe to
the autumn leaves that blanket a forest trail. Invisible to the eye, the atoms have properties that are used to explain many
phenomena—a theme found throughout this text. In this chapter, we discuss the discovery of atoms and their own
substructures. We will then learn about the forces that keep them together and the tremendous energy they release when we
break them apart. Finally, we will see how the knowledge and manipulation of atoms allows us to better understand geology,
biology, and the world around us.

22.1 The Structure of the Atom
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe Rutherford’s experiment and his model of the atom
• Describe emission and absorption spectra of atoms
• Describe the Bohr model of the atom
• Calculate the energy of electrons when they change energy levels
• Calculate the frequency and wavelength of emitted photons when electrons change energy levels
• Describe the quantum model of the atom

Figure 22.1 Individual carbon atoms are visible in this image of a carbon nanotube made by a scanning tunneling
electron microscope. (credit: Taner Yildirim, National Institute of Standards and Technology, Wikimedia Commons)
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Section Key Terms

energy-level diagram excited state Fraunhofer lines

ground state Heisenberg Uncertainty Principle hydrogen-like atoms

planetary model of the atom Rutherford scattering Rydberg constant

How do we know that atoms are really there if we cannot see them with our own eyes? While often taken for granted, our
knowledge of the existence and structure of atoms is the result of centuries of contemplation and experimentation. The earliest
known speculation on the atom dates back to the fifth century B.C., when Greek philosophers Leucippus and Democritus
contemplated whether a substance could be divided without limit into ever smaller pieces. Since then, scientists such as John
Dalton (1766–1844), Amadeo Avogadro (1776–1856), and Dmitri Mendeleev (1834–1907) helped to discover the properties of that
fundamental structure of matter. While much could be written about any number of important scientific philosophers, this
section will focus on the role played by Ernest Rutherford (1871–1937). Though his understanding of our most elemental matter is
rooted in the success of countless prior investigations, his surprising discovery about the interior of the atom is most
fundamental in explaining so many well-known phenomena.

Rutherford’s Experiment
In the early 1900’s, the plum pudding model was the accepted model of the atom. Proposed in 1904 by J. J. Thomson, the model
suggested that the atom was a spherical ball of positive charge, with negatively charged electrons scattered evenly throughout.
In that model, the positive charges made up the pudding, while the electrons acted as isolated plums. During its short life, the
model could be used to explain why most particles were neutral, although with an unbalanced number of plums, electrically
charged atoms could exist.

When Ernest Rutherford began his gold foil experiment in 1909, it is unlikely that anyone would have expected that the plum
pudding model would be challenged. However, using a radioactive source, a thin sheet of gold foil, and a phosphorescent screen,
Rutherford would uncover something so great that he would later call it “the most incredible event that has ever happened to me
in my life”[James, L. K. (1993). Nobel Laureates in Chemistry, 1901–1992. Washington, DC: American Chemical Society.]

The experiment that Rutherford designed is shown in Figure 22.2. As you can see in, a radioactive source was placed in a lead
container with a hole in one side to produce a beam of positively charged helium particles, called alpha particles. Then, a thin
gold foil sheet was placed in the beam. When the high-energy alpha particles passed through the gold foil, they were scattered.
The scattering was observed from the bright spots they produced when they struck the phosphor screen.

Figure 22.2 Rutherford’s experiment gave direct evidence for the size and mass of the nucleus by scattering alpha particles from a thin gold

foil. The scattering of particles suggests that the gold nuclei are very small and contain nearly all of the gold atom’s mass. Particularly

significant in showing the size of the nucleus are alpha particles that scatter to very large angles, much like a soccer ball bouncing off a

goalie’s head.

The expectation of the plum pudding model was that the high-energy alpha particles would be scattered only slightly by the
presence of the gold sheet. Because the energy of the alpha particles was much higher than those typically associated with
atoms, the alpha particles should have passed through the thin foil much like a supersonic bowling ball would crash through a
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few dozen rows of bowling pins. Any deflection was expected to be minor, and due primarily to the electrostatic Coulomb force
between the alpha particles and the foil’s interior electric charges.

However, the true result was nothing of the sort. While the majority of alpha particles passed through the foil unobstructed,
Rutherford and his collaborators Hans Geiger and Ernest Marsden found that alpha particles occasionally were scattered to
large angles, and some even came back in the direction from which they came! The result, called Rutherford scattering, implied
that the gold nuclei were actually very small when compared with the size of the gold atom. As shown in Figure 22.3, the dense
nucleus is surrounded by mostly empty space of the atom, an idea verified by the fact that only 1 in 8,000 particles was scattered
backward.

Figure 22.3 An expanded view of the atoms in the gold foil in Rutherford’s experiment. Circles represent the atoms that are about 10−10 m

in diameter, while the dots represent the nuclei that are about 10−15 m in diameter. To be visible, the dots are much larger than scale—if the

nuclei were actually the size of the dots, each atom would have a diameter of about five meters! Most alpha particles crash through but are

relatively unaffected because of their high energy and the electron’s small mass. Some, however, strike a nucleus and are scattered straight

back. A detailed analysis of their interaction gives the size and mass of the nucleus.

Although the results of the experiment were published by his colleagues in 1909, it took Rutherford two years to convince himself
of their meaning. Rutherford later wrote: “It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and
it came back and hit you. On consideration, I realized that this scattering backwards ... [meant] ... the greatest part of the mass
of the atom was concentrated in a tiny nucleus.” In 1911, Rutherford published his analysis together with a proposed model of the
atom, which was in part based on Geiger’s work from the previous year. As a result of the paper, the size of the nucleus was
determined to be about m, or 100,000 times smaller than the atom. That implies a huge density, on the order of g/
cm3, much greater than any macroscopic matter.

Based on the size and mass of the nucleus revealed by his experiment, as well as the mass of electrons, Rutherford proposed the
planetary model of the atom. The planetary model of the atom pictures low-mass electrons orbiting a large-mass nucleus. The
sizes of the electron orbits are large compared with the size of the nucleus, and most of the atom is a vacuum. The model is
analogous to how low-mass planets in our solar system orbit the large-mass Sun. In the atom, the attractive Coulomb force is
analogous to gravitation in the planetary system (see Figure 22.4).

Figure 22.4 Rutherford’s planetary model of the atom incorporates the characteristics of the nucleus, electrons, and the size of the atom.

The model was the first to recognize the structure of atoms, in which low-mass electrons orbit a very small, massive nucleus in orbits much

larger than the nucleus. The atom is mostly empty and is analogous to our planetary system.
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TIPS FOR SUCCESS
As you progress through the model of the atom, consider the effect that experimentation has on the scientific process. Ask
yourself the following: What would our model of the atom be without Rutherford’s gold foil experiment? What further
understanding of the atom would not have been gained? How would that affect our current technologies? Though often
confusing, experiments taking place today to further understand composition of the atom could perhaps have a similar
effect.

Absorption and Emission Spectra
In 1900, Max Planck recognized that all energy radiated from a source is emitted by atoms in quantum states. How would that
radical idea relate to the interior of an atom? The answer was first found by investigating the spectrum of light or emission
spectrum produced when a gas is highly energized.

Figure 22.5 shows how to isolate the emission spectrum of one such gas. The gas is placed in the discharge tube at the left, where
it is energized to the point at which it begins to radiate energy or emit light. The radiated light is channeled by a thin slit and
then passed through a diffraction grating, which will separate the light into its constituent wavelengths. The separated light will
then strike the photographic film on the right.

The line spectrum shown in part (b) of Figure 22.5 is the output shown on the film for excited iron. Note that this spectrum is not
continuous but discrete. In other words, only particular wavelengths are emitted by the iron source. Why would that be the case?

Figure 22.5 Part (a) shows, from left to right, a discharge tube, slit, and diffraction grating producing a line spectrum. Part (b) shows the

emission spectrum for iron. The discrete lines imply quantized energy states for the atoms that produce them. The line spectrum for each

element is unique, providing a powerful and much-used analytical tool, and many line spectra were well known for many years before they

could be explained with physics. (credit:(b) Yttrium91, Wikimedia Commons)

The spectrum of light created by excited iron shows a variety of discrete wavelengths emitted within the visible spectrum. Each
element, when excited to the appropriate degree, will create a discrete emission spectrum as in part (b) of Figure 22.5. However,
the wavelengths emitted will vary from element to element. The emission spectrum for iron was chosen for Figure 22.5 solely

Virtual Physics

Rutherford Scattering
Click to view content (https://www.openstax.org/l/28rutherford)
How did Rutherford figure out the structure of the atom without being able to see it? Explore the answer through this
simulation of the famous experiment in which he disproved the plum pudding model by observing alpha particles bouncing
off atoms and determining that they must have a small core.
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because a substantial portion of its emission spectrum is within the visible spectrum. Figure 22.6 shows the emission spectrum
for hydrogen. Note that, while discrete, a large portion of hydrogen emission takes place in the ultraviolet and infrared regions.

Figure 22.6 A schematic of the hydrogen spectrum shows several series named for those who contributed most to their determination. Part

of the Balmer series is in the visible spectrum, while the Lyman series is entirely in the ultraviolet, and the Paschen series and others are in

the infrared. Values of nf and ni are shown for some of the lines. Their importance will be described shortly.

Just as an emission spectrum shows all discrete wavelengths emitted by a gas, an absorption spectrum will show all light that is
absorbed by a gas. Black lines exist where the wavelengths are absorbed, with the remainder of the spectrum lit by light is free to
pass through. What relationship do you think exists between the black lines of a gas’s absorption spectrum and the colored lines
of its emission spectrum? Figure 22.7 shows the absorption spectrum of the Sun. The black lines are called Fraunhofer lines,
and they correspond to the wavelengths absorbed by gases in the Sun’s exterior.

Figure 22.7 The absorption spectrum of the Sun. The black lines appear at wavelengths absorbed by the Sun’s gas exterior. The energetic

photons emitted from the Sun’s interior are absorbed by gas in its exterior and reemitted in directions away from the observer. That results

in dark lines within the absorption spectrum. The lines are called Fraunhofer lines, in honor of the German physicist who discovered them.

Lines similar to those are used to determine the chemical composition of stars well outside our solar system.

Bohr’s Explanation of the Hydrogen Spectrum
To tie the unique signatures of emission spectra to the composition of the atom itself would require clever thinking. Niels Bohr
(1885–1962), a Danish physicist, did just that, by making immediate use of Rutherford’s planetary model of the atom. Bohr,
shown in Figure 22.8, became convinced of its validity and spent part of 1912 at Rutherford’s laboratory. In 1913, after returning
to Copenhagen, he began publishing his theory of the simplest atom, hydrogen, based on Rutherford’s planetary model.

Figure 22.8 Niels Bohr, Danish physicist, used the planetary model of the atom to explain the atomic spectrum and size of the hydrogen
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atom. His many contributions to the development of atomic physics and quantum mechanics, his personal influence on many students and

colleagues, and his personal integrity, especially in the face of Nazi oppression, earned him a prominent place in history. (credit: Unknown

Author, Wikimedia Commons)

Bohr was able to derive the formula for the hydrogen spectrum using basic physics, the planetary model of the atom, and some
very important new conjectures. His first conjecture was that only certain orbits are allowed: In other words, in an atom, the
orbits of electrons are quantized. Each quantized orbit has a different distinct energy, and electrons can move to a higher orbit
by absorbing energy or drop to a lower orbit by emitting energy. Because of the quantized orbits, the amount of energy emitted
or absorbed must also be quantized, producing the discrete spectra seen in Figure 22.5 and Figure 22.7. In equation form, the
amount of energy absorbed or emitted can be found as

where refers to the energy of the initial quantized orbit, and refers to the energy of the final orbits. Furthermore, the
wavelength emitted can be found using the equation

and relating the wavelength to the frequency found using the equation , where v corresponds to the speed of light.

It makes sense that energy is involved in changing orbits. For example, a burst of energy is required for a satellite to climb to a
higher orbit. What is not expected is that atomic orbits should be quantized. Quantization is not observed for satellites or
planets, which can have any orbit, given the proper energy (see Figure 22.9).

Figure 22.9 The planetary model of the atom, as modified by Bohr, has the orbits of the electrons quantized. Only certain orbits are

allowed, explaining why atomic spectra are discrete or quantized. The energy carried away from an atom by a photon comes from the

electron dropping from one allowed orbit to another and is thus quantized. The same is true for atomic absorption of photons.

Figure 22.10 shows an energy-level diagram, a convenient way to display energy states. Each of the horizontal lines corresponds
to the energy of an electron in a different orbital. Energy is plotted vertically with the lowest or ground state at the bottom and
with excited states above. The vertical arrow downwards shows energy being emitted out of the atom due to an electron
dropping from one excited state to another. That would correspond to a line shown on the atom’s emission spectrum. The Lyman
series shown in Figure 22.6 results from electrons dropping to the ground state, while the Balmer and Paschen series result to
electrons dropping to the n = 2 and n = 3 states, respectively.

22.1

22.2
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Figure 22.10 An energy-level diagram plots energy vertically and is useful in visualizing the energy states of a system and the transitions

between them. This diagram is for the hydrogen-atom electrons, showing a transition between two orbits having energies and . The

energy transition results in a Balmer series line in an emission spectrum.

Energy and Wavelength of Emitted Hydrogen Spectra
The energy associated with a particular orbital of a hydrogen atom can be found using the equation

where n corresponds to the orbital value from the atom’s nucleus. The negative value in the equation is based upon a baseline
energy of zero when the electron is infinitely far from the atom. As a result, the negative value shows that energy is necessary to
free the electron from its orbital state. The minimum energy to free the electron is also referred to as its binding energy. The
equation is only valid for atoms with single electrons in their orbital shells (like hydrogen). For ionized atoms similar to
hydrogen, the following formula may be used.

Please note that corresponds to –13.6 eV, as mentioned earlier. Additionally, refers to the atomic number of the element
studied. The atomic number is the number of protons in the nucleus—it is different for each element. The above equation is
derived from some basic physics principles, namely conservation of energy, conservation of angular momentum, Coulomb’s law,
and centripetal force. There are three derivations that result in the orbital energy equations, and they are shown below. While
you can use the energy equations without understanding the derivations, they will help to remind you of just how valuable those
fundamental concepts are.

Derivation 1 (Finding the Radius of an Orbital)
One primary difference between the planetary model of the solar system and the planetary model of the atom is the cause of the
circular motion. While gravitation causes the motion of orbiting planets around an interior star, the Coulomb force is

responsible for the circular shape of the electron’s orbit. The magnitude of the centripetal force is , while the magnitude of

the Coulomb force is . The assumption here is that the nucleus is more massive than the stationary electron, and the

electron orbits about it. That is consistent with the planetary model of the atom. Equating the Coulomb force and the centripetal
force,

which yields

22.3
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Derivation 2 (Finding the Velocity of the Orbiting Electron)
Bohr was clever enough to find a way to calculate the electron orbital energies in hydrogen. That was an important first step that
has been improved upon, but it is well worth repeating here, because it does correctly describe many characteristics of
hydrogen. Assuming circular orbits, Bohr proposed that the angular momentum L of an electron in its orbit is also quantized,
that is, it has only specific, discrete values. The value for L is given by the formula

where L is the angular momentum, me is the electron’s mass, rn is the radius of the n th orbit, and h is Planck’s constant. Note
that angular momentum is . For a small object at a radius r, , and , so that

Quantization says that the value of mvr can only be equal to h / 2, 2h / 2, 3h / 2, etc. At the time,
Bohr himself did not know why angular momentum should be quantized, but by using that assumption, he was able to calculate
the energies in the hydrogen spectrum, something no one else had done at the time.

Derivation 3 (Finding the Energy of the Orbiting Electron)
To get the electron orbital energies, we start by noting that the electron energy is the sum of its kinetic and potential energy.

Kinetic energy is the familiar , assuming the electron is not moving at a relativistic speed. Potential energy for the
electron is electrical, or , where V is the potential due to the nucleus, which looks like a point charge. The nucleus has

a positive charge ; thus, , recalling an earlier equation for the potential due to a point charge from the chapter on

Electricity and Magnetism. Since the electron’s charge is negative, we see that Substituting the expressions for

KE and PE,

Now we solve for rn and v using the equation for angular momentum , giving

and

Substituting the expression for rn and v into the above expressions for energy (KE and PE), and performing algebraic
manipulation, yields

for the orbital energies of hydrogen-like atoms. Here, Eo is the ground-state energy (n = 1) for hydrogen (Z = 1) and is given by

Thus, for hydrogen,

The relationship between orbital energies and orbital states for the hydrogen atom can be seen in Figure 22.11.
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Figure 22.11 Energy-level diagram for hydrogen showing the Lyman, Balmer, and Paschen series of transitions. The orbital energies are

calculated using the above equation, first derived by Bohr.

WORKED EXAMPLE

A hydrogen atom is struck by a photon. How much energy must be absorbed from the photon to raise the electron of the
hydrogen atom from its ground state to its second orbital?
Strategy
The hydrogen atom has an atomic number of Z = 1. Raising the electron from the ground state to its second orbital will increase
its orbital level from n = 1 to n = 2. The energy determined will be measured in electron-volts.

Solution
The amount of energy necessary to cause the change in electron state is the difference between the final and initial energies of
the electron. The final energy state of the electron can be found using

Knowing the n and Z values for the hydrogen atom, and knowing that Eo = –13.6 eV, the result is

The original amount of energy associated with the electron is equivalent to the ground state orbital, or

22.15
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The amount of energy necessary to change the orbital state of the electron can be found by determining the electron’s change in
energy.

Discussion
The energy required to change the orbital state of the electron is positive. That means that for the electron to move to a state with
greater energy, energy must be added to the atom. Should the electron drop back down to its original energy state, a change of
–10.2 eV would take place, and 10.2 eV of energy would be emitted from the atom. Just as only quantum amounts of energy may
be absorbed by the atom, only quantum amounts of energy can be emitted from the atom. That helps to explain many of the
quantum light effects that you have learned about previously.

WORKED EXAMPLE

Characteristic X-Ray Energy
Calculate the approximate energy of an X-ray emitted for an n = 2 to n = 1 transition in a tungsten anode in an X-ray tube.
Strategy
How do we calculate energies in a multiple-electron atom? In the case of characteristic X-rays, the following approximate
calculation is reasonable. Characteristic X-rays are produced when an inner-shell vacancy is filled. Inner-shell electrons are
nearer the nucleus than others in an atom and thus feel little net effect from the others. That is similar to what happens inside a
charged conductor, where its excess charge is distributed over the surface so that it produces no electric field inside. It is
reasonable to assume the inner-shell electrons have hydrogen-like energies, as given by

For tungsten, Z = 74, so that the effective charge is 73.

Solution
The amount of energy given off as an X-ray is found using

where

and

Thus,

Discussion
This large photon energy is typical of characteristic X-rays from heavy elements. It is large compared with other atomic
emissions because it is produced when an inner-shell vacancy is filled, and inner-shell electrons are tightly bound.
Characteristic X-ray energies become progressively larger for heavier elements because their energy increases approximately as
Z2. Significant accelerating voltage is needed to create such inner-shell vacancies, because other shells are filled and you cannot
simply bump one electron to a higher filled shell. You must remove it from the atom completely. In the case of tungsten, at least
72.5 kV is needed. Tungsten is a common anode material in X-ray tubes; so much of the energy of the impinging electrons is
absorbed, raising its temperature, that a high-melting-point material like tungsten is required.

The wavelength of light emitted by an atom can also be determined through basic derivations. Let us consider the energy of a
photon emitted from a hydrogen atom in a downward transition, given by the equation
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Substituting , we get

Dividing both sides of the equation by hc gives us an expression for ,

It can be shown that

where R is the Rydberg constant.

Simplified, the formula for determining emitted wavelength can now be written as

WORKED EXAMPLE

What wavelength of light is emitted by an electron dropping from the third orbital to the ground state of a hydrogen atom?
Strategy
The ground state of a hydrogen atom is considered the first orbital of the atom. As a result, nf = 1 and ni = 3. The Rydberg
constant has already been determined and will be constant regardless of atom chosen.

Solution

For the equation above, calculate wavelength based on the known energy states.

Rearranging the equation for wavelength yields

Discussion
This wavelength corresponds to light in the ultraviolet spectrum. As a result, we would not be able to see the photon of light
emitted when an electron drops from its third to first energy state. However, it is worth noting that by supplying light of
wavelength precisely 102.6 nm, we can cause the electron in hydrogen to move from its first to its third orbital state.

Limits of Bohr’s Theory and the Quantum Model of the Atom
There are limits to Bohr’s theory. It does not account for the interaction of bound electrons, so it cannot be fully applied to
multielectron atoms, even one as simple as the two-electron helium atom. Bohr’s model is what we call semiclassical. The orbits
are quantized (nonclassical) but are assumed to be simple circular paths (classical). As quantum mechanics was developed, it
became clear that there are no well-defined orbits; rather, there are clouds of probability. Additionally, Bohr’s theory did not
explain that some spectral lines are doublets or split into two when examined closely. While we shall examine a few of those
aspects of quantum mechanics in more detail, it should be kept in mind that Bohr did not fail. Rather, he made very important
steps along the path to greater knowledge and laid the foundation for all of atomic physics that has since evolved.
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DeBroglie’s Waves
Following Bohr’s initial work on the hydrogen atom, a decade was to pass before Louis de Broglie proposed that matter has wave
properties. The wave-like properties of matter were subsequently confirmed by observations of electron interference when
scattered from crystals. Electrons can exist only in locations where they interfere constructively. How does that affect electrons
in atomic orbits? When an electron is bound to an atom, its wavelength must fit into a small space, something like a standing
wave on a string (see Figure 22.12). Orbits in which an electron can constructively interfere with itself are allowed. All orbits in
which constructive interference cannot occur are not able to exist. Thus, only certain orbits are allowed. The wave nature of an
electron, according to de Broglie, is why the orbits are quantized!

Figure 22.12 (a) Standing waves on a string have a wavelength related to the length of the string, allowing them to interfere constructively.

(b) If we imagine the string formed into a closed circle, we get a rough idea of how electrons in circular orbits can interfere constructively.

(c) If the wavelength does not fit into the circumference, the electron interferes destructively; it cannot exist in such an orbit.

For a circular orbit, constructive interference occurs when the electron’s wavelength fits neatly into the circumference, so that
wave crests always align with crests and wave troughs align with troughs, as shown in Figure 22.12(b). More precisely, when an
integral multiple of the electron’s wavelength equals the circumference of the orbit, constructive interference is obtained. In
equation form, the condition for constructive interference and an allowed electron orbit is

where is the electron’s wavelength and rn is the radius of that circular orbit. Figure 22.13 shows the third and fourth orbitals
of a hydrogen atom.

Figure 22.13 The third and fourth allowed circular orbits have three and four wavelengths, respectively, in their circumferences.
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Heisenberg Uncertainty
How does determining the location of an electron change its trajectory? The answer is fundamentally important—measurement
affects the system being observed. It is impossible to measure a physical quantity exactly, and greater precision in measuring
one quantity produces less precision in measuring a related quantity. It was Werner Heisenberg who first stated that limit to
knowledge in 1929 as a result of his work on quantum mechanics and the wave characteristics of all particles (see Figure 22.14).

Figure 22.14 Werner Heisenberg was the physicist who developed the first version of true quantum mechanics. Not only did his work give a

description of nature on the very small scale, it also changed our view of the availability of knowledge. Although he is universally recognized

for the importance of his work by receiving the Nobel Prize in 1932, for example, Heisenberg remained in Germany during World War II and

headed the German effort to build a nuclear bomb, permanently alienating himself from most of the scientific community. (credit: Unknown

Author, Wikimedia Commons)

For example, you can measure the position of a moving electron by scattering light or other electrons from it. However, by doing
so, you are giving the electron energy, and therefore imparting momentum to it. As a result, the momentum of the electron is
affected and cannot be determined precisely. This change in momentum could be anywhere from close to zero up to the relative
momentum of the electron ( ). Note that, in this case, the particle is an electron, but the principle applies to any
particle.

Viewing the electron through the model of wave-particle duality, Heisenberg recognized that, because a wave is not located at
one fixed point in space, there is an uncertainty associated with any electron’s position. That uncertainty in position, , is
approximately equal to the wavelength of the particle. That is, . There is an interesting trade-off between position and
momentum. The uncertainty in an electron’s position can be reduced by using a shorter-wavelength electron, since .
But shortening the wavelength increases the uncertainty in momentum, since . Conversely, the uncertainty in
momentum can be reduced by using a longer-wavelength electron, but that increases the uncertainty in position.
Mathematically, you can express the trade-off by multiplying the uncertainties. The wavelength cancels, leaving

Therefore, if one uncertainty is reduced, the other must increase so that their product is . With the use of advanced
mathematics, Heisenberg showed that the best that can be done in a simultaneous measurement of position and momentum is

That relationship is known as the Heisenberg uncertainty principle.

The Quantum Model of the Atom
Because of the wave characteristic of matter, the idea of well-defined orbits gives way to a model in which there is a cloud of
probability, consistent with Heisenberg’s uncertainty principle. Figure 22.15 shows how the principle applies to the ground state
of hydrogen. If you try to follow the electron in some well-defined orbit using a probe that has a wavelength small enough to
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measure position accurately, you will instead knock the electron out of its orbit. Each measurement of the electron’s position
will find it to be in a definite location somewhere near the nucleus. Repeated measurements reveal a cloud of probability like
that in the figure, with each speck the location determined by a single measurement. There is not a well-defined, circular-orbit
type of distribution. Nature again proves to be different on a small scale than on a macroscopic scale.

Figure 22.15 The ground state of a hydrogen atom has a probability cloud describing the position of its electron. The probability of finding

the electron is proportional to the darkness of the cloud. The electron can be closer or farther than the Bohr radius, but it is very unlikely to

be a great distance from the nucleus.

Check Your Understanding
1. Alpha particles are positively charged. What influence did their charge have on the gold foil experiment?

a. The positively charged alpha particles were attracted by the attractive electrostatic force from the positive nuclei of the
gold atoms.

b. The positively charged alpha particles were scattered by the attractive electrostatic force from the positive nuclei of the
gold atoms.

c. The positively charged alpha particles were scattered by the repulsive electrostatic force from the positive nuclei of the
gold atoms.

d. The positively charged alpha particles were attracted by the repulsive electrostatic force from the positive nuclei of the
gold atoms.

22.2 Nuclear Forces and Radioactivity
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe the structure and forces present within the nucleus
• Explain the three types of radiation
• Write nuclear equations associated with the various types of radioactive decay

Section Key Terms

alpha decay atomic number beta decay gamma decay Geiger tube

isotope mass number nucleons radioactive radioactive decay

Virtual Physics

Models of the Hydrogen Atom
Click to view content (https://www.openstax.org/l/28atom_model)
How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at
the atom. Use this simulation to see how the prediction of the model matches the experimental results.
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radioactivity scintillator strong nuclear force transmutation

There is an ongoing quest to find the substructures of matter. At one time, it was thought that atoms would be the ultimate
substructure. However, just when the first direct evidence of atoms was obtained, it became clear that they have a substructure
and a tiny nucleus. The nucleus itself has spectacular characteristics. For example, certain nuclei are unstable, and their decay
emits radiations with energies millions of times greater than atomic energies. Some of the mysteries of nature, such as why the
core of Earth remains molten and how the Sun produces its energy, are explained by nuclear phenomena. The exploration of
radioactivity and the nucleus has revealed new fundamental particles, forces, and conservation laws. That exploration has
evolved into a search for further underlying structures, such as quarks. In this section, we will explore the fundamentals of the
nucleus and nuclear radioactivity.

The Structure of the Nucleus
At this point, you are likely familiar with the neutron and proton, the two fundamental particles that make up the nucleus of an
atom. Those two particles, collectively called nucleons, make up the small interior portion of the atom. Both particles have
nearly the same mass, although the neutron is about two parts in 1,000 more massive. The mass of a proton is equivalent to 1,836
electrons, while the mass of a neutron is equivalent to that of 1,839 electrons. That said, each of the particles is significantly more
massive than the electron.

When describing the mass of objects on the scale of nucleons and atoms, it is most reasonable to measure their mass in terms of
atoms. The atomic mass unit (u) was originally defined so that a neutral carbon atom would have a mass of exactly 12 u. Given
that protons and neutrons are approximately the same mass, that there are six protons and six neutrons in a carbon atom, and
that the mass of an electron is minuscule in comparison, measuring this way allows for both protons and neutrons to have
masses close to 1 u. Table 22.1 shows the mass of protons, neutrons, and electrons on the new scale.

TIPS FOR SUCCESS
For most conceptual situations, the difference in mass between the proton and neutron is insubstantial. In fact, for
calculations that require fewer than four significant digits, both the proton and neutron masses may be considered
equivalent to one atomic mass unit. However, when determining the amount of energy released in a nuclear reaction, as in
Equation 22.40, the difference in mass cannot be ignored.

Another other useful mass unit on the atomic scale is the . While rarely used in most contexts, it is convenient when
one uses the equation , as will be addressed later in this text.

Proton Mass Neutron Mass Electron Mass

Kilograms (kg)

Atomic mass units (u)

Table 22.1 Atomic Masses for Multiple Units

To more completely characterize nuclei, let us also consider two other important quantities: the atomic number and the mass
number. The atomic number, Z, represents the number of protons within a nucleus. That value determines the elemental
quality of each atom. Every carbon atom, for instance, has a Z value of 6, whereas every oxygen atom has a Z value of 8. For
clarification, only oxygen atoms may have a Z value of 8. If the Z value is not 8, the atom cannot be oxygen.

The mass number, A, represents the total number of protons and neutrons, or nucleons, within an atom. For an ordinary carbon
atom the mass number would be 12, as there are typically six neutrons accompanying the six protons within the atom. In the
case of carbon, the mass would be exactly 12 u. For oxygen, with a mass number of 16, the atomic mass is 15.994915 u. Of course,
the difference is minor and can be ignored for most scenarios. Again, because the mass of an electron is so small compared to
the nucleons, the mass number and the atomic mass can be essentially equivalent. Figure 22.16 shows an example of Lithium-7,
which has an atomic number of 3 and a mass number of 7.

How does the mass number help to differentiate one atom from another? If each atom of carbon has an atomic number of 6,
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then what is the value of including the mass number at all? The intent of the mass number is to differentiate between various
isotopes of an atom. The term isotope refers to the variation of atoms based upon the number of neutrons within their nucleus.
While it is most common for there to be six neutrons accompanying the six protons within a carbon atom, it is possible to find
carbon atoms with seven neutrons or eight neutrons. Those carbon atoms are respectively referred to as carbon-13 and carbon-14
atoms, with their mass numbers being their primary distinction. The isotope distinction is an important one to make, as the
number of neutrons within an atom can affect a number of its properties, not the least of which is nuclear stability.

Figure 22.16 Lithium-7 has three protons and four neutrons within its nucleus. As a result, its mass number is 7, while its atomic number is

3. The actual mass of the atom is 7.016 u. Lithium 7 is an isotope of lithium.

To more easily identify various atoms, their atomic number and mass number are typically written in a form of representation
called the nuclide. The nuclide form appears as follows: , where X is the atomic symbol and N represents the number of
neutrons.

Let us look at a few examples of nuclides expressed in the notation. The nucleus of the simplest atom, hydrogen, is a single
proton, or (the zero for no neutrons is often omitted). To check the symbol, refer to the periodic table—you see that the
atomic number Z of hydrogen is 1. Since you are given that there are no neutrons, the mass number A is also 1. There is a scarce
form of hydrogen found in nature called deuterium; its nucleus has one proton and one neutron and, hence, twice the mass of
common hydrogen. The symbol for deuterium is, thus, . An even rarer—and radioactive—form of hydrogen is called
tritium, since it has a single proton and two neutrons, and it is written . The three varieties of hydrogen have nearly
identical chemistries, but the nuclei differ greatly in mass, stability, and other characteristics. Again, the different nuclei are
referred to as isotopes of the same element.

There is some redundancy in the symbols A, X, Z, and N. If the element X is known, then Z can be found in a periodic table. If
both A and X are known, then N can also be determined by first finding Z; then, N = A – Z. Thus the simpler notation for
nuclides is

which is sufficient and is most commonly used. For example, in this simpler notation, the three isotopes of hydrogen are ,
, and . For , should we need to know, we can determine that Z = 92 for uranium from the periodic table, and thus, N

= 238 − 92 = 146.

Radioactivity and Nuclear Forces
In 1896, the French physicist Antoine Henri Becquerel (1852–1908) noticed something strange. When a uranium-rich mineral
called pitchblende was placed on a completely opaque envelope containing a photographic plate, it darkened spots on the
photographic plate.. Becquerel reasoned that the pitchblende must emit invisible rays capable of penetrating the opaque
material. Stranger still was that no light was shining on the pitchblende, which means that the pitchblende was emitting the
invisible rays continuously without having any energy input! There is an apparent violation of the law of conservation of energy,
one that scientists can now explain using Einstein’s famous equation It was soon evident that Becquerel’s rays
originate in the nuclei of the atoms and have other unique characteristics.

To this point, most reactions you have studied have been chemical reactions, which are reactions involving the electrons
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surrounding the atoms. However, two types of experimental evidence implied that Becquerel’s rays did not originate with
electrons, but instead within the nucleus of an atom.

First, the radiation is found to be only associated with certain elements, such as uranium. Whether uranium was in the form of
an element or compound was irrelevant to its radiation. In addition, the presence of radiation does not vary with temperature,
pressure, or ionization state of the uranium atom. Since all of those factors affect electrons in an atom, the radiation cannot
come from electron transitions, as atomic spectra do.

The huge energy emitted during each event is the second piece of evidence that the radiation cannot be atomic. Nuclear
radiation has energies on the order of 106 eV per event, which is much greater than typical atomic energies that are a few eV,
such as those observed in spectra and chemical reactions, and more than ten times as high as the most energetic X-rays.

But why would reactions within the nucleus take place? And what would cause an apparently stable structure to begin emitting
energy? Was there something special about Becquerel’s uranium-rich pitchblende? To answer those questions, it is necessary to
look into the structure of the nucleus. Though it is perhaps surprising, you will find that many of the same principles that we
observe on a macroscopic level still apply to the nucleus.

Nuclear Stability
A variety of experiments indicate that a nucleus behaves something like a tightly packed ball of nucleons, as illustrated in Figure
22.17. Those nucleons have large kinetic energies and, thus, move rapidly in very close contact. Nucleons can be separated by a
large force, such as in a collision with another nucleus, but strongly resist being pushed closer together. The most compelling
evidence that nucleons are closely packed in a nucleus is that the radius of a nucleus, r, is found to be approximately

where 1.2 femtometer (fm) and A is the mass number of the nucleus.

Note that . Since many nuclei are spherical, and the volume of a sphere is , we see that —that is,
the volume of a nucleus is proportional to the number of nucleons in it. That is what you expect if you pack nucleons so close
that there is no empty space between them.

Figure 22.17 Nucleons are held together by nuclear forces and resist both being pulled apart and pushed inside one another. The volume of

the nucleus is the sum of the volumes of the nucleons in it, here shown in different colors to represent protons and neutrons.

So what forces hold a nucleus together? After all, the nucleus is very small and its protons, being positive, should exert
tremendous repulsive forces on one another. Considering that, it seems that the nucleus would be forced apart, not together!

The answer is that a previously unknown force holds the nucleus together and makes it into a tightly packed ball of nucleons.
This force is known as the strong nuclear force. The strong force has such a short range that it quickly fall to zero over a distance
of only 10–15 meters. However, like glue, it is very strong when the nucleons get close to one another.

The balancing of the electromagnetic force with the nuclear forces is what allows the nucleus to maintain its spherical shape. If,
for any reason, the electromagnetic force should overcome the nuclear force, components of the nucleus would be projected
outward, creating the very radiation that Becquerel discovered!

Understanding why the nucleus would break apart can be partially explained using Table 22.2. The balance between the strong
nuclear force and the electromagnetic force is a tenuous one. Recall that the attractive strong nuclear force exists between any
two nucleons and acts over a very short range while the weaker repulsive electromagnetic force only acts between protons,
although over a larger range. Considering the interactions, an imperfect balance between neutrons and protons can result in a
nuclear reaction, with the result of regaining equilibrium.

22.35
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Range of Force Direction
Nucleon

Interaction
Magnitude of Force

Electromagnetic
Force

Long range, though
decreasing by 1/r2 Repulsive

Proton –proton
repulsion

Relatively small

Strong Nuclear
Force

Very short range, essentially
zero at 1 femtometer

Attractive
Attraction between
any two nucleons

100 times greater than the
electromagnetic force

Table 22.2 Comparing the Electromagnetic and Strong Forces

The radiation discovered by Becquerel was due to the large number of protons present in his uranium-rich pitchblende. In short,
the large number of protons caused the electromagnetic force to be greater than the strong nuclear force. To regain stability, the
nucleus needed to undergo a nuclear reaction called alpha (α) decay.

The Three Types of Radiation
Radioactivity refers to the act of emitting particles or energy from the nucleus. When the uranium nucleus emits energetic
nucleons in Becquerel’s experiment, the radioactive process causes the nucleus to alter in structure. The alteration is called
radioactive decay. Any substance that undergoes radioactive decay is said to be radioactive. That those terms share a root with
the term radiation should not be too surprising, as they all relate to the transmission of energy.

Alpha Decay
Alpha decay refers to the type of decay that takes place when too many protons exist in the nucleus. It is the most common type
of decay and causes the nucleus to regain equilibrium between its two competing internal forces. During alpha decay, the
nucleus ejects two protons and two neutrons, allowing the strong nuclear force to regain balance with the repulsive
electromagnetic force. The nuclear equation for an alpha decay process can be shown as follows.

Figure 22.18 A nucleus undergoes alpha decay. The alpha particle can be seen as made up of two neutrons and two protons, which

constitute a helium-4 atom.

Three things to note as a result of the above equation:

1. By ejecting an alpha particle, the original nuclide decreases in atomic number. That means that Becquerel’s uranium
nucleus, upon decaying, is actually transformed into thorium, two atomic numbers lower on the periodic table! The process
of changing elemental composition is called transmutation.

2. Note that the two protons and two neutrons ejected from the nucleus combine to form a helium nucleus. Shortly after
decay, the ejected helium ion typically acquires two electrons to become a stable helium atom.

3. Finally, it is important to see that, despite the elemental change, physical conservation still takes place. The mass number of
the new element and the alpha particle together equal the mass number of the original element. Also, the net charge of all
particles involved remains the same before and after the transmutation.

Beta Decay
Like alpha decay, beta ( ) decay also takes place when there is an imbalance between neutrons and protons within the nucleus.
For beta decay, however, a neutron is transformed into a proton and electron or vice versa. The transformation allows for the
total mass number of the atom to remain the same, although the atomic number will increase by one (or decrease by one). Once
again, the transformation of the neutron allows for a rebalancing of the strong nuclear and electromagnetic forces. The nuclear
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equation for a beta decay process is shown below.

The symbol in the equation above stands for a high-energy particle called the neutrino. A nucleus may also emit a positron,
and in that case Z decreases and N increases. It is beyond the scope of this section and will be discussed in further detail in the
chapter on particles. It is worth noting, however, that the mass number and charge in all beta-decay reactions are conserved.

Figure 22.19 A nucleus undergoes beta decay. The neutron splits into a proton, electron, and neutrino. This particular decay is called

decay.

Gamma Decay
Gamma decay is a unique form of radiation that does not involve balancing forces within the nucleus. Gamma decay occurs
when a nucleus drops from an excited state to the ground state. Recall that such a change in energy state will release energy
from the nucleus in the form of a photon. The energy associated with the photon emitted is so great that its wavelength is
shorter than that of an X-ray. Its nuclear equation is as follows.

Figure 22.20 A nucleus undergoes gamma decay. The nucleus drops in energy state, releasing a gamma ray.

WORKED EXAMPLE

Creating a Decay Equation
Write the complete decay equation in notation for beta decay producing . Refer to the periodic table for values of Z.
Strategy
Beta decay results in an increase in atomic number. As a result, the original (or parent) nucleus, must have an atomic number of
one fewer proton.

Solution
The equation for beta decay is as follows

Considering that barium is the product (or daughter) nucleus and has an atomic number of 56, the original nucleus must be of
an atomic number of 55. That corresponds to cesium, or Cs.
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The number of neutrons in the parent cesium and daughter barium can be determined by subtracting the atomic number from
the mass number (137 – 55 for cesium, 137 – 56 for barium). Substitute those values for the N and N – 1 subscripts in the above
equation.

Discussion
The terms parent and daughter nucleus refer to the reactants and products of a nuclear reaction. The terminology is not just
used in this example, but in all nuclear reaction examples. The cesium-137 nuclear reaction poses a significant health risk, as its
chemistry is similar to that of potassium and sodium, and so it can easily be concentrated in your cells if ingested.

WORKED EXAMPLE

Alpha Decay Energy Found from Nuclear Masses
Find the energy emitted in the decay of 239Pu.
Strategy
Nuclear reaction energy, such as released in decay, can be found using the equation . We must first find , the
difference in mass between the parent nucleus and the products of the decay.

The mass of pertinent particles is as follows

239Pu: 239.052157 u

235U: 235.043924 u

4He: 4.002602 u.

Solution
The decay equation for 239Pu is

Determine the amount of mass lost between the parent and daughter nuclei.

Now we can find E by entering into the equation.

And knowing that , we can find that

Discussion
The energy released in this decay is in the MeV range, about 106 times as great as typical chemical reaction energies, consistent
with previous discussions. Most of the energy becomes kinetic energy of the particle (or 4He nucleus), which moves away at
high speed.

The energy carried away by the recoil of the 235U nucleus is much smaller, in order to conserve momentum. The 235U nucleus can
be left in an excited state to later emit photons ( rays). The decay is spontaneous and releases energy, because the products have
less mass than the parent nucleus.

Properties of Radiation
The charges of the three radiated particles differ. Alpha particles, with two protons, carry a net charge of +2. Beta particles, with
one electron, carry a net charge of –1. Meanwhile, gamma rays are solely photons, or light, and carry no charge. The difference
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in charge plays an important role in how the three radiations affect surrounding substances.

Alpha particles, being highly charged, will quickly interact with ions in the air and electrons within metals. As a result, they have
a short range and short penetrating distance in most materials. Beta particles, being slightly less charged, have a larger range
and larger penetrating distance. Gamma rays, on the other hand, have little electric interaction with particles and travel much
farther. Two diagrams below show the importance of difference in penetration. Table 22.3 shows the distance of radiation
penetration, and Figure 22.21 shows the influence various factors have on radiation penetration distance.

Type of Radiation Range

particles A sheet of paper, a few cm of air, fractions of a millimeter of tissue

particles A thin aluminum plate, tens of cm of tissue

rays Several cm of lead, meters of concrete

Table 22.3 Comparing Ranges of Radioactive Decay

Figure 22.21 The penetration or range of radiation depends on its energy, the material it encounters, and the type of radiation. (a) Greater

energy means greater range. (b) Radiation has a smaller range in materials with high electron density. (c) Alphas have the smallest range,

betas have a greater range, and gammas have the greatest range.

LINKS TO PHYSICS

Radiation Detectors
The first direct detection of radiation was Becquerel’s darkened photographic plate. Photographic film is still the most common
detector of ionizing radiation, being used routinely in medical and dental X-rays. Nuclear radiation can also be captured on
film, as seen in Figure 22.22. The mechanism for film exposure by radiation is similar to that by photons. A quantum of energy
from a radioactive particle interacts with the emulsion and alters it chemically, thus exposing the film. Provided the radiation
has more than the few eV of energy needed to induce the chemical change, the chemical alteration will occur. The amount of film
darkening is related to the type of radiation and amount of exposure. The process is not 100 percent efficient, since not all
incident radiation interacts and not all interactions produce the chemical change.
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Figure 22.22 Film badges contain film similar to that used in this dental X-ray film. It is sandwiched between various absorbers to

determine the penetrating ability of the radiation as well as the amount. Film badges are worn to determine radiation exposure. (credit:

Werneuchen, Wikimedia Commons)

Another very common radiation detector is the Geiger tube. The clicking and buzzing sound we hear in dramatizations and
documentaries, as well as in our own physics labs, is usually an audio output of events detected by a Geiger counter. These
relatively inexpensive radiation detectors are based on the simple and sturdy Geiger tube, shown schematically in Figure 22.23.
A conducting cylinder with a wire along its axis is filled with an insulating gas so that a voltage applied between the cylinder and
wire produces almost no current. Ionizing radiation passing through the tube produces free ion pairs that are attracted to the
wire and cylinder, forming a current that is detected as a count. Not every particle is detected, since some radiation can pass
through without producing enough ionization. However, Geiger counters are very useful in producing a prompt output that
reveals the existence and relative intensity of ionizing radiation.

Figure 22.23 (a) Geiger counters such as this one are used for prompt monitoring of radiation levels, generally giving only relative intensity

and not identifying the type or energy of the radiation. (credit: Tim Vickers, Wikimedia Commons) (b) Voltage applied between the cylinder

and wire in a Geiger tube affects ions and electrons produced by radiation passing through the gas-filled cylinder. Ions move toward the

cylinder and electrons toward the wire. The resulting current is detected and registered as a count.

Another radiation detection method records light produced when radiation interacts with materials. The energy of the radiation
is sufficient to excite atoms in a material that may fluoresce, such as the phosphor used by Rutherford’s group. Materials called
scintillators use a more complex process to convert radiation energy into light. Scintillators may be liquid or solid, and they can
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be very efficient. Their light output can provide information about the energy, charge, and type of radiation. Scintillator light
flashes are very brief in duration, allowing the detection of a huge number of particles in short periods of time. Scintillation
detectors are used in a variety of research and diagnostic applications. Among those are the detection of the radiation from
distant galaxies using satellite-mounted equipment and the detection of exotic particles in accelerator laboratories.

Check Your Understanding
2. What leads scientists to infer that the nuclear strong force exists?

a. A strong force must hold all the electrons outside the nucleus of an atom.
b. A strong force must counteract the highly attractive Coulomb force in the nucleus.
c. A strong force must hold all the neutrons together inside the nucleus.
d. A strong force must counteract the highly repulsive Coulomb force between protons in the nucleus.

22.3 Half Life and Radiometric Dating
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain radioactive half-life and its role in radiometric dating
• Calculate radioactive half-life and solve problems associated with radiometric dating

Section Key Terms

activity becquerel carbon-14 dating

decay constant half-life radioactive dating

Half-Life and the Rate of Radioactive Decay
Unstable nuclei decay. However, some nuclides decay faster than others. For example, radium and polonium, discovered by
Marie and Pierre Curie, decay faster than uranium. That means they have shorter lifetimes, producing a greater rate of decay.
Here we will explore half-life and activity, the quantitative terms for lifetime and rate of decay.

Why do we use the term like half-life rather than lifetime? The answer can be found by examining Figure 22.24, which shows
how the number of radioactive nuclei in a sample decreases with time. The time in which half of the original number of nuclei
decay is defined as the half-life, . After one half-life passes, half of the remaining nuclei will decay in the next half-life. Then,
half of that amount in turn decays in the following half-life. Therefore, the number of radioactive nuclei decreases from N to N /
2 in one half-life, to N / 4 in the next, to N / 8 in the next, and so on. Nuclear decay is an example of a purely statistical process.

TIPS FOR SUCCESS
A more precise definition of half-life is that each nucleus has a 50 percent chance of surviving for a time equal to one half-
life. If an individual nucleus survives through that time, it still has a 50 percent chance of surviving through another half-life.
Even if it happens to survive hundreds of half-lives, it still has a 50 percent chance of surviving through one more. Therefore,
the decay of a nucleus is like random coin flipping. The chance of heads is 50 percent, no matter what has happened before.
The probability concept aligns with the traditional definition of half-life. Provided the number of nuclei is reasonably large,
half of the original nuclei should decay during one half-life period.

Virtual Physics

Beta Decay
Click to view content (https://www.openstax.org/l/21betadecayvid)
Watch beta decay occur for a collection of nuclei or for an individual nucleus. With this applet, individuals or groups of
students can compare half-lives!
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Figure 22.24 Radioactive decay reduces the number of radioactive nuclei over time. In one half-life ( ), the number decreases to half of

its original value. Half of what remains decays in the next half-life, and half of that in the next, and so on. This is exponential decay, as seen

in the graph of the number of nuclei present as a function of time.

The following equation gives the quantitative relationship between the original number of nuclei present at time zero and
the number at a later time t

where e = 2.71828... is the base of the natural logarithm, and is the decay constant for the nuclide. The shorter the half-life, the
larger is the value of , and the faster the exponential decreases with time. The decay constant can be found with the
equation

Activity, the Rate of Decay
What do we mean when we say a source is highly radioactive? Generally, it means the number of decays per unit time is very
high. We define activity R to be the rate of decay expressed in decays per unit time. In equation form, this is

where is the number of decays that occur in time .

Activity can also be determined through the equation

which shows that as the amount of radiative material (N) decreases, the rate of decay decreases as well.

The SI unit for activity is one decay per second and it is given the name becquerel (Bq) in honor of the discoverer of radioactivity.
That is,

Activity R is often expressed in other units, such as decays per minute or decays per year. One of the most common units for
activity is the curie (Ci), defined to be the activity of 1 g of 226Ra, in honor of Marie Curie’s work with radium. The definition of
the curie is
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or decays per second.

Radiometric Dating
Radioactive dating or radiometric dating is a clever use of naturally occurring radioactivity. Its most familiar application is
carbon-14 dating. Carbon-14 is an isotope of carbon that is produced when solar neutrinos strike particles within the
atmosphere. Radioactive carbon has the same chemistry as stable carbon, and so it mixes into the biosphere, where it is
consumed and becomes part of every living organism. Carbon-14 has an abundance of 1.3 parts per trillion of normal carbon, so
if you know the number of carbon nuclei in an object (perhaps determined by mass and Avogadro’s number), you can multiply
that number by to find the number of nuclei within the object. Over time, carbon-14 will naturally decay
back to with a half-life of 5,730 years (note that this is an example of beta decay). When an organism dies, carbon exchange
with the environment ceases, and is not replenished. By comparing the abundance of in an artifact, such as mummy
wrappings, with the normal abundance in living tissue, it is possible to determine the artifact’s age (or time since death).
Carbon-14 dating can be used for biological tissues as old as 50 or 60 thousand years, but is most accurate for younger samples,
since the abundance of nuclei in them is greater.

One of the most famous cases of carbon-14 dating involves the Shroud of Turin, a long piece of fabric purported to be the burial
shroud of Jesus (see Figure 22.25). This relic was first displayed in Turin in 1354 and was denounced as a fraud at that time by a
French bishop. Its remarkable negative imprint of an apparently crucified body resembles the then-accepted image of Jesus. As a
result, the relic has been remained controversial throughout the centuries. Carbon-14 dating was not performed on the shroud
until 1988, when the process had been refined to the point where only a small amount of material needed to be destroyed.
Samples were tested at three independent laboratories, each being given four pieces of cloth, with only one unidentified piece
from the shroud, to avoid prejudice. All three laboratories found samples of the shroud contain 92 percent of the found in
living tissues, allowing the shroud to be dated (see Equation 22.57).

Figure 22.25 Part of the Shroud of Turin, which shows a remarkable negative imprint likeness of Jesus complete with evidence of

crucifixion wounds. The shroud first surfaced in the 14th century and was only recently carbon-14 dated. It has not been determined how

the image was placed on the material. (credit: Butko, Wikimedia Commons)

WORKED EXAMPLE

Carbon-11 Decay
Carbon-11 has a half-life of 20.334 min. (a) What is the decay constant for carbon-11?
If 1 kg of carbon-11 sample exists at the beginning of an hour, (b) how much material will remain at the end of the hour and (c)
what will be the decay activity at that time?
Strategy
Since refers to the amount of carbon-11 at the start, then after one half-life, the amount of carbon-11 remaining will be

The decay constant is equivalent to the probability that a nucleus will decay each second. As a result, the half-life will need
to be converted to seconds.

Solution
(a)

Since half of the carbon-11 remains after one half-life, .
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Take the natural logarithm of each side to isolate the decay constant.

Convert the 20.334 min to seconds.

(b) The amount of material after one hour can be found by using the equation

with t converted into seconds and NO written as 1,000 g

(c) The decay activity after one hour can be found by using the equation

for the mass value after one hour.

Discussion
(a) The decay constant shows that 0.0568 percent of the nuclei in a carbon-11 sample will decay each second. Another way of
considering the decay constant is that a given carbon-11 nuclei has a 0.0568 percent probability of decaying each second. The
decay of carbon-11 allows it to be used in positron emission topography (PET) scans; however, its 20.334 min half-life does pose
challenges for its administration.

(b) One hour is nearly three full half-lives of the carbon-11 nucleus. As a result, one would expect the amount of sample
remaining to be approximately one eighth of the original amount. The 129.4 g remaining is just a bit larger than one-eighth,
which is sensible given a half-life of just over 20 min.

(c) Label analysis shows that the unit of Becquerel is sensible, as there are 0.0735 g of carbon-11 decaying each second. That is

smaller amount than at the beginning of the hour, when g of carbon-11 were

decaying each second.

WORKED EXAMPLE

How Old is the Shroud of Turin?
Calculate the age of the Shroud of Turin given that the amount of found in it is 92 percent of that in living tissue.
Strategy
Because 92 percent of the remains, . Therefore, the equation can be used to find . We also
know that the half-life of is 5,730 years, and so once is known, we can find and then find t as requested. Here, we
assume that the decrease in is solely due to nuclear decay.

Solution
Solving the equation for gives
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Thus,

Taking the natural logarithm of both sides of the equation yields

so that

Rearranging to isolate t gives

Now, the equation can be used to find for . Solving for and substituting the known half-life gives

We enter that value into the previous equation to find t.

Discussion
This dates the material in the shroud to 1988–690 = 1300. Our calculation is only accurate to two digits, so that the year is
rounded to 1300. The values obtained at the three independent laboratories gave a weighted average date of 1320 ± 60. That
uncertainty is typical of carbon-14 dating and is due to the small amount of 14 C in living tissues, the amount of material
available, and experimental uncertainties (reduced by having three independent measurements). That said, is it notable that the
carbon-14 date is consistent with the first record of the shroud’s existence and certainly inconsistent with the period in which
Jesus lived.

There are other noncarbon forms of radioactive dating. Rocks, for example, can sometimes be dated based on the decay of
The decay series for ends with , so the ratio of those nuclides in a rock can be used an indication of how long it has
been since the rock solidified. Knowledge of the half-life has shown, for example, that the oldest rocks on Earth solidified
about years ago.

22.4 Nuclear Fission and Fusion
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Explain nuclear fission
• Explain nuclear fusion
• Describe how the processes of fission and fusion work in nuclear weapons and in generating nuclear power
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Virtual Physics

Radioactive Dating Game
Click to view content (https://www.openstax.org/l/02radioactive_dating_game)
Learn about different types of radiometric dating, such as carbon dating. Understand how decay and half-life work to
enable radiometric dating to work. Play a game that tests your ability to match the percentage of the dating element that
remains to the age of the object.
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Section Key Terms

chain reaction critical mass liquid drop model

nuclear fission nuclear fusion proton-proton cycle

The previous section dealt with naturally occurring nuclear decay. Without human intervention, some nuclei will change
composition in order to achieve a stable equilibrium. This section delves into a less-natural process. Knowing that energy can be
emitted in various forms of nuclear change, is it possible to create a nuclear reaction through our own intervention? The answer
to this question is yes. Through two distinct methods, humankind has discovered multiple ways of manipulating the atom to
release its internal energy.

Nuclear Fission
In simplest terms, nuclear fission is the splitting of an atomic bond. Given that it requires great energy separate two nucleons,
it may come as a surprise to learn that splitting a nucleus can release vast potential energy. And although it is true that huge
amounts of energy can be released, considerable effort is needed to do so in practice.

An unstable atom will naturally decay, but it may take millions of years to do so. As a result, a physical catalyst is necessary to
produce useful energy through nuclear fission. The catalyst typically occurs in the form of a free neutron, projected directly at
the nucleus of a high-mass atom.

As shown in Figure 22.26, a neutron strike can cause the nucleus to elongate, much like a drop of liquid water. This is why the
model is known as the liquid drop model. As the nucleus elongates, nucleons are no longer so tightly packed, and the repulsive
electromagnetic force can overcome the short-range strong nuclear force. The imbalance of forces can result in the two ends of
the drop flying apart, with some of the nuclear binding energy released to the surroundings.

Figure 22.26 Neutron-induced fission is shown. First, energy is put into a large nucleus when it absorbs a neutron. Acting like a struck liquid

drop, the nucleus deforms and begins to narrow in the middle. Since fewer nucleons are in contact, the repulsive Coulomb force is able to

break the nucleus into two parts with some neutrons also flying away.

As you can imagine, the consequences of the nuclei splitting are substantial. When a nucleus is split, it is not only energy that is
released, but a small number of neutrons as well. Those neutrons have the potential to cause further fission in other nuclei,
especially if they are directed back toward the other nuclei by a dense shield or neutron reflector (see part (d) of Figure 22.26).
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However, not every neutron produced by fission induces further fission. Some neutrons escape the fissionable material, while
others interact with a nucleus without making it split. We can enhance the number of fissions produced by neutrons by having a
large amount of fissionable material as well as a neutron reflector. The minimum amount necessary for self-sustained fission of
a given nuclide is called its critical mass. Some nuclides, such as 239Pu, produce more neutrons per fission than others, such as
235U. Additionally, some nuclides are easier to make fission than others. In particular, 235U and 239Pu are easier to fission than
the much more abundant 238U. Both factors affect critical mass, which is smallest for 239Pu. The self-sustained fission of nuclei is
commonly referred to as a chain reaction, as shown in Figure 22.27.

Figure 22.27 A chain reaction can produce self-sustained fission if each fission produces enough neutrons to induce at least one more

fission. This depends on several factors, including how many neutrons are produced in an average fission and how easy it is to make a

particular type of nuclide fission.

A chain reaction can have runaway results. If each atomic split results in two nuclei producing a new fission, the number of
nuclear reactions will increase exponentially. One fission will produce two atoms, the next round of fission will create four
atoms, the third round eight atoms, and so on. Of course, each time fission occurs, more energy will be emitted, further
increasing the power of the atomic reaction. And that is just if two neutrons create fission reactions each round. Perhaps you
can now see why so many people consider atomic energy to be an exciting energy source!

To make a self-sustained nuclear fission reactor with 235U, it is necessary to slow down the neutrons. Water is very effective at
this, since neutrons collide with protons in water molecules and lose energy. Figure 22.28 shows a schematic of a reactor design
called the pressurized water reactor.
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Figure 22.28 A pressurized water reactor is cleverly designed to control the fission of large amounts of 235U, while using the heat produced

in the fission reaction to create steam for generating electrical energy. Control rods adjust neutron flux so that it is self-sustaining. In case

the reactor overheats and boils the water away, the chain reaction terminates, because water is needed to slow down the neutrons. This

inherent safety feature can be overwhelmed in extreme circumstances.

Control rods containing nuclides that very strongly absorb neutrons are used to adjust neutron flux. To produce large amounts
of power, reactors contain hundreds to thousands of critical masses, and the chain reaction easily becomes self-sustaining.
Neutron flux must be carefully regulated to avoid an out-of-control exponential increase in the rate of fission.

Control rods help prevent overheating, perhaps even a meltdown or explosive disassembly. The water that is used to slow down
neutrons, necessary to get them to induce fission in 235U, and achieve criticality, provides a negative feedback for temperature
increase. In case the reactor overheats and boils the water to steam or is breached, the absence of water kills the chain reaction.
Considerable heat, however, can still be generated by the reactor’s radioactive fission products. Other safety features, thus, need
to be incorporated in the event of a loss of coolant accident, including auxiliary cooling water and pumps.

Energies in Nuclear Fission
The following are two interesting facts to consider:

• The average fission reaction produces 200 MeV of energy.
• If you were to measure the mass of the products of a nuclear reaction, you would find that their mass was slightly less than

the mass of the original nucleus.

How are those things possible? Doesn’t the fission reaction’s production of energy violate the conservation of energy?
Furthermore, doesn’t the loss in mass in the reaction violate the conservation of mass? Those are important questions, and they
can both be answered with one of the most famous equations in scientific history.

Recall that, according to Einstein’s theory, energy and mass are essentially the same thing. In the case of fission, the mass of the
products is less than that of the reactants because the missing mass appears in the form of the energy released in the reaction,
with a constant value of c2 Joules of energy converted for each kilogram of material. The value of c2 is substantial—from
Einstein’s equation, the amount of energy in just 1 gram of mass would be enough to support the average U.S. citizen for more
than 270 years! The example below will show you how a mass-energy transformation of this type takes place.
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WORKED EXAMPLE

Calculating Energy from a Kilogram of Fissionable Fuel
Calculate the amount of energy produced by the fission of 1.00 kg of , given the average fission reaction of

Strategy
The total energy produced is the number of atoms times the given energy per fission. We should therefore find the
number of atoms in 1.00 kg.

Solution
The number of atoms in 1.00 kg is Avogadro’s number times the number of moles. One mole of has a mass of 235.04
g; thus, there are . The number of atoms is therefore

So the total energy released is

Discussion
The result is another impressively large amount of energy, equivalent to about 14,000 barrels of crude oil or 600,000 gallons of
gasoline. But, it is only one fourth the energy produced by the fusion of a kilogram of a mixture of deuterium and tritium. Even
though each fission reaction yields about ten times the energy of a fusion reaction, the energy per kilogram of fission fuel is less,
because there are far fewer moles per kilogram of the heavy nuclides. Fission fuel is also much scarcer than fusion fuel, and less
than 1 percent of uranium (the 235 U) is readily usable.

Nuclear Fusion
Nuclear fusion is defined as the combining, or fusing, of two nuclei and, the combining of nuclei also results in an emission of
energy. For many, the concept is counterintuitive. After all, if energy is released when a nucleus is split, how can it also be
released when nucleons are combined together? The difference between fission and fusion, which results from the size of the
nuclei involved, will be addressed next.

Remember that the structure of a nucleus is based on the interplay of the compressive nuclear strong force and the repulsive
electromagnetic force. For nuclei that are less massive than iron, the nuclear force is actually stronger than that of the Coulomb
force. As a result, when a low-mass nucleus absorbs nucleons, the added neutrons and protons bind the nucleus more tightly.
The increased nuclear strong force does work on the nucleus, and energy is released.

Once the size of the created nucleus exceeds that of iron, the short-ranging nuclear force does not have the ability to bind a
nucleus more tightly, and the emission of energy ceases. In fact, for fusion to occur for elements of greater mass than iron,
energy must be added to the system! Figure 22.29 shows an energy-mass curve commonly used to describe nuclear reactions.
Notice the location of iron (Fe) on the graph. All low-mass nuclei to the left of iron release energy through fusion, while all high-
mass particles to the right of iron produce energy through fission.
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Nuclear Fission
Click to view content (https://www.openstax.org/l/16fission)
Start a chain reaction, or introduce nonradioactive isotopes to prevent one. Use the applet to control energy production in a
nuclear reactor!

22.4 • Nuclear Fission and Fusion 751

https://www.openstax.org/l/16fission


Figure 22.29 Fusion of light nuclei to form medium-mass nuclei converts mass to energy, because binding energy per nucleon ( ) is

greater for the product nuclei. The larger is, the less mass per nucleon, and so mass is converted to energy and released in such

fusion reactions.

TIPS FOR SUCCESS
Just as it is not possible for the elements to the left of iron in the figure to naturally fission, it is not possible for elements to
the right of iron to naturally undergo fusion, as that process would require the addition of energy to occur. Furthermore,
notice that elements commonly discussed in fission and fusion are elements that can provide the greatest change in binding
energy, such as uranium and hydrogen.
Iron’s location on the energy-mass curve is important, and explains a number of its characteristics, including its role as an
elemental endpoint in fusion reactions in stars.

The major obstruction to fusion is the Coulomb repulsion force between nuclei. Since the attractive nuclear force that can fuse
nuclei together is short ranged, the repulsion of like positive charges must be overcome in order to get nuclei close enough to
induce fusion. Figure 22.30 shows an approximate graph of the potential energy between two nuclei as a function of the
distance between their centers. The graph resembles a hill with a well in its center. A ball rolled to the left must have enough
kinetic energy to get over the hump before it falls into the deeper well with a net gain in energy. So it is with fusion. If the nuclei
are given enough kinetic energy to overcome the electric potential energy due to repulsion, then they can combine, release
energy, and fall into a deep well. One way to accomplish that end is to heat fusion fuel to high temperatures so that the kinetic
energy of thermal motion is sufficient to get the nuclei together.

Figure 22.30 Potential energy between two light nuclei graphed as a function of distance between them. If the nuclei have enough kinetic

energy to get over the Coulomb repulsion hump, they combine, release energy, and drop into a deep attractive well.

You might think that, in our Sun, nuclei are constantly coming into contact and fusing. However, this is only partially true. Only
at the Sun’s core are the particles close enough and the temperature high enough for fusion to occur!

In the series of reactions below, the Sun produces energy by fusing protons, or hydrogen nuclei ( , by far the Sun’s most
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abundant nuclide) into helium nuclei . The principal sequence of fusion reactions forms what is called the proton-proton
cycle

where stands for a positron and is an electron neutrino. The energy in parentheses is released by the reaction. Note that
the first two reactions must occur twice for the third to be possible, so the cycle consumes six protons ( ) but gives back two.
Furthermore, the two positrons produced will find two electrons and annihilate to form four more rays, for a total of six. The
overall cycle is thus

where the 26.7 MeV includes the annihilation energy of the positrons and electrons and is distributed among all the reaction
products. The solar interior is dense, and the reactions occur deep in the Sun where temperatures are highest. It takes about
32,000 years for the energy to diffuse to the surface and radiate away. However, the neutrinos can carry their energy out of the
Sun in less than two seconds, because they interact so weakly with other matter. Negative feedback in the Sun acts as a
thermostat to regulate the overall energy output. For instance, if the interior of the Sun becomes hotter than normal, the
reaction rate increases, producing energy that expands the interior. The expansion cools it and lowers the reaction rate.
Conversely, if the interior becomes too cool, it contracts, increasing the temperature and therefore the reaction rate (see Figure
22.31). Stars like the Sun are stable for billions of years, until a significant fraction of their hydrogen has been depleted.

Figure 22.31 Nuclear fusion in the Sun converts hydrogen nuclei into helium; fusion occurs primarily at the boundary of the helium core,

where the temperature is highest and sufficient hydrogen remains. Energy released diffuses slowly to the surface, with the exception of

neutrinos, which escape immediately. Energy production remains stable because of negative-feedback effects.

Nuclear Weapons and Nuclear Power
The world was in political turmoil when fission was discovered in 1938. Compounding the troubles, the possibility of a self-
sustained chain reaction was immediately recognized by leading scientists the world over. The enormous energy known to be in
nuclei, but considered inaccessible, now seemed to be available on a large scale.

Within months after the announcement of the discovery of fission, Adolf Hitler banned the export of uranium from newly
occupied Czechoslovakia. It seemed that the possible military value of uranium had been recognized in Nazi Germany, and that
a serious effort to build a nuclear bomb had begun.

Alarmed scientists, many of whom fled Nazi Germany, decided to take action. None was more famous or revered than Einstein.
It was felt that his help was needed to get the American government to make a serious effort at constructing nuclear weapons as
a matter of survival. Leo Szilard, a Hungarian physicist who had emigrated to America, took a draft of a letter to Einstein, who,
although a pacifist, signed the final version. The letter was for President Franklin Roosevelt, warning of the German potential to
build extremely powerful bombs of a new type. It was sent in August of 1939, just before the German invasion of Poland that
marked the start of World War II.

It was not until December 6, 1941, the day before the Japanese attack on Pearl Harbor, that the United States made a massive
commitment to building a nuclear bomb. The top secret Manhattan Project was a crash program aimed at beating the Germans.
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It was carried out in remote locations, such as Los Alamos, New Mexico, whenever possible, and eventually came to cost billions
of dollars and employ the efforts of more than 100,000 people. J. Robert Oppenheimer (1904–1967), a talented physicist, was
chosen to head the project. The first major step was made by Enrico Fermi and his group in December 1942, when they
completed the first self-sustaining nuclear reactor. This first atomic pile, built in a squash court at the University of Chicago,
proved that a fission chain reaction was possible.

Plutonium was recognized as easier to fission with neutrons and, hence, a superior fission material very early in the Manhattan
Project. Plutonium availability was uncertain, and so a uranium bomb was developed simultaneously. Figure 22.32 shows a gun-
type bomb, which takes two subcritical uranium masses and shoots them together. To get an appreciable yield, the critical mass
must be held together by the explosive charges inside the cannon barrel for a few microseconds. Since the buildup of the
uranium chain reaction is relatively slow, the device to bring the critical mass together can be relatively simple. Owing to the fact
that the rate of spontaneous fission is low, a neutron source is at the center the assembled critical mass.

Figure 22.32 A gun-type fission bomb for utilizes two subcritical masses forced together by explosive charges inside a cannon barrel.

The energy yield depends on the amount of uranium and the time it can be held together before it disassembles itself.

Plutonium’s special properties necessitated a more sophisticated critical mass assembly, shown schematically in Figure 22.33. A
spherical mass of plutonium is surrounded by shaped charges (high explosives that focus their blast) that implode the
plutonium, crushing it into a smaller volume to form a critical mass. The implosion technique is faster and more effective,
because it compresses three-dimensionally rather than one-dimensionally as in the gun-type bomb. Again, a neutron source is
included to initiate the chain reaction.

Figure 22.33 An implosion created by high explosives compresses a sphere of 239Pu into a critical mass. The superior fissionability of

plutonium has made it the preferred bomb material.
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Owing to its complexity, the plutonium bomb needed to be tested before there could be any attempt to use it. On July 16, 1945,
the test named Trinity was conducted in the isolated Alamogordo Desert in New Mexico, about 200 miles south of Los Alamos
(see Figure 22.34). A new age had begun. The yield of the Trinity device was about 10 kilotons (kT), the equivalent of 5,000 of the
largest conventional bombs.

Figure 22.34 Trinity test (1945), the first nuclear bomb (credit: U.S. Department of Energy)

Although Germany surrendered on May 7, 1945, Japan had been steadfastly refusing to surrender for many months, resulting
large numbers of civilian and military casualties. Invasion plans by the Allies estimated a million casualties of their own and
untold losses of Japanese lives. The bomb was viewed as a way to end the war. The first bomb used was a gun-type uranium bomb
dropped on Hiroshima on August 6 by the United States. Its yield of about 15 kT destroyed the city and killed an estimated
80,000 people, with 100,000 more being seriously injured. The second bomb was an implosion-type plutonium bomb dropped
on Nagasaki only three days later. Its 20-kT yield killed at least 50,000 people, something less than Hiroshima because of the
hilly terrain and the fact that it was a few kilometers off target. The Japanese were told that one bomb a week would be dropped
until they surrendered unconditionally, which they did on August 14. In actuality, the United States had only enough plutonium
for one more bomb, as yet unassembled.

Knowing that fusion produces several times more energy per kilogram of fuel than fission, some scientists pursued the idea of
constructing a fusion bomb. The first such bomb was detonated by the United States several years after the first fission bombs,
on October 31, 1952, at Eniwetok Atoll in the Pacific Ocean. It had a yield of 10 megatons (MT), about 670 times that of the fission
bomb that destroyed Hiroshima. The Soviet Union followed with a fusion device of its own in August 1953, and a weapons race,
beyond the aim of this text to discuss, continued until the end of the Cold War.

Figure 22.35 shows a simple diagram of how a thermonuclear bomb is constructed. A fission bomb is exploded next to fusion
fuel in the solid form of lithium deuteride. Before the shock wave blows it apart, rays heat and compress the fuel, and neutrons
create tritium through the reaction . Additional fusion and fission fuels are enclosed in a dense shell of

. At the same time that the uranium shell reflects the neutrons back into the fuel to enhance its fusion, the fast-moving
neutrons cause the plentiful and inexpensive to fission, part of what allows thermonuclear bombs to be so large.
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Figure 22.35 This schematic of a fusion bomb (H-bomb) gives some idea of how the fission trigger is used to ignite fusion fuel.

Neutrons and γ rays transmit energy to the fusion fuel, create tritium from deuterium, and heat and compress the fusion fuel. The outer

shell of serves to reflect some neutrons back into the fuel, causing more fusion, and it boosts the energy output by fissioning itself

when neutron energies become high enough.

Of course, not all applications of nuclear physics are as destructive as the weapons described above. Hundreds of nuclear fission
power plants around the world attest to the fact that controlled fission is both practical and economical. Given growing concerns
over global warming, nuclear power is often seen as a viable alternative to energy derived from fossil fuels.

BOUNDLESS PHYSICS

Fusion Reactors
For decades, fusion reactors have been deemed the energy of the future. A safer, cleaner, and more abundant potential source of
energy than its fission counterpart, images of the fusion reactor have been conjured up each time the need for a renewable,
environmentally friendly resource is discussed. Now, after more than half a century of speculating, some scientists believe that
fusion reactors are nearly here.

In creating energy by combining atomic nuclei, the fusion reaction holds many advantages over fission. First, fusion reactions
are more efficient, releasing 3 to 4 times more energy than fission per gram of fuel. Furthermore, unlike fission reactions that
require heavy elements like uranium that are difficult to obtain, fusion requires light elements that are abundant in nature. The
greatest advantage of the fusion reaction, however, is in its ability to be controlled. While traditional nuclear reactors create
worries about meltdowns and radioactive waste, neither is a substantial concern with the fusion reaction. Consider that fusion
reactions require a large amount of energy to overcome the repulsive Coulomb force and that the byproducts of a fusion reaction
are largely limited to helium nuclei.

In order for fusion to occur, hydrogen isotopes of deuterium and tritium must be acquired. While deuterium can easily be
gathered from ocean water, tritium is slightly more difficult to come by, though it can be manufactured from Earth’s abundant
lithium. Once acquired, the hydrogen isotopes are injected into an empty vessel and subjected to temperature and pressure
great enough to mimic the conditions at the core of our Sun. Using carefully controlled high-frequency radio waves, the
hydrogen isotopes are broken into plasma and further controlled through an electromagnetic field. As the electromagnetic field
continues to exert pressure on the hydrogen plasma, enough energy is supplied to cause the hydrogen plasma to fuse into
helium.
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Figure 22.36 Tokamak confinement of nuclear fusion plasma. The magnetic field lines are used to confine the high-temperature plasma

(purple). Research is currently being done to increase the efficiency of the tokamak confinement model.

Once the plasma fuses, high-velocity neutrons are ejected from the newly formed helium atoms. Those high velocity neutrons,
carrying the excess energy stored within bonds of the original hydrogen, are able to travel unaffected by the applied magnetic
field. In doing so, they strike a barrier around the nuclear reactor, transforming their excess energy to heat. The heat is then
harvested to make steam that drives turbines. Hydrogen’s tremendous power is now usable!

The historical concern with nuclear fusion reactors is that the energy required to control the electromagnetic field is greater
than the energy harvested from the hydrogen atoms. However, recent research by both Lockheed Martin engineers and
scientists at the Lawrence Livermore National Laboratory has yielded exciting theoretical improvements in efficiency. At the
time of this writing, a test facility called ITER (International Thermonuclear Experimental Reactor) is being constructed in
southern France. A joint venture of the European Union, the United States, Japan, Russia, China, South Korea, and India, ITER
is designed for further study into the future of nuclear fusion energy production.

22.5 Medical Applications of Radioactivity: Diagnostic Imaging
and Radiation
Section Learning Objectives
By the end of this section, you will be able to do the following:
• Describe how nuclear imaging works (e.g., radioisotope imaging, PET)
• Describe the ionizing effects of radiation and how they can be used for medical treatment

Section Key Terms

Anger camera rad radiopharmaceutical therapeutic ratio

relative biological effectiveness (RBE) roentgen equivalent man (rem) tagged

Medical Applications of Nuclear Physics
Applications of nuclear physics have become an integral part of modern life. From the bone scan that detects one cancer to the
radioiodine treatment that cures another, nuclear radiation has diagnostic and therapeutic effects on medicine.

Medical Imaging
A host of medical imaging techniques employ nuclear radiation. What makes nuclear radiation so useful? First, radiation can
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easily penetrate tissue; hence, it is a useful probe to monitor conditions inside the body. Second, nuclear radiation depends on
the nuclide and not on the chemical compound it is in, so that a radioactive nuclide can be put into a compound designed for
specific purposes. When that is done, the compound is said to be tagged. A tagged compound used for medical purposes is
called a radiopharmaceutical. Radiation detectors external to the body can determine the location and concentration of a
radiopharmaceutical to yield medically useful information. For example, certain drugs are concentrated in inflamed regions of
the body, and their locations can aid diagnosis and treatment as seen in Figure 22.37. Another application utilizes a
radiopharmaceutical that the body sends to bone cells, particularly those that are most active, to detect cancerous tumors or
healing points. Images can then be produced of such bone scans. Clever use of radioisotopes determines the functioning of body
organs, such as blood flow, heart muscle activity, and iodine uptake in the thyroid gland. For instance, a radioactive form of
iodine can be used to monitor the thyroid, a radioactive thallium salt can be used to follow the blood stream, and radioactive
gallium can be used for cancer imaging.

Figure 22.37 A radiopharmaceutical was used to produce this brain image of a patient with Alzheimer’s disease. Certain features are

computer enhanced. (credit: National Institutes of Health)

Once a radioactive compound has been ingested, a device like that shown in Figure 22.38 is used to monitor nuclear activity. The
device, called an Anger camera or gamma camera uses a piece of lead with holes bored through it. The gamma rays are
redirected through the collimator to narrow their beam, and are then interpreted using a device called a scintillator. The
computer analysis of detector signals produces an image. One of the disadvantages of this detection method is that there is no
depth information (i.e., it provides a two-dimensional view of the tumor as opposed to a three-dimensional view), because
radiation from any location under that detector produces a signal.

Figure 22.38 An Anger or gamma camera consists of a lead collimator and an array of detectors. Gamma rays produce light flashes in the

scintillators. The light output is converted to an electrical signal by the photomultipliers. A computer constructs an image from the detector

output.

Single-photon-emission computer tomography (SPECT) used in conjunction with a CT scanner improves on the process carried
out by the gamma camera. Figure 22.39 shows a patient in a circular array of SPECT detectors that may be stationary or rotated,
with detector output used by a computer to construct a detailed image. The spatial resolution of this technique is poor, but the
three-dimensional image created results in a marked improvement in contrast.
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Figure 22.39 SPECT uses a rotating camera to form an image of the concentration of a radiopharmaceutical compound. (credit: Woldo,

Wikimedia Commons)

Positron emission tomography (or PET) scans utilize images produced by emitters. When the emitted positron β+

encounters an electron, mutual annihilation occurs, producing two γ rays. Those rays have identical 0.511 MeV energies (the
energy comes from the destruction of an electron or positron mass) and they move directly away from each other, allowing
detectors to determine their point of origin accurately (as shown in Figure 22.40). It requires detectors on opposite sides to
simultaneously (i.e., at the same time) detect photons of 0.511 MeV energy and utilizes computer imaging techniques similar to
those in SPECT and CT scans. PET is used extensively for diagnosing brain disorders. It can note decreased metabolism in
certain regions that accompany Alzheimer’s disease. PET can also locate regions in the brain that become active when a person
carries out specific activities, such as speaking, closing his or her eyes, and so on.

Figure 22.40 A PET system takes advantage of the two identical -ray photons produced by positron-electron annihilation. The rays are

emitted in opposite directions, so that the line along which each pair is emitted is determined. Various events detected by several pairs of

detectors are then analyzed by the computer to form an accurate image.

Ionizing Radiation on the Body
We hear many seemingly contradictory things about the biological effects of ionizing radiation. It can cause cancer, burns, and
hair loss, and yet it is used to treat and even cure cancer. How do we understand such effects? Once again, there is an underlying
simplicity in nature, even in complicated biological organisms. All the effects of ionizing radiation on biological tissue can be
understood by knowing that ionizing radiation affects molecules within cells, particularly DNA molecules. Let us take a brief
look at molecules within cells and how cells operate. Cells have long, double-helical DNA molecules containing chemical
patterns called genetic codes that govern the function and processes undertaken by the cells. Damage to DNA consists of breaks
in chemical bonds or other changes in the structural features of the DNA chain, leading to changes in the genetic code. In
human cells, we can have as many as a million individual instances of damage to DNA per cell per day. The repair ability of DNA
is vital for maintaining the integrity of the genetic code and for the normal functioning of the entire organism. A cell with a
damaged ability to repair DNA, which could have been induced by ionizing radiation, can do one of the following:

• The cell can go into an irreversible state of dormancy, known as senescence.
• The cell can commit suicide, known as programmed cell death.
• The cell can go into unregulated cell division, leading to tumors and cancers.
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Since ionizing radiation damages the DNA, ionizing radiation has its greatest effect on cells that rapidly reproduce, including
most types of cancer. Thus, cancer cells are more sensitive to radiation than normal cells and can be killed by it easily. Cancer is
characterized by a malfunction of cell reproduction, and can also be caused by ionizing radiation. There is no contradiction to
say that ionizing radiation can be both a cure and a cause.

Radiotherapy
Radiotherapy is effective against cancer because cancer cells reproduce rapidly and, consequently, are more sensitive to
radiation. The central problem in radiotherapy is to make the dose for cancer cells as high as possible while limiting the dose for
normal cells. The ratio of abnormal cells killed to normal cells killed is called the therapeutic ratio, and all radiotherapy
techniques are designed to enhance that ratio. Radiation can be concentrated in cancerous tissue by a number of techniques.
One of the most prevalent techniques for well-defined tumors is a geometric technique shown in Figure 22.41. A narrow beam of
radiation is passed through the patient from a variety of directions with a common crossing point in the tumor. The technique
concentrates the dose in the tumor while spreading it out over a large volume of normal tissue.

Figure 22.41 The 60Co source of -radiation is rotated around the patient so that the common crossing point is in the tumor, concentrating

the dose there. This geometric technique works for well-defined tumors.

Another use of radiation therapy is through radiopharmaceuticals. Cleverly, radiopharmaceuticals are used in cancer therapy by
tagging antibodies with radioisotopes. Those antibodies are extracted from the patient, cultured, loaded with a radioisotope,
and then returned to the patient. The antibodies are then concentrated almost entirely in the tissue they developed to fight, thus
localizing the radiation in abnormal tissue. This method is used with radioactive iodine to fight thyroid cancer. While the
therapeutic ratio can be quite high for such short-range radiation, there can be a significant dose for organs that eliminate
radiopharmaceuticals from the body, such as the liver, kidneys, and bladder. As with most radiotherapy, the technique is limited
by the tolerable amount of damage to the normal tissue.

Radiation Dosage
To quantitatively discuss the biological effects of ionizing radiation, we need a radiation dose unit that is directly related to
those effects. To do define such a unit, it is important to consider both the biological organism and the radiation itself. Knowing
that the amount of ionization is proportional to the amount of deposited energy, we define a radiation dose unit called the rad.
It 1/100 of a joule of ionizing energy deposited per kilogram of tissue, which is

For example, if a 50.0-kg person is exposed to ionizing radiation over her entire body and she absorbs 1.00 J, then her whole-
body radiation dose is

If the same 1.00 J of ionizing energy were absorbed in her 2.00-kg forearm alone, then the dose to the forearm would be

and the unaffected tissue would have a zero rad dose. When calculating radiation doses, you divide the energy absorbed by the
mass of affected tissue. You must specify the affected region, such as the whole body or forearm in addition to giving the
numerical dose in rads. Although the energy per kilogram in 1 rad is small, it can still have significant effects. Since only a few eV
cause ionization, just 0.01 J of ionizing energy can create a huge number of ion pairs and have an effect at the cellular level.

The effects of ionizing radiation may be directly proportional to the dose in rads, but they also depend on the type of radiation
and the type of tissue. That is, for a given dose in rads, the effects depend on whether the radiation is , , , X-ray, or some
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other type of ionizing radiation. The relative biological effectiveness (RBE) relates to the amount of biological damage that can
occur from a given type of radiation and is given in Table 22.4 for several types of ionizing radiation.

Type and energy of radiation RBE

X-rays 1

rays 1

rays greater than 32 keV 1

rays less than 32 keV 1.7

Neutrons, thermal to slow (< 20 keV) 2–5

Neutrons, fast (1–10 MeV) 10 (body), 32 (eyes)

Protons (1–10 MeV) 10 (body), 32 (eyes)

rays from radioactive decay 10–20

Heavy ions from accelerators 10–20

Table 22.4 Relative Biological Effectiveness

TIPS FOR SUCCESS
The RBEs given in Table 22.4 are approximate, but they yield certain valuable insights.

• The eyes are more sensitive to radiation, because the cells of the lens do not repair themselves.
• Though both are neutral and have large ranges, neutrons cause more damage than rays because neutrons often cause

secondary radiation when they are captured.
• Short-range particles such as rays have a severely damaging effect to internal anatomy, as their damage is

concentrated and more difficult for the biological organism to repair. However, the skin can usually block alpha
particles from entering the body.

Can you think of any other insights from the table?

A final dose unit more closely related to the effect of radiation on biological tissue is called the roentgen equivalent man, or rem.
A combination of all factors mentioned previously, the roentgen equivalent man is defined to be the dose in rads multiplied by
the relative biological effectiveness.

The large-scale effects of radiation on humans can be divided into two categories: immediate effects and long-term effects.
Table 22.5 gives the immediate effects of whole-body exposures received in less than one day. If the radiation exposure is spread
out over more time, greater doses are needed to cause the effects listed. Any dose less than 10 rem is called a low dose, a dose 10
to 100 rem is called a moderate dose, and anything greater than 100 rem is called a high dose.

Dose (rem) Effect

0–10 No observable effect

10–100 Slight to moderate decrease in white blood cell counts

Table 22.5 Immediate Effects of Radiation (Adults, Whole Body, Single Exposure)
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Dose (rem) Effect

50 Temporary sterility

100–200 Significant reduction in blood cell counts, brief nausea, and vomiting; rarely fatal

200–500 Nausea, vomiting, hair loss, severe blood damage, hemorrhage, fatalities

450 LD50/32; lethal to 50% of the population within 32 days after exposure if untreated

500–2,000 Worst effects due to malfunction of small intestine and blood systems; limited survival

> 2,000 Fatal within hours due to collapse of central nervous system

Table 22.5 Immediate Effects of Radiation (Adults, Whole Body, Single Exposure)

WORK IN PHYSICS

Health Physicist
Are you interested in learning more about radiation? Are you curious about studying radiation dosage levels and ensuring the
safety of the environment and people that are most closely affected by it? If so, you may be interested in becoming a health
physicist.

The field of health physics draws from a variety of science disciplines with the central aim of mitigating radiation concerns.
Those that work as health physicists have a diverse array of potential jobs available to them, including those in research,
industry, education, environmental protection, and governmental regulation. Furthermore, while the term health physicist may
lead many to think of the medical field, there are plenty of applications within the military, industrial, and energy fields as well.

As a researcher, a health physicist can further environmental studies on the effects of radiation, design instruments for more
accurate measurements, and assist in establishing valuable radiation standards. Within the energy field, a health physicsist
often acts as a manager, closely tied to all operations at all levels, from procuring appropirate equipment to monitoring health
data. Within industry, the health physicist acts as a consultant, assisting industry management in important decisions,
designing facilities, and choosing appropriate detection tools. The health physicist possesses a unique knowledge base that
allows him or her to operate in a wide variety of interesting disciplines!

To become a health physicist, it is necessary to have a background in the physical sciences. Understanding the fields of biology,
physiology, biochemistry, and genetics are all important as well. The ability to analyze and solve new problems is critical, and a
natural aptitude for science and mathematics will assist in the continued necessary training. There are two possible
certifications for health physicists: from the American Board of Health Physicists (ABHP) and the National Registry of Radiation
Protection Technologists (NRRPT).
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KEY TERMS
activity rate of decay for radioactive nuclides
alpha decay type of radioactive decay in which an atomic

nucleus emits an alpha particle
anger camera common medical imaging device that uses a

scintillator connected to a series of photomultipliers
atomic number number of protons in a nucleus
becquerel SI unit for rate of decay of a radioactive material
beta decay type of radioactive decay in which an atomic

nucleus emits a beta particle
carbon-14 dating radioactive dating technique based on the

radioactivity of carbon-14
chain reaction self-sustaining sequence of events,

exemplified by the self-sustaining nature of a fission
reaction at critical mass

critical mass minimum amount necessary for self-
sustained fission of a given nuclide

decay constant quantity that is inversely proportional to
the half-life and that is used in the equation for number
of nuclei as a function of time

energy-level diagram a diagram used to analyze the energy
levels of electrons in the orbits of an atom

excited state any state beyond the n = 1 orbital in which the
electron stores energy

Fraunhofer lines black lines shown on an absorption
spectrum that show the wavelengths absorbed by a gas

gamma decay type of radioactive decay in which an atomic
nucleus emits a gamma ray

Geiger tube very common radiation detector that usually
gives an audio output

ground state the n=1 orbital of an electron
half-life time in which there is a 50 percent chance that a

nucleus will decay
Heisenberg uncertainty principle fundamental limit to the

precision with which pairs of quantities such as
momentum and position can be measured

hydrogen-like atom any atom with only a single electron
isotope nuclei having the same Z and different N’s
liquid drop model model of the atomic nucleus (useful only

to understand some of its features) in which nucleons in a
nucleus act like atoms in a drop

mass number number of nucleons in a nucleus
nuclear fission reaction in which a nucleus splits

nuclear fusion reaction in which two nuclei are combined,
or fused, to form a larger nucleus

nucleons particles found inside nuclei
planetary model of the atom model of the atom that shows

electrons orbiting like planets about a Sun-like nucleus
proton-proton cycle combined reactions

and
that begins with

hydrogen and ends with helium
rad amount of ionizing energy deposited per kilogram of

tissue
radioactive substance or object that emits nuclear

radiation
radioactive dating application of radioactive decay in

which the age of a material is determined by the amount
of radioactivity of a particular type that occurs

radioactive decay process by which an atomic nucleus of an
unstable atom loses mass and energy by emitting
ionizing particles

radioactivity emission of rays from the nuclei of atoms
radiopharmaceutical compound used for medical imaging
relative biological effectiveness (RBE) number that

expresses the relative amount of damage that a fixed
amount of ionizing radiation of a given type can inflict on
biological tissues

roentgen equivalent man (rem) dose unit more closely
related to effects in biological tissue

Rutherford scattering scattering of alpha particles by gold
nuclei in the gold foil experiment

Rydberg constant a physical constant related to atomic
spectra, with an established value of

scintillator radiation detection method that records light
produced when radiation interacts with materials

strong nuclear force attractive force that holds nucleons
together within the nucleus

tagged having a radioactive substance attached (to a
chemical compound)

therapeutic ratio the ratio of abnormal cells killed to
normal cells killed

transmutation process of changing elemental composition

SECTION SUMMARY
22.1 The Structure of the Atom

• Rutherford’s gold foil experiment provided evidence
that the atom is composed of a small, dense nucleus
with electrons occupying the mostly empty space
around it.

• Analysis of emission spectra shows that energy is
emitted from energized gas in discrete quantities.

• The Bohr model of the atom describes electrons existing
in discrete orbits, with discrete energies emitted and
absorbed as the electrons decrease and increase in
orbital energy.

• The energy emitted or absorbed by an electron as it
changes energy state can be determined with the
equation , where
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.

• The wavelength of energy absorbed or emitted by an
electron as it changes energy state can be determined by

the equation , where

.
• Described as an electron cloud, the quantum model of

the atom is the result of de Broglie waves and
Heisenberg’s uncertainty principle.

22.2 Nuclear Forces and
Radioactivity

• The structure of the nucleus is defined by its two
nucleons, the neutron and proton.

• Atomic numbers and mass numbers are used to
differentiate between various atoms and isotopes.
Those numbers can be combined into an easily
recognizable form called a nuclide.

• The size and stability of the nucleus is based upon two
forces: the electromagnetic force and strong nuclear
force.

• Radioactive decay is the alteration of the nucleus
through the emission of particles or energy.

• Alpha decay occurs when too many protons exist in the
nucleus. It results in the ejection of an alpha particle, as
described in the equation .

• Beta decay occurs when too many neutrons (or protons)
exist in the nucleus. It results in the transmutation of a
neutron into a proton, electron, and neutrino. The decay
is expressed through the equation

. (Beta decay may also
transform a proton into a neutron.)

• Gamma decay occurs when a nucleus in an excited state
move to a more stable state, resulting in the release of a
photon. Gamma decay is represented with the equation

.
• The penetration distance of radiation depends on its

energy, charge, and type of material it encounters.

22.3 Half Life and Radiometric
Dating

• Radioactive half-life is the time it takes a sample of
nuclei to decay to half of its original amount.

• The rate of radioactive decay is defined as the sample’s

activity, represented by the equation .
• Knowing the half-life of a radioactive isotope allows for

the process of radioactive dating to determine the age
of a material.

• If the half-life of a material is known, the age of the
material can be found using the equation
.

• The age of organic material can be determined using the
decay of the carbon-14 isotope, while the age of rocks
can be determined using the decay of uranium-238.

22.4 Nuclear Fission and Fusion
• Nuclear fission is the splitting of an atomic bond,

releasing a large amount of potential energy previously
holding the atom together. The amount of energy
released can be determined through the equation

.
• Nuclear fusion is the combining, or fusing together, of

two nuclei. Energy is also released in nuclear fusion as
the combined nuclei are closer together, resulting in a
decreased strong nuclear force.

• Fission was used in two nuclear weapons at the
conclusion of World War II: the gun-type uranium
bomb and the implosion-type plutonium bomb.

• While fission has been used in both nuclear weapons
and nuclear reactors, fusion is capable of releasing
more energy per reaction. As a result, fusion is a well-
researched, if not yet well-controlled, energy source.

22.5 Medical Applications of
Radioactivity: Diagnostic Imaging
and Radiation

• Medical imaging occurs when a radiopharmaceutical
placed in the body provides information to an array of
radiation detectors outside the body.

• Devices utilizing medical imaging include the Anger
camera, SPECT detector, and PET scan.

• Ionizing radiation can both cure and cause cancer
through the manipulation of DNA molecules.

• Radiation dosage and its effect on the body can be
measured using the quantities radiation dose unit (rad),
relative biological effectiveness (RBE), and the roentgen
equivalent man (rem).

KEY EQUATIONS
22.1 The Structure of the Atom

energy of hydrogen
electron in an
orbital

energy of any
hydrogen-like
electron in orbital
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wavelength of light
emitted by an
electron changing
states

wavelength of an
orbital

heisenberg’s
uncertainty
principle

22.2 Nuclear Forces and
Radioactivity

alpha decay equation

beta decay equation

gamma decay equation

22.3 Half Life and Radiometric
Dating

radioactive half-life

22.4 Nuclear Fission and Fusion

energy–mass
conversion

proton-
proton chain

22.5 Medical Applications of
Radioactivity: Diagnostic Imaging
and Radiation

roentgen equivalent man

CHAPTER REVIEW
Concept Items
22.1 The Structure of the Atom
1. A star emits light from its core. One observer views the

emission unobstructed while a second observer views the
emission while obstructed by a cloud of hydrogen gas.
Describe the difference between their observations.
a. Intensity of the light in the spectrum will increase.
b. Intensity of the light in the spectrum will decrease.
c. Frequencies will be absorbed from the spectrum.
d. Frequencies will be added to the spectrum.

2. How does the orbital energy of a hydrogen-like atom
change as it increases in atomic number?

a. The orbital energy will increase.
b. The orbital energy will decrease.
c. The orbital energy will remain constant.
d. The orbital energy will be halved.

22.4 Nuclear Fission and Fusion
3. Aside from energy yield, why are nuclear fusion reactors

more desirable than nuclear fission reactors?
a. Nuclear fusion reactors have a low installation cost.
b. Radioactive waste is greater for a fusion reactor.
c. Nuclear fusion reactors are easy to design and build.
d. A fusion reactor produces less radioactive waste.

Critical Thinking Items
22.1 The Structure of the Atom
4. How would the gold foil experiment have changed if

electrons were used in place of alpha particles, assuming
that the electrons hit the gold foil with the same force as
the alpha particles?
a. Being less massive, the electrons might have been

scattered to a greater degree than the alpha
particles.

b. Being less massive, the electrons might have been
scattered to a lesser degree than the alpha particles.

c. Being more massive, the electrons would have been
scattered to a greater degree than the alpha
particles.

d. Being more massive, the electrons would have been
scattered to a lesser degree than the alpha particles.

5. Why does the emission spectrum of an isolated gas differ
from the emission spectrum created by a white light?
a. White light and an emission spectrum are different

varieties of continuous distribution of frequencies.
b. White light and an emission spectrum are different

series of discrete frequencies.
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c. White light is a continuous distribution of
frequencies, and an emission spectrum is a series of
discrete frequencies.

d. White light is a series of discrete frequencies, and an
emission spectrum is a continuous distribution of
frequencies.

6. Why would it most likely be difficult to observe quantized
orbital states for satellites orbiting the earth?
a. On a macroscopic level, the orbital states do exist for

satellites orbiting Earth but are too closely spaced
for us to see.

b. On a macroscopic level, the orbital states do not
exist for satellites orbiting Earth.

c. On a macroscopic level, we cannot control the
amount of energy that we give to an artificial
satellite and thus control its orbital altitude.

d. On a macroscopic level, we cannot control the
amount of energy that we give to an artificial
satellite but we can control its orbital altitude.

7. Do standing waves explain why electron orbitals are
quantized?
a. no
b. yes

8. Some terms referring to the observation of light include
emission spectrum and absorption spectrum. Based on
these definitions, what would a reflection spectrum
describe?
a. The reflection spectrum would describe when

incident waves are selectively reflected by a
substance.

b. The reflection spectrum would describe when
incident waves are completely reflected by a
substance.

c. The reflection spectrum would describe when
incident waves are not absorbed by a substance.

d. The reflection spectrum would describe when
incident waves are completely absorbed by a
substance.

22.2 Nuclear Forces and Radioactivity
9. Explain why an alpha particle can have a greater range in

air than a beta particle in lead.
a. While the alpha particle has a lesser charge than a

beta particle, the electron density in lead is much
less than that in air.

b. While the alpha particle has a greater charge than a
beta particle, the electron density in lead is much
lower than that in air.

c. While the alpha particle has a lesser charge than a
beta particle, the electron density in lead is much
greater than that in air.

d. While the alpha particle has a greater charge than a
beta particle, the electron density in lead is much
higher than that in air.

10. What influence does the strong nuclear force have on
the electrons in an atom?
a. It attracts them toward the nucleus.
b. It repels them away from the nucleus.
c. The strong force makes electrons revolve around

the nucleus.
d. It does not have any influence.

22.3 Half Life and Radiometric Dating
11. Provide an example of something that decreases in a

manner similar to radioactive decay.
a. The potential energy of an object falling under the

influence of gravity
b. The kinetic energy of a ball that is dropped from a

building to the ground
c. Theh charge transfer from an ebonite rod to fur
d. The heat transfer from a hot to a cold object

12. A sample of radioactive material has a decay constant of
0.05 s–1. Why is it wrong to presume that the sample will
take just 20 seconds to fully decay?
a. The decay constant varies with the mass of the

sample.
b. The decay constant results vary with the amount of

the sample.
c. The decay constant represents a percentage of the

sample that cannot decay.
d. The decay constant represents only the fraction of a

sample that decays in a unit of time, not the decay
of the entire sample.

22.4 Nuclear Fission and Fusion
13. What is the atomic number of the most strongly bound

nuclide?
a.
b.
c.
d.

14. Why are large electromagnets necessary in nuclear
fusion reactors?
a. Electromagnets are used to slow down the

movement of charge hydrogen plasma.
b. Electromagnets are used to decrease the

temperature of hydrogen plasma.
c. Electromagnets are used to confine the hydrogen

plasma.
d. Electromagnets are used to stabilize the

temperature of the hydrogen plasma.
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22.5 Medical Applications of Radioactivity:
Diagnostic Imaging and Radiation
15. Why are different radiopharmaceuticals used to image

different parts of the body?
a. The different radiopharmaceuticals travel through

different blood vessels.
b. The different radiopharmaceuticals travel to

different parts of the body.
c. The different radiopharmaceuticals are used to

treat different diseases of the body.
d. The different radiopharmaceuticals produce

different amounts of ionizing radiation.

16. Why do people think carefully about whether to receive a
diagnostic test such as a CT scan?
a. The radiation from a CT scan is capable of creating

cancerous cells.

b. The radiation from a CT scan is capable of
destroying cancerous cells.

c. The radiation from a CT scan is capable of creating
diabetic cells.

d. The radiation from a CT scan is capable of
destroying diabetic cells.

17. Sometimes it is necessary to take a PET scan very soon
after ingesting a radiopharmaceutical. Why is that the
case?
a. The radiopharmaceutical may have a short half-life.
b. The radiopharmaceutical may have a long half-life.
c. The radiopharmaceutical quickly passes through

the digestive system.
d. The radiopharmaceutical can become lodged in the

digestive system.

Performance Task
22.5 Medical Applications of Radioactivity: 
Diagnostic Imaging and Radiation

18. On the Environmental Protection Agency’s website, a
helpful tool exists to allow you to determine your
average annual radiation dose. Use the tool to determine
whether the radiation level you have been exposed to is
dangerous and to compare your radiation dosage to
other radiative events.

1. Visit the webpage (http://www.openstax.org/l/
28calculate) and answer the series of questions
provided to determine the average annual radiation
dosage that you receive.

2. Table 22.5 shows the immediate effects of a
radiation dosage. Using the table, explain what you
would experience if your yearly dosage of radiation
was received all over the course of one day. Also,
determine whether your dosage is considered a
low, moderate, or high.

3. Using the information input into the webpage,
what percentage of your dosage comes from

natural sources? The average percentage of
radiation from natural sources for an individual is
around 85 percent.

4. Research radiation dosages for evacuees from
events like the Chernobyl and Fukushima
meltdowns. How does your annual radiation
exposure rate compare to the net dosage for
evacuees of each event. Use numbers to support
your answer.

5. The U.S. Department of Labor limits the amount of
radiation that a given worker may receive in a 12
month period.

a. Research the present maximum value and
compare your annual exposure rate to that of a
radiation worker. Use numbers to support your
answer.

b. What types of work are likely to cause an
increase in the radiation exposure of a
particular worker?

Provide one question based upon the information
gathered on the EPA website.

TEST PREP
Multiple Choice
22.1 The Structure of the Atom
19. If electrons are negatively charged and the nucleus is

positively charged, why do they not attract and collide
with each other?

a. The pull from the nucleus provides a centrifugal
force, which is not strong enough to draw the
electrons into the nucleus.

b. The pull from the nucleus provides a centripetal
force, which is not strong enough to draw the
electrons into the nucleus.
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c. The pull from the nucleus provides a helical motion.
d. The pull from the nucleus provides a cycloid

motion.

22.4 Nuclear Fission and Fusion
20. If a nucleus elongates due to a neutron strike, which of

the following forces will decrease?
a. Nuclear force between neutrons only

b. Coulomb force between protons only
c. Strong nuclear force between all nucleons and

Coulomb force between protons, but the strong
force will decrease more

d. Strong nuclear force between neutrons and
Coulomb force between protons, but Coulomb
force will decrease more

Short Answer
22.1 The Structure of the Atom
21. Why do Bohr’s calculations for electron energies not

work for all atoms?
a. In atoms with more than one electron is an atomic

shell, the electrons will interact. That requires a
more complex formula than Bohr’s calculations
accounted for.

b. In atoms with 10 or more electorns in an atomic
shell, the electrons will interact. That requires a
more complex formula than Bohr’s calculations
accounted for.

c. In atoms with more than one electron in an atomic
shell, the electrons will not interact. That requires a
more complex formula than Bohr’s calculations
accounted for.

d. In atoms with 10 or more electrons in an atomic
shell, the electrons will not interact. That requires a
more complex formula than Bohr’s calculations
accounted for.

22.2 Nuclear Forces and Radioactivity
22. Does transmutation occur within chemical reactions?

a. no
b. yes

22.3 Half Life and Radiometric Dating
23. How does the radioactive activity of a sample change

with time?

a. The radioactive activity decreases exponentially.
b. The radioactive activity undergoes linear decay.
c. The radioactive activity undergoes logarithmic

decay.
d. The radioactive activity will not change with time.

22.4 Nuclear Fission and Fusion
24. Why does fission of heavy nuclei result in the release of

neutrons?
a. Heavy nuclei require more neutrons to achieve

stability.
b. Heavy nuclei require more neutrons to balance

charge.
c. Light nuclei require more neutrons to achieve

stability.
d. Light nuclei require more neutrons to balance

charge.

22.5 Medical Applications of Radioactivity:
Diagnostic Imaging and Radiation
25. Why is radioactive iodine used to monitor the thyroid?

a. Radioactive iodine can be used by the thyroid while
absorbing information about the thyroid.

b. Radioactive iodine can be used by the thyroid while
emitting information about the thyroid.

c. Radioactive iodine can be secreted by the thyroid
while absorbing information about the thyroid.

d. Radioactive iodine can be secreted by the thyroid
while emitting information about the thyroid.

Extended Response
22.1 The Structure of the Atom
26. Compare the standing wavelength of an orbital to

the standing wavelength of an orbital.
a. The standing wavelength of an orbital is

greater than the standing wavelength of an
orbital.

b. The standing wavelength of an orbital is less
than the standing wavelength of an orbital.

c. There is no relation between the standing
wavelength of an orbital and the standing
wavelength of an orbital.

d. The standing wavelength of an orbital is the
same as the standing wavelength of an
orbital.

27. Describe the shape of the electron cloud, based on total
energy levels, for an atom with electrons in multiple
orbital states.
a. There are multiple regions of high electron
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probability of various shapes surrounding the
nucleus.

b. There is a single solid spherical region of high
electron probability surrounding the nucleus.

c. There are multiple concentric shells of high
electron probability surrounding the nucleus.

d. There is a single spherical shell of high electron
probability surrounding the nucleus.

22.2 Nuclear Forces and Radioactivity
28. How did Becquerel’s observations of pitchblende imply

the existence of radioactivity?
a. A chemical reaction occurred on the photographic

plate without any external source of energy.
b. Bright spots appeared on the photographic plate

due to an external source of energy.
c. Energy from the Sun was absorbed by the

pitchblende and reflected onto the photographic
plate.

d. Dark spots appeared on the photographic plate due
to an external source of energy.

22.4 Nuclear Fission and Fusion
29. Describe the potential energy of two nuclei as they

approach each other.
a. The potential energy will decrease as the nuclei are

brought together and then rapidly increase once a
minimum is reached.

b. The potential energy will decrease as the nuclei are
brought together.

c. The potential energy will increase as the nuclei are
brought together.

d. The potential energy will increase as the nuclei are
brought together and then rapidly decrease once a
maximum is reached.

22.5 Medical Applications of Radioactivity:
Diagnostic Imaging and Radiation
30. Why do X-rays and gamma rays have equivalent RBE

values if they provide different amounts of energy to the
body?
a. The penetration distance, which depends on

energy, is short for both X-rays and gamma rays.
b. The penetration distance, which depends on

energy, is long for both X-rays and gamma rays.
c. The penetration distance, as determined by their

high mass, is different for both X-rays and gamma
rays.

d. The penetration distance, as determined by their
low mass, is the same for both X-rays and gamma
rays.
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INTRODUCTION

CHAPTER 23
Particle Physics

23.1 The Four Fundamental Forces

23.2 Quarks

23.3 The Unification of Forces

Following ideas remarkably similar to those of the ancient Greeks, we continue to look for smaller and
smaller structures in nature, hoping ultimately to find and understand the most fundamental building blocks that exist. Atomic
physics deals with the smallest units of elements and compounds. In its study, we have found a relatively small number of atoms
with systematic properties, and these properties have explained a tremendous range of phenomena. Nuclear physics is
concerned with the nuclei of atoms and their substructures. Here, a smaller number of components—the proton and
neutron—make up all nuclei. Exploring the systematic behavior of their interactions has revealed even more about matter,
forces, and energy. Particle physics deals with the substructures of atoms and nuclei and is particularly aimed at finding those
truly fundamental particles that have no further substructure. Just as in atomic and nuclear physics, we have found a complex
array of particles and properties with systematic characteristics analogous to the periodic table and the chart of nuclides. An
underlying structure is apparent, and there is some reason to think that we are finding particles that have no substructure. Of
course, we have been in similar situations before. For example, atoms were once thought to be the ultimate substructures. It is
possible that we could continue to find deeper and deeper structures without ever discovering the ultimate substructure—in
science there is never complete certainty. See Figure 23.2.

The properties of matter are based on substructures called molecules and atoms. Each atom has the substructure of a nucleus
surrounded by electrons, and their interactions explain atomic properties. Protons and neutrons—and the interactions between
them—explain the stability and abundance of elements and form the substructure of nuclei. Protons and neutrons are not
fundamental—they are composed of quarks. Like electrons and a few other particles, quarks may be the fundamental building
blocks of all matter, lacking any further substructure. But the story is not complete because quarks and electrons may have
substructures smaller than details that are presently observable.

Figure 23.1 Part of the Large Hadron Collider (LHC) at CERN, on the border of Switzerland and France. The LHC is a
particle accelerator, designed to study fundamental particles. (credit: Image Editor, Flickr)
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Figure 23.2 A solid, a molecule, an atom, a nucleus, a nucleon (a particle that makes up the nucleus—either a proton or a neutron), and a

quark.

This chapter covers the basics of particle physics as we know it today. An amazing convergence of topics is evolving in particle
physics. We find that some particles are intimately related to forces and that nature on the smallest scale may have its greatest
influence on the large scale character of the universe. It is an adventure exceeding the best science fiction because it is not only
fantastic but also real.

23.1 The Four Fundamental Forces
Section Learning Objectives
By the end of the section, you will be able to do the following:
• Define, describe, and differentiate the four fundamental forces
• Describe the carrier particles and explain how their exchange transmits force
• Explain how particle accelerators work to gather evidence about particle physics

Section Key Terms

carrier particle colliding beam cyclotron Feynman diagram graviton

particle physics pion quantum electrodynamics synchrotron boson

boson weak nuclear force boson

Despite the apparent complexity within the universe, there remain just four basic forces. These forces are responsible for all
interactions known to science: from the very small to the very large to those that we experience in our day-to-day lives. These
forces describe the movement of galaxies, the chemical reactions in our laboratories, the structure within atomic nuclei, and the
cause of radioactive decay. They describe the true cause behind familiar terms like friction and the normal force. These four
basic forces are known as fundamental because they alone are responsible for all observations of forces in nature. The four
fundamental forces are gravity, electromagnetism, weak nuclear force, and strong nuclear force.

Understanding the Four Forces
The gravitational force is most familiar to us because it describes so many of our common observations. It explains why a
dropped ball falls to the ground and why our planet orbits the Sun. It gives us the property of weight and determines much
about the motion of objects in our daily lives. Because gravitational force acts between all objects of mass and has the ability to
act over large distances, the gravitational force can be used to explain much of what we observe and can even describe the
motion of objects on astronomical scales! That said, gravity is incredibly weak compared to the other fundamental forces and is
the weakest of all of the fundamental forces. Consider this: The entire mass of Earth is needed to hold an iron nail to the ground.
Yet with a simple magnet, the force of gravity can be overcome, allowing the nail to accelerate upward through space.

The electromagnetic force is responsible for both electrostatic interactions and the magnetic force seen between bar magnets.
When focusing on the electrostatic relationship between two charged particles, the electromagnetic force is known as the
coulomb force. The electromagnetic force is an important force in the chemical and biological sciences, as it is responsible for
molecular connections like ionic bonding and hydrogen bonding. Additionally, the electromagnetic force is behind the common
physics forces of friction and the normal force. Like the gravitational force, the electromagnetic force is an inverse square law.
However, the electromagnetic force does not exist between any two objects of mass, only those that are charged.

When considering the structure of an atom, the electromagnetic force is somewhat apparent. After all, the electrons are held in
place by an attractive force from the nucleus. But what causes the nucleus to remain intact? After all, if all protons are positive, it
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makes sense that the coulomb force between the protons would repel the nucleus apart immediately. Scientists theorized that
another force must exist within the nucleus to keep it together. They further theorized that this nuclear force must be
significantly stronger than gravity, which has been observed and measured for centuries, and also stronger than the
electromagnetic force, which would cause the protons to want to accelerate away from each other.

The strong nuclear force is an attractive force that exists between all nucleons. This force, which acts equally between proton-
proton connections, proton-neutron connections, and neutron-neutron connections, is the strongest of all forces at short
ranges. However, at a distance of 10–13 cm, or the diameter of a single proton, the force dissipates to zero. If the nucleus is large
(it has many nucleons), then the distance between each nucleon could be much larger than the diameter of a single proton.

The weak nuclear force is responsible for beta decay, as seen in the equation Recall that beta
decay is when a beta particle is ejected from an atom. In order to accelerate away from the nucleus, the particle must be acted on
by a force. Enrico Fermi was the first to envision this type of force. While this force is appropriately labeled, it remains stronger
than the gravitational force. However, its range is even smaller than that of the strong force, as can be seen in Table 23.1. The
weak nuclear force is more important than it may appear at this time, as will be addressed when we discuss quarks.

Force Approximate Relative Strength[1] Range

Gravity ∞

Weak

Electromagnetic ∞

Strong 1

[1]Relative strength is based on the strong force felt by a proton–proton pair.

Table 23.1 Relative strength and range of the four fundamental forces

Transmitting the Four Fundamental Forces
Just as it troubled Einstein prior to formulating the gravitational field theory, the concept of forces acting over a distance had
greatly troubled particle physicists. That is, how does one proton know that another exists? Furthermore, what causes one
proton to make a second proton repel? Or, for that matter, what is it about a proton that causes a neutron to attract? These
mysterious interactions were first considered by Hideki Yukawa in 1935 and laid the foundation for much of what we now
understand about particle physics.

Hideki Yukawa’s focus was on the strong nuclear force and, in particular, its incredibly short range. His idea was a blend of
particles, relativity, and quantum mechanics that was applicable to all four forces. Yukawa proposed that the nuclear force is
actually transmitted by the exchange of particles, called carrier particles, and that what we commonly refer to as the force’s field
consists of these carrier particles. Specifically for the strong nuclear force, Yukawa proposed that a previously unknown particle,
called a pion, is exchanged between nucleons, transmitting the force between them. Figure 23.3 illustrates how a pion would
carry a force between a proton and a neutron.

Figure 23.3 The strong nuclear force is transmitted between a proton and neutron by the creation and exchange of a pion. The pion,

created through a temporary violation of conservation of mass-energy, travels from the proton to the neutron and is recaptured. It is not
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directly observable and is called a virtual particle. Note that the proton and neutron change identity in the process. The range of the force is

limited by the fact that the pion can exist for only the short time allowed by the Heisenberg uncertainty principle. Yukawa used the finite

range of the strong nuclear force to estimate the mass of the pion; the shorter the range, the larger the mass of the carrier particle.

In Yukawa’s strong force, the carrier particle is assumed to be transmitted at the speed of light and is continually transferred
between the two nucleons shown. The particle that Yukawa predicted was finally discovered within cosmic rays in 1947. Its name,
the pion, stands for pi meson, where meson means medium mass; it’s a medium mass because it is smaller than a nucleon but
larger than an electron. Yukawa launched the field that is now called quantum chromodynamics, and the carrier particles are
now called gluons due to their strong binding power. The reason for the change in the particle name will be explained when
quarks are discussed later in this section.

As you may assume, the strong force is not the only force with a carrier particle. Nuclear decay from the weak force also requires
a particle transfer. In the weak force are the following three: the weak negative carrier, W–; the weak positive carrier, W+; and the
zero charge carrier, Z0. As we will see, Fermi inferred that these particles must carry mass, as the total mass of the products of
nuclear decay is slightly larger than the total mass of all reactants after nuclear decay.

The carrier particle for the electromagnetic force is, not surprisingly, the photon. After all, just as a lightbulb can emit photons
from a charged tungsten filament, the photon can be used to transfer information from one electrically charged particle to
another. Finally, the graviton is the proposed carrier particle for gravity. While it has not yet been found, scientists are currently
looking for evidence of its existence (see Boundless Physics: Searching for the Graviton).

So how does a carrier particle transmit a fundamental force? Figure 23.4 shows a virtual photon transmitted from one positively
charged particle to another. The transmitted photon is referred to as a virtual particle because it cannot be directly observed
while transmitting the force. Figure 23.5 shows a way of graphing the exchange of a virtual photon between the two positively
charged particles. This graph of time versus position is called a Feynman diagram, after the brilliant American physicist Richard
Feynman (1918–1988), who developed it.

Figure 23.4 The image in part (a) shows the exchange of a virtual photon transmitting the electromagnetic force between charges, just as

virtual pion exchange carries the strong nuclear force between nucleons. The image in part (b) shows that the photon cannot be directly

observed in its passage because this would disrupt it and alter the force. In this case, the photon does not reach the other charge.

The Feynman diagram should be read from the bottom up to show the movement of particles over time. In it, you can see that
the left proton is propelled leftward from the photon emission, while the right proton feels an impulse to the right when the
photon is received. In addition to the Feynman diagram, Richard Feynman was one of the theorists who developed the field of
quantum electrodynamics (QED), which further describes electromagnetic interactions on the submicroscopic scale. For this
work, he shared the 1965 Nobel Prize with Julian Schwinger and S.I. Tomonaga. A Feynman diagram explaining the strong force
interaction hypothesized by Yukawa can be seen in Figure 23.6. Here, you can see the change in particle type due to the exchange
of the pi meson.
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Figure 23.5 The Feynman diagram for the exchange of a virtual photon between two positively charged particles illustrates how

electromagnetic force is transmitted on a quantum mechanical scale. Time is graphed vertically, while the distance is graphed horizontally.

The two positively charged particles are seen to repel each other by the photon exchange.

Figure 23.6 The image shows a Feynman diagram for the exchange of a π+ (pion) between a proton and a neutron, carrying the strong

nuclear force between them. This diagram represents the situation shown more pictorially in Figure 23.3.

The relative masses of the listed carrier particles describe something valuable about the four fundamental forces, as can be seen
in Table 23.2. W bosons (consisting of and bosons) and Z bosons ( bosons), carriers of the weak nuclear force, are
nearly 1,000 times more massive than pions, carriers of the strong nuclear force. Simultaneously, the distance that the weak
nuclear force can be transmitted is approximately times the strong force transmission distance. Unlike carrier particles,

which have a limited range, the photon is a massless particle that has no limit to the transmission distance of the
electromagnetic force. This relationship leads scientists to understand that the yet-unfound graviton is likely massless as well.

Force Carrier Particle Range Relative Strength[1]

Gravity Graviton (theorized) ∞

Weak W and Z bosons ∞

Electromagnetic Photon

Strong Pi mesons or pions (now known as gluons) 1

[1]Relative strength is based on the strong force felt by a proton-proton pair.

Table 23.2 Carrier particles and their relative masses compared to pions for the four fundamental forces
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BOUNDLESS PHYSICS

Searching for the Graviton
From Newton’s Universal Law of Gravitation to Einstein’s field equations, gravitation has held the focus of scientists for
centuries. Given the discovery of carrier particles during the twentieth century, the importance of understanding gravitation
has yet again gained the interest of prominent physicists everywhere.

With carrier particles discovered for three of the four fundamental forces, it is sensible to scientists that a similar particle, titled
the graviton, must exist for the gravitational force. While evidence of this particle is yet to be uncovered, scientists are working
diligently to discover its existence.

So what do scientists think about the unfound particle? For starters, the graviton (like the photon) should be a massless particle
traveling at the speed of light. This is assumed because, like the electromagnetic force, gravity is an inverse square law, .

Scientists also theorize that the graviton is an electrically neutral particle, as an empty space within the influence of gravity is
chargeless.

However, because gravity is such a weak force, searching for the graviton has resulted in some unique methods. LIGO, the Laser
Interferometer Gravitational-Wave Observatory, is one tool currently being utilized (see Figure 23.7). While searching for a
gravitational wave to find a carrier particle may seem counterintuitive, it is similar to the approach taken by Planck and Einstein
to learn more about the photon. According to wave-particle duality, if a gravitational wave can be found, the graviton should be
present along with it. Predicted by Einstein’s theory of general relativity, scientists have been monitoring binary star systems for
evidence of these gravitational waves.

Figure 23.7 In searching for gravitational waves, scientists are using the Laser Interferometer Gravitational-Wave Observatory (LIGO). Here

we see the control room of LIGO in Hanford, Washington.

Particle accelerators like the Large Hadron Collider (LHC) are being used to search for the graviton through high-energy
collisions. While scientists at the LHC speculate that the particle may not exist long enough to be seen, evidence of its prior
existence, like footprints in the sand, can be found through gaps in projected energy and momentum.

Some scientists are even searching the remnants of the Big Bang in an attempt to find the graviton. By observing the cosmic
background radiation, they are looking for anomalies in gravitational waves that would provide information about the gravity
particles that existed at the start of our universe.

Regardless of the method used, scientists should know the graviton once they find it. A massless, chargeless particle with a spin
of 2 and traveling at the speed of light—there is no other particle like it. Should it be found, its discovery would surely be
considered by future generations to be on par with those of Newton and Einstein.

GRASP CHECK
Why are binary star systems used by LIGO to find gravitational waves?
a. Binary star systems have high temperature.
b. Binary star systems have low density.
c. Binary star systems contain a large amount of mass, but because they are orbiting each other, the gravitational field

between the two is much less.
d. Binary star systems contain a large amount of mass. As a result, the gravitational field between the two is great.
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Accelerators Create Matter From Energy
Before looking at all the particles that make up our universe, let us first examine some of the machines that create them. The
fundamental process in creating unknown particles is to accelerate known particles, such as protons or electrons, and direct a
beam of them toward a target. Collisions with target nuclei provide a wealth of information, such as information obtained by
Rutherford in the gold foil experiment. If the energy of the incoming particles is large enough, new matter can even be created
in the collision. The more energy input or ΔE, the more matter m can be created, according to mass energy equivalence

. Limitations are placed on what can occur by known conservation laws, such as conservation of mass-energy,
momentum, and charge. Even more interesting are the unknown limitations provided by nature. While some expected
reactions do occur, others do not, and still other unexpected reactions may appear. New laws are revealed, and the vast majority
of what we know about particle physics has come from accelerator laboratories. It is the particle physicist’s favorite indoor
sport.

Our earliest model of a particle accelerator comes from the Van de Graaff generator. The relatively simple device, which you have
likely seen in physics demonstrations, can be manipulated to produce potentials as great as 50 million volts. While these
machines do not have energies large enough to produce new particles, analysis of their accelerated ions was instrumental in
exploring several aspects of the nucleus.

Another equally famous early accelerator is the cyclotron, invented in 1930 by the American physicist, E.O. Lawrence
(1901–1958). Figure 23.8 is a visual representation with more detail. Cyclotrons use fixed-frequency alternating electric fields to
accelerate particles. The particles spiral outward in a magnetic field, making increasingly larger radius orbits during
acceleration. This clever arrangement allows the successive addition of electric potential energy with each loop. As a result,
greater particle energies are possible than in a Van de Graaff generator.

Figure 23.8 On the left is an artist’s rendition of the popular physics demonstration tool, the Van de Graaff generator. A battery (A) supplies

excess positive charge to a pointed conductor, the points of which spray the charge onto a moving insulating belt near the bottom. The

pointed conductor (B) on top in the large sphere picks up the charge. (The induced electric field at the points is so large that it removes the

charge from the belt.) This can be done because the charge does not remain inside the conducting sphere but moves to its outer surface. An

ion source inside the sphere produces positive ions, which are accelerated away from the positive sphere to high velocities. On the right is a

cyclotron. Cyclotrons use a magnetic field to cause particles to move in circular orbits. As the particles pass between the plates of the Dees,

the voltage across the gap is oscillated to accelerate them twice in each orbit.

A synchrotron is a modification of the cyclotron in which particles continually travel in a fixed-radius orbit, increasing speed
each time. Accelerating voltages are synchronized with the particles to accelerate them, hence the name. Additionally, magnetic
field strength is increased to keep the orbital radius constant as energy increases. A ring of magnets and accelerating tubes, as
shown in Figure 23.9, are the major components of synchrotrons. High-energy particles require strong magnetic fields to steer
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them, so superconducting magnets are commonly employed. Still limited by achievable magnetic field strengths, synchrotrons
need to be very large at very high energies since the radius of a high-energy particle’s orbit is very large.

To further probe the nucleus, physicists need accelerators of greater energy and detectors of shorter wavelength. To do so
requires not only greater funding but greater ingenuity as well. Colliding beams used at both the Fermi National Accelerator
Laboratory (Fermilab; see Figure 23.11) near Chicago and the LHC in Switzerland are designed to reduce energy loss in particle
collisions. Typical stationary particle detectors lose a large amount of energy to the recoiling target struck by the accelerating
particle. By providing head-on collisions between particles moving in opposite directions, colliding beams make it possible to
create particles with momenta and kinetic energies near zero. This allows for particles of greater energy and mass to be created.
Figure 23.10 is a schematic representation of this effect. In addition to circular accelerators, linear accelerators can be used to
reduce energy radiation losses. The Stanford Linear Accelerator Center (now called the SLAC National Accelerator Laboratory) in
California is home to the largest such accelerator in the world.

Figure 23.9 (a) A synchrotron has a ring of magnets and accelerating tubes. The frequency of the accelerating voltages is increased to

cause the beam particles to travel the same distance in a shorter time. The magnetic field should also be increased to keep each beam

burst traveling in a fixed-radius path. Limits on magnetic field strength require these machines to be very large in order to accelerate

particles to very high energies. (b) A positively charged particle is shown in the gap between accelerating tubes. (c) While the particle

passes through the tube, the potentials are reversed so that there is another acceleration at the next gap. The frequency of the reversals

needs to be varied as the particle is accelerated to achieve successive accelerations in each gap.

Figure 23.10 This schematic shows the two rings of Fermilab’s accelerator and the scheme for colliding protons and antiprotons (not to

scale).

Figure 23.11 The Fermi National Accelerator Laboratory, near Batavia, Illinois, was a subatomic particle collider that accelerated protons

and antiprotons to attain energies up to 1 Tev (a trillion electronvolts). The circular ponds near the rings were built to dissipate waste heat.

This accelerator was shut down in September 2011. (credit: Fermilab, Reidar Hahn)

Check Your Understanding
1. Which of the four forces is responsible for radioactive decay?

a. the electromagnetic force
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b. the gravitational force
c. the strong nuclear force
d. the weak nuclear force

2. What force or forces exist between an electron and a proton?
a. the strong nuclear force, the electromagnetic force, and gravity
b. the weak nuclear force, the strong nuclear force, and gravity
c. the weak nuclear force, the strong nuclear force, and the electromagnetic force
d. the weak nuclear force, the electromagnetic force, and gravity

3. What is the proposed carrier particle for the gravitational force?
a. boson
b. graviton
c. gluon
d. photon

4. What is the relationship between the mass and range of a carrier particle?
a. Range of a carrier particle is inversely proportional to its mass.
b. Range of a carrier particle is inversely proportional to square of its mass.
c. Range of a carrier particle is directly proportional to its mass.
d. Range of a carrier particle is directly proportional to square of its mass.

5. What type of particle accelerator uses fixed-frequency oscillating electric fields to accelerate particles?
a. cyclotron
b. synchrotron
c. betatron
d. Van de Graaff accelerator

6. How does the expanding radius of the cyclotron provide evidence of particle acceleration?
a. A constant magnetic force is exerted on particles at all radii. As the radius increases, the velocity of the particle must

increase to maintain this constant force.
b. A constant centripetal force is exerted on particles at all radii. As the radius increases, the velocity of the particle must

decrease to maintain this constant force.
c. A constant magnetic force is exerted on particles at all radii. As the radius increases, the velocity of the particle must

decrease to maintain this constant force.
d. A constant centripetal force is exerted on particles at all radii. As the radius increases, the velocity of the particle must

increase to maintain this constant force.

7. Which of the four forces is responsible for the structure of galaxies?
a. electromagnetic force
b. gravity
c. strong nuclear force
d. weak nuclear force

23.2 Quarks
Section Learning Objectives
By the end of the section, you will be able to do the following:
• Describe quarks and their relationship to other particles
• Distinguish hadrons from leptons
• Distinguish matter from antimatter
• Describe the standard model of the atom
• Define a Higgs boson and its importance to particle physics
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Section Key Terms

annihilation antimatter baryon bottom quark charmed quark

color down quark flavor gluon hadron

Higgs boson Higgs field lepton meson pair production

positron quantum chromodynamics quark Standard Model strange quark

top quark up quark

Quarks
“The first principles of the universe are atoms and empty space. Everything else is merely thought to exist…”

“… Further, the atoms are unlimited in size and number, and they are borne along with the whole universe in a vortex, and
thereby generate all composite things—fire, water, air, earth. For even these are conglomerations of given atoms. And it because
of their solidity that these atoms are impassive and unalterable.”

—Diogenes Laertius (summarizing the views of Democritus, circa 460–370 B.C.)

The search for fundamental particles is nothing new. Atomists of the Greek and Indian empires, like Democritus of fifth century
B.C., openly wondered about the most finite components of our universe. Though dormant for centuries, curiosity about the
atomic nature of matter was reinvigorated by Rutherford’s gold foil experiment and the discovery of the nucleus. By the early
1930s, scientists believed they had fully determined the tiniest constituents of matter—in the form of the proton, neutron, and
electron.

This would be only partially true. At present, scientists know that there are hundreds of particles not unlike our electron and
nucleons, all making up what some have termed the particle zoo. While we are confident that the electron remains
fundamental, it is surrounded by a plethora of similar sounding terms, like leptons, hadrons, baryons, and mesons. Even
though not every particle is considered fundamental, they all play a vital role in understanding the intricate structure of our
universe.

A fundamental particle is defined as a particle with no substructure and no finite size. According to the Standard Model, there
are three types of fundamental particles: leptons, quarks, and carrier particles. As you may recall, carrier particles are
responsible for transmitting fundamental forces between their interacting masses. Leptons are a group of six particles not
bound by the strong nuclear force, of which the electron is one. As for quarks, they are the fundamental building blocks of a
group of particles called hadrons, a group that includes both the proton and the neutron.

Now for a brief history of quarks. Quarks were first proposed independently by American physicists Murray Gell-Mann and
George Zweig in 1963. Originally, three quark types—or flavors—were proposed with the names up (u), down (d), and strange
(s).

At first, physicists expected that, with sufficient energy, we should be able to free quarks and observe them directly. However,
this has not proved possible, as the current understanding is that the force holding quarks together is incredibly great and,
much like a spring, increases in magnitude as the quarks are separated. As a result, when large energies are put into collisions,
other particles are created—but no quarks emerge. With that in mind, there is compelling evidence for the existence of quarks.
By 1967, experiments at the SLAC National Accelerator Laboratory scattering 20-GeV electrons from protons produced results
like Rutherford had obtained for the nucleus nearly 60 years earlier. The SLAC scattering experiments showed unambiguously
that there were three point-like (meaning they had sizes considerably smaller than the probe’s wavelength) charges inside the
proton as seen in Figure 23.12. This evidence made all but the most skeptical admit that there was validity to the quark
substructure of hadrons.
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Figure 23.12 Scattering of high-energy electrons from protons at facilities like SLAC produces evidence of three point-like charges

consistent with proposed quark properties. This experiment is analogous to Rutherford’s discovery of the small size of the nucleus by

scattering α particles. High-energy electrons are used so that the probe wavelength is small enough to see details smaller than the proton.

The inclusion of the strange quark with Zweig and Gell-Mann’s model concerned physicists. While the up and down quarks
demonstrated fairly clear symmetry and were present in common fundamental particles like protons and neutrons, the strange
quark did not have a counterpart of its own. This thought, coupled with the four known leptons at the time, caused scientists to
predict that a fourth quark, yet to be found, also existed.

In 1974, two groups of physicists independently discovered a particle with this new quark, labeled charmed. This completed the
second exotic quark pair, strange (s) and charmed (c). A final pair of quarks was proposed when a third pair of leptons was
discovered in 1975. The existence of the bottom (b) quark and the top (t) quark was verified through experimentation in 1976 and
1995, respectively. While it may seem odd that so much time would elapse between the original quark discovery in 1967 and the
verification of the top quark in 1995, keep in mind that each quark discovered had a progressively larger mass. As a result, each
new quark has required more energy to discover.

TIPS FOR SUCCESS
Note that a very important tenet of science occurred throughout the period of quark discovery. The charmed, bottom, and
top quarks were all speculated on, and then were discovered some time later. Each of their discoveries helped to verify and
strengthen the quark model. This process of speculation and verification continues to take place today and is part of what
drives physicists to search for evidence of the graviton and Grand Unified Theory.

One of the most confounding traits of quarks is their electric charge. Long assumed to be discrete, and specifically a multiple of
the elementary charge of the electron, the electric charge of an individual quark is fractional and thus seems to violate a
presumed tenet of particle physics. The fractional charge of quarks, which are and , are the only structures
found in nature with a nonintegral number of charge . However, note that despite this odd construction, the fractional value
of the quark does not violate the quantum nature of the charge. After all, free quarks cannot be found in nature, and all quarks
are bound into arrangements in which an integer number of charge is constructed. Table 23.3 shows the six known quarks, in
addition to their antiquark components, as will be discussed later in this section.

Flavor Symbol Antiparticle Charge[1][2]

Up

Down

Strange

Charmed

[1]The lower of the symbols are the values for antiquarks.
[2]There are further qualities that differentiate between quarks. However, they are beyond the discussion in this text.

Table 23.3 Quarks and Antiquarks
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Flavor Symbol Antiparticle Charge[1][2]

Bottom

Top

[1]The lower of the symbols are the values for antiquarks.
[2]There are further qualities that differentiate between quarks. However, they are beyond the discussion in this text.

Table 23.3 Quarks and Antiquarks

While the term flavor is used to differentiate between types of quarks, the concept of color is more analogous to the electric
charge in that it is primarily responsible for the force interactions between quarks. Note—Take a moment to think about the
electrostatic force. It is the electric charge that causes attraction and repulsion. It is the same case here but with a color charge.
The three colors available to a quark are red, green, and blue, with antiquarks having colors of anti-red (or cyan), anti-green (or
magenta), and anti-blue (or yellow).

Why use colors when discussing quarks? After all, the quarks are not actually colored with visible light. The reason colors are
used is because the properties of a quark are analogous to the three primary and secondary colors mentioned above. Just as
different colors of light can be combined to create white, different colors of quark may be combined to construct a particle like a
proton or neutron. In fact, for each hadron, the quarks must combine such that their color sums to white! Recall that two up
quarks and one down quark construct a proton, as seen in Figure 23.12. The sum of the three quarks’ colors—red, green, and
blue—yields the color white. This theory of color interaction within particles is called quantum chromodynamics, or QCD. As
part of QCD, the strong nuclear force can be explained using color. In fact, some scientists refer to the color force, not the strong
force, as one of the four fundamental forces. Figure 23.13 is a Feynman diagram showing the interaction between two quarks by
using the transmission of a colored gluon. Note that the gluon is also considered the charge carrier for the strong nuclear force.

Figure 23.13 The exchange of gluons between quarks carries the strong force and may change the color of the interacting quarks. While the

colors of the individual quarks change, their flavors do not.

Note that quark flavor may have any color. For instance, in Figure 23.13, the down quark has a red color and a green color. In
other words, colors are not specific to a particle quark flavor.

Hadrons and Leptons
Particles can be revealingly grouped according to what forces they feel between them. All particles (even those that are massless)
are affected by gravity since gravity affects the space and time in which particles exist. All charged particles are affected by the
electromagnetic force, as are neutral particles that have an internal distribution of charge (such as the neutron with its magnetic
moment). Special names are given to particles that feel the strong and weak nuclear forces. Hadrons are particles that feel the
strong nuclear force, whereas leptons are particles that do not. All particles feel the weak nuclear force. This means that hadrons
are distinguished by being able to feel both the strong and weak nuclear forces. Leptons and hadrons are distinguished in other
ways as well. Leptons are fundamental particles that have no measurable size, while hadrons are composed of quarks and have a
diameter on the order of 10 to 15 m. Six particles, including the electron and neutrino, make up the list of known leptons. There
are hundreds of complex particles in the hadron class, a few of which (including the proton and neutron) are listed in Table 23.4.
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Category
Particle
Name

Symbol Antiparticle
Rest Mass Mean Lifetime

(s)

Leptons

Electron 0.511 Stable

Neutrino (e) [1] Stable

Muon 105.7

Neutrino (μ) [1] Stable

Tau 1,777

Neutrino (τ) [1] Stable

Hadrons – Mesons[2]

Pion
139.6

Self 135.0

Kaon
493.7

497.6

Eta Self 547.9

Hadrons –
Baryons[3]

Proton p 938.3 Stable

Neutron n 939.6 882

Lambda 1,115.7

Omega 1,672.5

[1]Neutrino masses may be zero. Experimental upper limits are given in parentheses.
[2]Many other mesons known
[3]Many other baryons known

Table 23.4 List of Leptons and Hadrons.

There are many more leptons, mesons, and baryons yet to be discovered and measured. The purpose of trying to uncover the
smallest indivisible things in existence is to explain the world around us through forces and the interactions between particles,
galaxies and objects. This is why a handful of scientists devote their life’s work to smashing together small particles.

What internal structure makes a proton so different from an electron? The proton, like all hadrons, is made up of quarks. A few
examples of hadron quark composition can be seen in Figure 23.14. As shown, each hadron is constructed of multiple quarks. As
mentioned previously, the fractional quark charge in all four hadrons sums to the particle’s integral value. Also, notice that the
color composition for each of the four particles adds to white. Each of the particles shown is constructed of up, down, and their
antiquarks. This is not surprising, as the quarks strange, charmed, top, and bottom are found in only our most exotic particles.
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Figure 23.14 All baryons, such as the proton and neutron shown here, are composed of three quarks. All mesons, such as the pions shown

here, are composed of a quark–antiquark pair. Arrows represent the spins of the quarks. The colors are such that they need to add to white

for any possible combination of quarks.

You may have noticed that while the proton and neutron in Figure 23.14 are composed of three quarks, both pions are comprised
of only two quarks. This refers to a final delineation in particle structure. Particles with three quarks are called baryons. These
are heavy particles that can decay into another baryon. Particles with only two quarks—a-quark–anti-quark pair—are called
mesons. These are particles of moderate mass that cannot decay into the more massive baryons.

Before continuing, take a moment to view Figure 23.15. In this figure, you can see the strong force reimagined as a color force.
The particles interacting in this figure are the proton and neutron, just as they were in Figure 23.6. This reenvisioning of the
strong force as an interaction between colored quarks is the critical concept behind quantum chromodynamics.

Figure 23.15 This Feynman diagram shows the interaction between a proton and a neutron, corresponding to the interaction shown in

Figure 23.6. This diagram, however, shows the quark and gluon details of the strong nuclear force interaction.

Matter and Antimatter
Antimatter was first discovered in the form of the positron, the positively charged electron. In 1932, American physicist Carl
Anderson discovered the positron in cosmic ray studies. Through a cloud chamber modified to curve the trajectories of cosmic
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rays, Anderson noticed that the curves of some particles followed that of a negative charge, while others curved like a positive
charge. However, the positive curve showed not the mass of a proton but the mass of an electron. This outcome is shown in
Figure 23.16 and suggests the existence of a positively charged version of the electron, created by the destruction of solar
photons.

Figure 23.16 The image above is from the Fermilab 15 foot bubble chamber and shows the production of an electron and positron (or

antielectron) from an incident photon. This event is titled pair production and provides evidence of antimatter, as the two repel each other.

Antimatter is considered the opposite of matter. For most antiparticles, this means that they share the same properties as their
original particles with the exception of their charge. This is why the positron can be considered a positive electron while the
antiproton is considered a negative proton. The idea of an opposite charge for neutral particles (like the neutron) can be
confusing, but it makes sense when considered from the quark perspective. Just as the neutron is composed of one up quark and
two down quarks (of charge and , respectively), the antineutron is composed of one anti–up quark and two anti–down

quarks (of charge and , respectively). While the overall charge of the neutron remains the same, its constituent particles
do not!

A word about antiparticles: Like regular particles, antiparticles could function just fine on their own. In fact, a universe made up
of antimatter may operate just as our own matter-based universe does. However, we do not know fully whether this is the case.
The reason for this is annihilation. Annihilation is the process of destruction that occurs when a particle and its antiparticle
interact. As soon as two particles (like a positron and an electron) coincide, they convert their masses to energy through the
equation . This mass-to-energy conversion, which typically results in photon release, happens instantaneously and
makes it very difficult for scientists to study antimatter. That said, scientists have had success creating antimatter through high-
energy particle collisions. Both antineutrons and antiprotons were created through accelerator experiments in 1956, and an
anti–hydrogen atom was even created at CERN in 1995! As referenced in , the annihilation of antiparticles is currently used in
medical studies to determine the location of radioisotopes.

Completing the Standard Model of the Atom
The Standard Model of the atom refers to the current scientific view of the fundamental components and interacting forces of
matter. The Standard Model (Figure 23.17) shows the six quarks that bind to form all hadrons, the six lepton particles already
considered fundamental, the four carrier particles (or gauge bosons) that transmit forces between the leptons and quarks, and
the recently added Higgs boson (which will be discussed shortly). This totals 17 fundamental particles, combinations of which
are responsible for all known matter in our entire universe! When adding the antiquarks and antileptons, 31 components make
up the Standard Model.
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Figure 23.17 The Standard Model of elementary particles shows an organized view of all fundamental particles, as currently known: six

quarks, six leptons, and four gauge bosons (or carrier particles). The Higgs boson, first observed in 2012, is a new addition to the Standard

Model.

Figure 23.17 shows all particles within the Standard Model of the atom. Not only does this chart divide all known particles by
color-coded group, but it also provides information on particle stability. Note that the color-coding system in this chart is
separate from the red, green, and blue color labeling system of quarks. The first three columns represent the three families of
matter. The first column, considered Family 1, represents particles that make up normal matter, constructing the protons,
neutrons, and electrons that make up the common world. Family 2, represented from the charm quark to the muon neutrino, is
comprised of particles that are more massive. The leptons in this group are less stable and more likely to decay. Family 3,
represented by the third column, are more massive still and decay more quickly. The order of these families also conveniently
represents the order in which these particles were discovered.

TIPS FOR SUCCESS
Look for trends that exist within the Standard Model. Compare the charge of each particle. Compare the spin. How does
mass relate to the model structure? Recognizing each of these trends and asking questions will yield more insight into the
organization of particles and the forces that dictate particle relationships. Our understanding of the Standard Model is still
young, and the questions you may have in analyzing the Standard Model may be some of the same questions that particle
physicists are searching for answers to today!

The Standard Model also summarizes the fundamental forces that exist as particles interact. A closer look at the Standard
Model, as shown in Figure 23.18, reveals that the arrangement of carrier particles describes these interactions.
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Figure 23.18 The revised Standard Model shows the interaction between gauge bosons and other fundamental particles. These

interactions are responsible for the fundamental forces, three of which are described through the chart’s shaded areas.

Each of the shaded areas represents a fundamental force and its constituent particles. The red shaded area shows all particles
involved in the strong nuclear force, which we now know is due to quantum chromodynamics. The blue shaded area corresponds
to the electromagnetic force, while the green shaded area corresponds to the weak nuclear force, which affects all quarks and
leptons. The electromagnetic force and weak nuclear force are considered united by the electroweak force within the Standard
Model. Also, because definitive evidence of the graviton is yet to be found, it is not included in the Standard Model.

The Higgs Boson
One interesting feature of the Standard Model shown in Figure 23.18 is that, while the gluon and photon have no mass, the Z and
W bosons are very massive. What supplies these quickly moving particles with mass and not the gluons and photons?
Furthermore, what causes some quarks to have more mass than others?

In the 1960s, British physicist Peter Higgs and others speculated that the W and Z bosons were actually just as massless as the
gluon and photon. However, as the W and Z bosons traveled from one particle to another, they were slowed down by the
presence of a Higgs field, much like a fish swimming through water. The thinking was that the existence of the Higgs field
would slow down the bosons, causing them to decrease in energy and thereby transfer this energy to mass. Under this theory, all
particles pass through the Higgs field, which exists throughout the universe. The gluon and photon travel through this field as
well but are able to do so unaffected.

The presence of a force from the Higgs field suggests the existence of its own carrier particle, the Higgs boson. This theorized
boson interacts with all particles but gluons and photons, transferring force from the Higgs field. Particles with large mass (like
the top quark) are more likely to receive force from the Higgs boson.

While it is difficult to examine a field, it is somewhat simpler to find evidence of its carrier. On July 4, 2012, two groups of
scientists at the LHC independently confirmed the existence of a Higgs-like particle. By examining trillions of proton–proton
collisions at energies of 7 to 8 TeV, LHC scientists were able to determine the constituent particles that created the protons. In
this data, scientists found a particle with similar mass, spin, parity, and interactions with other particles that matched the
Higgs boson predicted decades prior. On March 13, 2013, the existence of the Higgs boson was tentatively confirmed by CERN.
Peter Higgs and Francois Englert received the Nobel Prize in 2013 for the “theoretical discovery of a mechanism that contributes
to our understanding of the origin and mass of subatomic particles.”

WORK IN PHYSICS

Particle Physicist
If you have an innate desire to unravel life’s great mysteries and further understand the nature of the physical world, a career in
particle physics may be for you!

Particle physicists have played a critical role in much of society’s technological progress. From lasers to computers, televisions to
space missions, splitting the atom to understanding the DNA molecule to MRIs and PET scans, much of our modern society is
based on the work done by particle physicists.

While many particle physicists focus on specialized tasks in the fields of astronomy and medicine, the main goal of particle
physics is to further scientists’ understanding of the Standard Model. This may mean work in government, industry, or
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academics. Within the government, jobs in particle physics can be found within the National Institute for Standards and
Technology, Department of Energy, NASA, and Department of Defense. Both the electronics and computer industries rely on
the expertise of particle physicists. College teaching and research positions can also be potential career opportunities for
particle physicists, though they often require some postgraduate work as a prerequisite. In addition, many particle physicists
are employed to work on high-energy colliders. Domestic collider labs include the Brookhaven National Laboratory in New York,
the Fermi National Accelerator Laboratory near Chicago, and the SLAC National Accelerator Laboratory operated by Stanford
University. For those who like to travel, work at international collider labs can be found at the CERN facility in Switzerland in
addition to institutes like the Budker Institute of Nuclear Physics in Russia, DESY in Germany, and KEK in Japan.

Shirley Jackson became the first African American woman to earn a Ph.D. from MIT back in 1973, and she went on to lead a
highly successful career in the field of particle physics. Like Dr. Jackson, successful students of particle physics grow up with a
strong curiosity in the world around them and a drive to continually learn more. If you are interested in exploring a career in
particle physics, work to achieve good grades and SAT scores, and find time to read popular books on physics topics that interest
you. While some math may be challenging, recognize that this is only a tool of physics and should not be considered prohibitive
to the field. High-level work in particle physics often requires a Ph.D.; however, it is possible to find work with a master’s
degree. Additionally, jobs in industry and teaching can be achieved with solely an undergraduate degree.

GRASP CHECK
What is the primary goal of all work in particle physics?
a. The primary goal is to further our understanding of the Standard Model.
b. The primary goal is to further our understanding of Rutherford’s model.
c. The primary goal is to further our understanding of Bohr’s model.
d. The primary goal is to further our understanding of Thomson’s model.

Check Your Understanding
8. In what particle were quarks originally discovered?

a. the electron
b. the neutron
c. the proton
d. the photon

9. Why was the existence of the charm quark speculated, even though no direct evidence of it existed?
a. The existence of the charm quark was symmetrical with up and down quarks. Additionally, there were two known

leptons at the time and only two quarks.
b. The strange particle lacked the symmetry that existed with the up and down quarks. Additionally, there were four

known leptons at the time and only three quarks.
c. The bottom particle lacked the symmetry that existed with the up and down quarks. Additionally, there were two known

leptons at the time and only two quarks.
d. The existence of charm quarks was symmetrical with up and down quarks. Additionally, there were four known leptons

at the time and only three quarks.

10. What type of particle is the electron?
a. The electron is a lepton.
b. The electron is a hadron.
c. The electron is a baryon.
d. The electron is an antibaryon.

11. How do the number of fundamental particles differ between hadrons and leptons?
a. Hadrons are constructed of at least three fundamental quark particles, while leptons are fundamental particles.
b. Hadrons are constructed of at least three fundamental quark particles, while leptons are constructed of two

fundamental particles.
c. Hadrons are constructed of at least two fundamental quark particles, while leptons are constructed of three
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fundamental particles.
d. Hadrons are constructed of at least two fundamental quark particles, while leptons are fundamental particles.

12. Does antimatter exist?
a. no
b. yes

13. How does the deconstruction of a photon into an electron and a positron uphold the principles of mass and charge
conservation?
a. The sum of the masses of an electron and a positron is equal to the mass of the photon before pair production. The sum

of the charges on an electron and a positron is equal to the zero charge of the photon.
b. The sum of the masses of an electron and a positron is equal to the mass of the photon before pair production. The sum

of the same charges on an electron and a positron is equal to the charge on a photon.
c. During the particle production the total energy of the photon is converted to the mass of an electron and a positron.

The sum of the opposite charges on the electron and positron is equal to the zero charge of the photon.
d. During particle production, the total energy of the photon is converted to the mass of an electron and a positron. The

sum of the same charges on an electron and a positron is equal to the charge on a photon.

14. How many fundamental particles exist in the Standard Model, including the Higgs boson and the graviton (not yet
observed)?
a. 12
b. 15
c. 13
d. 19

15. Why do gluons interact only with particles in the first two rows of the Standard Model?
a. The leptons in the third and fourth rows do not have mass, but the gluons can interact between the quarks through

gravity only.
b. The leptons in the third and fourth rows do not have color, but the gluons can interact between quarks through color

interactions only.
c. The leptons in the third and fourth rows do not have spin, but the gluons can interact between quarks through spin

interactions only.
d. The leptons in the third and fourth rows do not have charge, but the gluons can interact between quarks through

charge interactions only.

16. What fundamental property is provided by particle interaction with the Higgs boson?
a. charge
b. mass
c. spin
d. color

17. Considering the Higgs field, what differentiates more massive particles from less massive particles?
a. More massive particles interact more with the Higgs field than the less massive particles.
b. More massive particles interact less with the Higgs field than the less massive particles.

18. What particles were launched into the proton during the original discovery of the quark?
a. bosons
b. electrons
c. neutrons
d. photons
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23.3 The Unification of Forces
Section Learning Objectives
By the end of the section, you will be able to do the following:
• Define a grand unified theory and its importance
• Explain the evolution of the four fundamental forces from the Big Bang onward
• Explain how grand unification theories can be tested

Section Key Terms

Big Bang
Electroweak
Epoch

electroweak
theory

Grand Unification
Epoch

Grand Unified
Theory

Inflationary
Epoch

Planck Epoch Quark Era superforce Theory of Everything

Understanding the Grand Unified Theory
Present quests to show that the four basic forces are different manifestations of a single unified force that follow a long
tradition. In the nineteenth century, the distinct electric and magnetic forces were shown to be intimately connected and are
now collectively called the electromagnetic force. More recently, the weak nuclear force was united with the electromagnetic
force. As shown in Figure 23.19, carrier particles transmit three of the four fundamental forces in very similar ways. With these
considerations in mind, it is natural to suggest that a theory may be constructed in which the strong nuclear, weak nuclear, and
electromagnetic forces are all unified. The search for a correct theory linking the forces, called the Grand Unified Theory (GUT),
is explored in this section.

In the 1960s, the electroweak theory was developed by Steven Weinberg, Sheldon Glashow, and Abdus Salam. This theory
proposed that the electromagnetic and weak nuclear forces are identical at sufficiently high energies. At lower energies, like
those in our present-day universe, the two forces remain united but manifest themselves in different ways. One of the main
consequences of the electroweak theory was the prediction of three short-range carrier particles, now known as the
and bosons. Not only were three particles predicted, but the mass of each and boson was predicted to be 81 GeV/c2,
and that of the boson was predicted to be 90 GeV/c2. In 1983, these carrier particles were observed at CERN with the
predicted characteristics, including masses having those predicted values as given in .

How can forces be unified? They are definitely distinct under most circumstances. For example, they are carried by different
particles and have greatly different strengths. But experiments show that at extremely short distances and at extremely high
energies, the strengths of the forces begin to become more similar, as seen in Figure 23.20.

Figure 23.19 The exchange of a virtual particle (boson) carries the weak nuclear force between an electron and a neutrino in this

Feynman diagram. This diagram is similar to the diagrams in Figure 23.6 and for the electromagnetic and strong nuclear forces.

As discussed earlier, the short ranges and large masses of the weak carrier bosons require correspondingly high energies to
create them. Thus, the energy scale on the horizontal axis of Figure 23.20 also corresponds to shorter and shorter distances
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(going from left to right), with 100 GeV corresponding to approximately 10−18 m, for example. At that distance, the strengths of
the electromagnetic and weak nuclear forces are the same. To test this, energies of about 100 GeV are put into the system. When
this occurs, the , , and carrier particles are created and released. At those and higher energies, the masses of the
carrier particles become less and less relevant, and the boson in particular resembles the massless, chargeless photon. As
further energy is added, the , , and particles are further transformed into massless carrier particles even more
similar to photons and gluons.

Figure 23.20 The relative strengths of the four basic forces vary with distance, and, hence, energy is needed to probe small distances. At

ordinary energies (a few eV or less), the forces differ greatly. However, at energies available in accelerators, the weak nuclear and

electromagnetic (EM) forces become unified. Unfortunately, the energies at which the strong nuclear and electroweak forces become the

same are unreachable in any conceivable accelerator. The universe may provide a laboratory, and nature may show effects at ordinary

energies that give us clues about the validity of this graph.

The extremely short distances and high energies at which the electroweak force becomes identical with the strong nuclear force
are not reachable with any conceivable human-built accelerator. At energies of about 1014 GeV (16,000 J per particle), distances of
about 10 to 30 m can be probed. Such energies are needed to test the theory directly, but these are about 1010 times higher than
the maximum energy associated with the LHC, and the distances are about 10 to 12 smaller than any structure we have direct
knowledge of. This would be the realm of various GUTs, of which there are many, since there is no constraining evidence at these
energies and distances. Past experience has shown that anytime you probe so many orders of magnitude further, you find the
unexpected.

While direct evidence of a GUT is not presently possible, that does not rule out the ability to assess a GUT through an indirect
process. Current GUTs require various other events as a consequence of their theory. Some GUTs require the existence of
magnetic monopoles, very massive individual north- and south-pole particles, which have not yet been proven to exist, while
others require the use of extra dimensions. However, not all theories result in the same consequences. For example, disproving
the existence of magnetic monopoles will not disprove all GUTs. Much of the science we accept in our everyday lives is based on
different models, each with their own strengths and limitations. Although a particular model may have drawbacks, that does not
necessarily mean that it should be discounted completely.

One consequence of GUTs that can theoretically be assessed is proton decay. Multiple current GUTs hypothesize that the stable
proton should actually decay at a lifetime of 1031 years. While this time is incredibly large (keep in mind that the age of the
universe is less than 14 billion years), scientists at the Super-Kamiokande in Japan have used a 50,000-ton tank of water to
search for its existence. The decay of a single proton in the Super-Kamiokande tank would be observed by a detector, thereby
providing support for the predicting GUT model. However, as of 2014, 17 years into the experiment, decay is yet to be found. This
time span equates to a minimum limit on proton life of years. While this result certainly does not support many
grand unifying theories, an acceptable model may still exist.

TIPS FOR SUCCESS
The Super-Kamiokande experiment is a clever use of proportional reasoning. Because it is not feasible to test for 1031 years in
order for a single proton to decay, scientists chose instead to manipulate the proton–time ratio. If one proton decays in 1031
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years, then in one year 10−31 protons will decay. With this in mind, if scientists wanted to test the proton decay theory in one
year, they would need 1031 protons. While this is also unfeasible, the use of a 50,000-ton tank of water helps to bring both the
wait time and proton number to within reason.

The Standard Model and the Big Bang
Nature is full of examples where the macroscopic and microscopic worlds intertwine. Newton realized that the nature of gravity
on Earth that pulls an apple to the ground could explain the motion of the moon and planets so much farther away. Decays of
tiny nuclei explain the hot interior of the Earth. Fusion of nuclei likewise explains the energy of stars. Today, the patterns in
particle physics seem to be explaining the evolution and character of the universe. And the nature of the universe has
implications for unexplored regions of particle physics.

In 1929, Edwin Hubble observed that all but the closest galaxies surrounding our own had a red shift in their hydrogen spectra
that was proportional to their distance from us. Applying the Doppler Effect, Hubble recognized that this meant that all galaxies
were receding from our own, with those farther away receding even faster. Knowing that our place in the universe was no more
unique than any other, the implication was clear: The space within the universe itself was expanding. Just like pen marks on an
expanding balloon, everything in the universe was accelerating away from everything else.

Figure 23.21 shows how the recession of galaxies looks like the remnants of a gigantic explosion, the famous Big Bang.
Extrapolating backward in time, the Big Bang would have occurred between 13 and 15 billion years ago, when all matter would
have been at a single point. From this, questions instantly arise. What caused the explosion? What happened before the Big
Bang? Was there a before, or did time start then? For our purposes, the biggest question relating to the Big Bang is this: How
does the Big Bang relate to the unification of the fundamental forces?

Figure 23.21 Galaxies are flying apart from one another, with the more distant ones moving faster, as if a primordial explosion expelled the

matter from which they formed. The most distant known galaxies move nearly at the speed of light relative to us.

To fully understand the conditions of the very early universe, recognize that as the universe contracts to the size of the Big Bang,
changes will occur. The density and temperature of the universe will increase dramatically. As particles become closer together,
they will become too close to exist as we know them. The high energies will create other, more unusual particles to exist in
greater abundance. Knowing this, let’s move forward from the start of the universe, beginning with the Big Bang, as illustrated
in Figure 23.22.
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Figure 23.22 The evolution of the universe from the Big Bang onward (from left to right) is intimately tied to the laws of physics, especially

those of particle physics at the earliest stages. Theories of the unification of forces at high energies may be verified by their shaping of the

universe and its evolution.

The Planck Epoch —Though scientists are unable to model the conditions of the Planck Epoch in the laboratory,

speculation is that at this time compressed energy was great enough to reach the immense GeV necessary to unify gravity
with all other forces. As a result, modern cosmology suggests that all four forces would have existed as one force, a hypothetical
superforce as suggested by the Theory of Everything.

The Grand Unification Epoch —As the universe expands, the temperatures necessary to maintain the
superforce decrease. As a result, gravity separates, leaving the electroweak and strong nuclear forces together. At this time, the
electromagnetic, weak, and strong forces are identical, matching the conditions requested in the Grand Unification Theory.

The Inflationary Epoch —The separation of the strong nuclear force from the electroweak force during
this time is thought to have been responsible for the massive inflation of the universe. Corresponding to the steep diagonal line
on the left side of Figure 23.22, the universe may have expanded by a factor of or more in size. In fact, the expansion was so
great during this time that it actually occurred faster than the speed of light! Unfortunately, there is little hope that we may be
able to test the inflationary scenario directly since it occurs at energies near GeV, vastly greater than the limits of modern
accelerators.

The Electroweak Epoch —Now separated from both gravity and the strong nuclear force, the electroweak
force exists as a singular force during this time period. As stated earlier, scientists are able to create the energies at this stage in
the universe’s expansion, needing only 100 GeV, as shown in Figure 23.20. W and Z bosons, as well as the Higgs boson, are
released during this time.

The Quark Era —During the Quark Era, the universe has expanded and temperatures have decreased to the
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point at which all four fundamental forces have separated. Additionally, quarks began to take form as energies decreased.

As the universe expanded, further eras took place, allowing for the existence of hadrons, leptons, and photons, the fundamental
particles of the standard model. Eventually, in nucleosynthesis, nuclei would be able to form, and the basic building blocks of
atomic matter could take place. Using particle accelerators, we are very much working backwards in an attempt to understand
the universe. It is encouraging to see that the macroscopic conditions of the Big Bang align nicely with our submicroscopic
particle theory.

Check Your Understanding
19. Is there one grand unified theory or multiple grand unifying theories?

a. one grand unifying theory
b. multiple grand unifying theories

20. In what manner is considered a precursor to the Grand Unified Theory?
a. The grand unified theory seeks relate the electroweak and strong nuclear forces to one another just as

related energy and mass.
b. The grand unified theory seeks to relate the electroweak force and mass to one another just as related energy

and mass.
c. The grand unified theory seeks to relate the mass and strong nuclear forces to one another just as related

energy and mass.
d. The grand unified theory seeks to relate gravity and strong nuclear force to one another, just as related

energy and mass.

21. List the following eras in order of occurrence from the Big Bang: Electroweak Epoch, Grand Unification Epoch, Inflationary
Epoch, Planck Epoch, Quark Era.
a. Quark Era, Grand Unification Epoch, Inflationary Epoch, Electroweak Epoch, Planck Epoch
b. Planck Epoch, Inflationary Epoch, Grand Unification Epoch, Electroweak Epoch, Quark Era
c. Planck Epoch, Electroweak Epoch, Grand Unification Epoch, Inflationary Epoch, Quark Era
d. Planck Epoch, Grand Unification Epoch, Inflationary Epoch, Electroweak Epoch, Quark Era

22. How did the temperature of the universe change as it expanded?
a. The temperature of the universe increased.
b. The temperature of the universe decreased.
c. The temperature of the universe first decreased and then increased.
d. The temperature of the universe first increased and then decreased.

23. Under current conditions, is it possible for scientists to use particle accelerators to verify the Grand Unified Theory?
a. No, there is not enough energy.
b. Yes, there is enough energy.

24. Why are particles and antiparticles made to collide as shown in this image?

a. Particles and antiparticles have the same mass.
b. Particles and antiparticles have different mass.
c. Particles and antiparticles have the same charge.
d. Particles and antiparticles have opposite charges.

25. The existence of what particles were predicted as a consequence of the electroweak theory?
a. fermions
b. Higgs bosons

794 Chapter 23 • Particle Physics

Access for free at openstax.org.



c. leptons
d. W+, W-, and Z0 bosons
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KEY TERMS
boson positive carrier particle of the weak nuclear

force
boson negative carrier particle of the weak nuclear

force
boson neutral carrier particle of the weak nuclear force

annihilation the process of destruction that occurs when a
particle and antiparticle interact

antimatter matter constructed of antiparticles; antimatter
shares most of the same properties of regular matter,
with charge being the only difference between many
particles and their antiparticle analogues

baryon hadrons that always decay to another baryon
Big Bang a gigantic explosion that threw out matter a few

billion years ago
bottom quark a quark flavor
carrier particle a virtual particle exchanged in the

transmission of a fundamental force
charmed quark a quark flavor, which is the counterpart of

the strange quark
colliding beam head-on collisions between particles

moving in opposite directions
color a property of quarks the relates to their interactions

through the strong force
cyclotron accelerator that uses fixed-frequency alternating

electric fields and fixed magnets to accelerate particles in
a circular spiral path

down quark the second lightest of all quarks
Electroweak Epoch the stage before 10−11 back to 10−34

seconds after the Big Bang
electroweak theory theory showing connections between

EM and weak forces
Feynman diagram a graph of time versus position that

describes the exchange of virtual particles between
subatomic particles

flavor quark type
gluons exchange particles of the nuclear strong force
Grand Unification Epoch the time period from 10−43 to 10−34

seconds after the Big Bang, when Grand Unification
Theory, in which all forces except gravity are identical,
governed the universe

Grand Unified Theory theory that shows unification of the
strong and electroweak forces

graviton hypothesized particle exchanged between two
particles of mass, transmitting the gravitational force
between them

hadron particles composed of quarks that feel the strong
and weak nuclear force

Higgs boson a massive particle that provides mass to the
weak bosons and provides validity to the theory that

carrier particles are identical under certain
circumstances

Higgs field the field through which all fundamental
particles travel that provides them varying mass through
the transport of the Higgs boson

Inflationary Epoch the rapid expansion of the universe by
an incredible factor of 10−50 for the brief time from 10−35

to about 10−32 seconds
lepton fundamental particles that do not feel the nuclear

strong force
meson hadrons that can decay to leptons and leave no

hadrons
pair production the creation of a particle and antiparticle,

commonly an electron and positron, due to the
annihilation of a photon

particle physics the study of and the quest for those truly
fundamental particles having no substructure

pion particle exchanged between nucleons, transmitting
the strong nuclear force between them

Planck Epoch the earliest era of the universe, before 10–43

seconds after the Big Bang
positron a particle of antimatter that has the properties of

a positively charged electron
quantum chromodynamics the theory of color interaction

between quarks that leads to understanding of the
nuclear strong force

quantum electrodynamics the theory of electromagnetism
on the particle scale

quark an elementary particle and fundamental constituent
of matter that is a substructure of hadrons

Quark Era the time period from 10–11 to 10–6 seconds at
which all four fundamental forces are separated and
quarks begin to exit

Standard Model an organization of fundamental particles
and forces that is a result of quantum chromodynamics
and electroweak theory

strange quark the third lightest of all quarks
superforce the unification of all four fundamental forces

into one force
synchrotron a version of a cyclotron in which the frequency

of the alternating voltage and the magnetic field strength
are increased as the beam particles are accelerated

Theory of Everything the theory that shows unification of
all four fundamental forces

top quark a quark flavor
up quark the lightest of all quarks
weak nuclear force fundamental force responsible for

particle decay
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SECTION SUMMARY
23.1 The Four Fundamental Forces

• The four fundamental forces are gravity, the
electromagnetic force, the weak nuclear force, and the
strong nuclear force.

• A variety of particle accelerators have been used to
explore the nature of subatomic particles and to test
predictions of particle theories.

23.2 Quarks
• There are three types of fundamental

particles—leptons, quarks, and carrier particles.
• Quarks come in six flavors and three colors and occur

only in combinations that produce white.
• Hadrons are thought to be composed of quarks, with

baryons having three quarks and mesons having a
quark and an antiquark.

• Known particles can be divided into three major
groups—leptons, hadrons, and carrier particles (gauge
bosons).

• All particles of matter have an antimatter counterpart
that has the opposite charge and certain other quantum

numbers. These matter–antimatter pairs are otherwise
very similar but will annihilate when brought together.

• The strong force is carried by eight proposed particles
called gluons, which are intimately connected to a
quantum number called color—their governing theory
is thus called quantum chromodynamics (QCD). Taken
together, QCD and the electroweak theory are widely
accepted as the Standard Model of particle physics.

23.3 The Unification of Forces
• Attempts to show unification of the four forces are

called Grand Unified Theories (GUTs) and have been
partially successful, with connections proven between
EM and weak forces in electroweak theory.

• Unification of the strong force is expected at such high
energies that it cannot be directly tested, but it may
have observable consequences in the as-yet-unobserved
decay of the proton. Although unification of forces is
generally anticipated, much remains to be done to
prove its validity.

CHAPTER REVIEW
Concept Items
23.1 The Four Fundamental Forces
1. What forces does the inverse square law describe?

a. the electromagnetic and weak nuclear force
b. the electromagnetic force and strong nuclear force
c. the electromagnetic force and gravity
d. the strong nuclear force and gravity

2. Do the carrier particles explain the loss of mass in
nuclear decay?
a. no
b. yes

3. What happens to the rate of voltage oscillation within a
synchrotron each time the particle completes a loop?
a. The rate of voltage oscillation increases as the

particle travels faster and faster on each loop.
b. The rate of voltage oscillation decreases as the

particle travels faster and faster on each loop.
c. The rate of voltage oscillation remains the same each

time the particle completes a loop.
d. The rate of voltage oscillation first increases and

then remains constant each time the particle
completes a loop.

4. Which of the four forces is responsible for ionic bonding?
a. electromagnetic force

b. gravity
c. strong force
d. weak nuclear force

5. What type of particle accelerator uses oscillating electric
fields to accelerate particles around a fixed radius track?
a. LINAC
b. synchrotron
c. SLAC
d. Van de Graaff accelerator

23.2 Quarks
6. How does the charge of an individual quark determine

hadron structure?
a. Since the hadron must have an integral value, the

individual quarks must be combined such that the
average of their charges results in the value of a
quark.

b. Since the hadron must have an integral value, the
individual atoms must be combined such that the
sum of their charges is less than zero.

c. The individual quarks must be combined such that
the product of their charges is equal to the total
charge of the hadron structure.

d. Since the hadron must have an integral value of
charge, the individual quarks must be combined
such that the sum of their charges results in an
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integral value.

7. Why do leptons not feel the strong nuclear force?
a. Gluons are the carriers of the strong nuclear force

that interacts between quarks through color
interactions, but leptons are constructed of quarks
that do not have gluons.

b. Gluons are the carriers of the strong nuclear force
that interacts between quarks through mass
interactions, but leptons are not constructed of
quarks and are not massive.

c. Gluons are the carriers of the strong nuclear force
that interacts between quarks through mass
interactions, but leptons are constructed of the
quarks that are not massive.

d. Gluons are the carriers of the strong nuclear force
that interacts between quarks through color
interactions, but leptons are not constructed of
quarks, nor do they have color constituents.

8. What property commonly distinguishes antimatter from
its matter analogue?
a. mass
b. charge
c. energy
d. speed

9. Can the Standard Model change as new information is
gathered?
a. yes
b. no

10. What is the relationship between the Higgs field and the
Higgs boson?
a. The Higgs boson is the carrier that transfers force

for the Higgs field.
b. The Higgs field is the time duration over which the

Higgs particles transfer force to the other particles.
c. The Higgs field is the magnitude of momentum

transferred by the Higgs particles to the other
particles.

d. The Higgs field is the magnitude of torque transfers
by the Higgs particles on the other particles.

11. What were the original three flavors of quarks
discovered?
a. up, down, and charm
b. up, down, and bottom
c. up, down, and strange
d. up, down, and top

12. Protons are more massive than electrons. The three
quarks in the proton account for only a small amount of
this mass difference. What accounts for the remaining
excess mass in protons compared to electrons?
a. The highly energetic gluons connecting the quarks

account for the remaining excess mass in protons
compared to electrons.

b. The highly energetic photons connecting the quarks
account for the remaining excess mass in protons
compared to electrons.

c. The antiparallel orientation of the quarks present in
a proton accounts for the remaining excess mass in
protons compared to electrons.

d. The parallel orientation of the quarks present in a
proton accounts for the remaining excess mass in
protons compared to electrons.

23.3 The Unification of Forces
13. Why is the unification of fundamental forces important?

a. The unification of forces will help us understand
fundamental structures of the universe.

b. The unification of forces will help in the proof of the
graviton.

c. The unification of forces will help in achieving a
speed greater than the speed of light.

d. The unification of forces will help in studying
antimatter particles.

14. Why are scientists unable to model the conditions of the
universe at time periods shortly after the Big Bang?
a. The amount of energy necessary to replicate the

Planck Epoch is too high.
b. The amount of energy necessary to replicate the

Planck Epoch is too low.
c. The volume of setup necessary to replicate the

Planck Epoch is too high.
d. The volume of setup necessary to replicate the

Planck Epoch is too low.

15. What role does proton decay have in the search for
GUTs?
a. Proton decay is a premise of a number of GUTs.
b. Proton decay negates the validity of a number of

GUTs.

16. What is the name for the theory of unification of all four
fundamental forces?
a. the theory of everything
b. the theory of energy-to-mass conversion
c. the theory of relativity
d. the theory of the Big Bang

17. Is it easier for scientists to find evidence for the Grand
Unified Theory or the Theory of Everything? Explain.
a. Theory of Everything, because it requires

of energy
b. Theory of Everything, because it requires

of energy
c. Grand Unified Theory, because it requires
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of energy
d. Grand Unified Theory, because it requires

of energy

Critical Thinking Items
23.1 The Four Fundamental Forces
18. The gravitational force is considered a very weak force.

Yet, it is strong enough to hold Earth in orbit around the
Sun. Explain this apparent disparity.
a. At the level of the Earth-to-Sun distance, gravity is

the strongest acting force because neither the
strong nor the weak nuclear force exists at this
distance.

b. At the level of the Earth-to-Sun distance, gravity is
the strongest acting force because both the strong
and the weak nuclear force is minimal at this
distance.

19. True or False—Given that their carrier particles are
massless, some may argue that the electromagnetic and
gravitational forces should maintain the same value at
all distances from their source. However, both forces
decrease with distance at a rate of
a. false
b. true

20. Why is a stationary target considered inefficient in a
particle accelerator?
a. The stationary target recoils upon particle strike,

thereby transferring much of the particle’s energy
into its motion. As a result, a greater amount of
energy goes into breaking the particle into its
constituent components.

b. The stationary target contains zero kinetic energy,
so it requires more energy to break the particle into
its constituent components.

c. The stationary target contains zero potential
energy, so it requires more energy to break the
particle into its constituent components.

d. The stationary target recoils upon particle strike,
transferring much of the particle’s energy into its
motion. As a result, a lesser amount of energy goes
into breaking the particle into its constituent
components.

21. Compare the total strong nuclear force in a lithium atom
to the total strong nuclear force in a lithium ion .
a. The total strong nuclear force in a lithium atom is

thrice the total strong nuclear force in a lithium
ion.

b. The total strong nuclear force in a lithium atom is
twice the total strong nuclear force in a lithium ion.

c. The total strong nuclear force in a lithium atom is

the same as the total strong nuclear force in a
lithium ion.

d. The total strong nuclear force in a lithium atom is
half the total strong nuclear force in a lithium ion.

23.2 Quarks
22. Explain why it is not possible to find a particle

composed of just two quarks.
a. A particle composed of two quarks will have an

integral charge and a white color. Hence, it cannot
exist.

b. A particle composed of two quarks will have an
integral charge and a color that is not white.
Hence, it cannot exist.

c. A particle composed of two quarks will have a
fractional charge and a white color. Hence, it
cannot exist.

d. A particle composed of two quarks will have a
fractional charge and a color that is not white.
Hence, it cannot exist.

23. Why are mesons considered unstable?
a. Mesons are composites of two antiparticles that

quickly annihilate each other.
b. Mesons are composites of two particles that quickly

annihilate each other.
c. Mesons are composites of a particle and

antiparticle that quickly annihilate each other.
d. Mesons are composites of two particles and one

antiparticle that quickly annihilate each other.

24. Does antimatter have a negative mass?
a. No, antimatter does not have a negative mass.
b. Yes, antimatter does have a negative mass.

25. What similarities exist between the Standard Model and
the periodic table of elements?
a. During their invention, both the Standard Model

and the periodic table organized material by mass.
b. At the times of their invention, both the Standard

Model and the periodic table organized material by
charge.

c. At the times of their invention, both the Standard
Model and the periodic table organized material by
interaction with other available particles.

d. At the times of their invention, both the Standard
Model and the periodic table organized material by
size.

26. How were particle collisions used to provide evidence of
the Higgs boson?
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a. Because some particles do not contain the Higgs
boson, the collisions of such particles will cause
their destruction.

b. Because only the charged particles contain the
Higgs boson, the collisions of such particles will
cause their destruction and will expel the Higgs
boson.

c. Because all particles with mass contain the Higgs
boson, the collisions of such particles will cause
their destruction and will absorb the Higgs boson.

d. Because all particles with mass contain the Higgs
boson, the collisions of such particles will cause
their destruction and will expel the Higgs boson.

27. Explain how the combination of a quark and antiquark
can result in the creation of a hadron.
a. The combination of a quark and antiquark can

result in a particle with an integer charge and color
of white, therefore satisfying the properties for a
hadron.

b. The combination of a quark and antiquark must
result in a particle with a negative charge and color
of white, therefore satisfying the properties for a
hadron.

c. The combination of a quark and antiquark can
result in a particle with an integer charge and color
that is not white, therefore satisfying the
properties for a hadron.

d. The combination of a quark and antiquark can
result in particle with a fractional charge and color
that is not white, therefore satisfying the
properties for a hadron.

23.3 The Unification of Forces
28. Why does the strength of the strong force diminish

under high-energy conditions?
a. Under high-energy conditions, particles

interacting under the strong force will be
compressed closer together. As a result, the force
between them will decrease.

b. Under high-energy conditions, particles
interacting under the strong force will start
oscillating. As a result, the force between them will
increase.

c. Under high-energy conditions, particles
interacting under the strong force will have high

velocity. As a result, the force between them will
decrease.

d. Under high-energy conditions, particles
interacting under the strong force will start moving
randomly. As a result, the force between them will
decrease.

29. If some unknown cause of the red shift, such as light
becoming tired from traveling long distances through
empty space, is discovered, what effect would there be
on cosmology?
a. The effect would be substantial, as the Big Bang is

based on the idea that the red shift is evidence that
galaxies are moving toward one another.

b. The effect would be substantial, as the Big Bang is
based on the idea that the red shift is evidence that
the galaxies are moving away from one another.

c. The effect would be substantial, as the Big Bang is
based on the idea that the red shift is evidence that
galaxies are neither moving away from nor moving
toward one another.

d. The effect would be substantial, as the Big Bang is
based on the idea that the red shift is evidence that
galaxies are sometimes moving away from and
sometimes moving toward one another.

30. How many molecules of water are necessary if scientists
wanted to check the -yr estimate of proton decay
within the course of one calendar year?
a.
b.
c.
d.

31. As energy of interacting particles increases toward the
theory of everything, the gravitational force between
them increases. Why does this occur?
a. As energy increases, the masses of the interacting

particles will increase.
b. As energy increases, the masses of the interacting

particles will decrease.
c. As energy increases, the masses of the interacting

particles will remain constant.
d. As energy increases, the masses of the interacting

particles starts changing (increasing or
decreasing). As a result, the gravitational force
between the particles will increase.
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Performance Task
23.3 The Unification of Forces
32. Communication is an often overlooked and useful skill

for a scientist, especially in a competitive field where
financial resources are limited. Scientists are often
required to explain their findings or the relevance of
their work to agencies within the government in order
to maintain funding to continue their research. Let’s say
you are an ambitious young particle physicist, heading
an expensive project, and you need to justify its
existence to the appropriate funding agency. Write a
brief paper (about one page) explaining why molecular-
level structure is important in the functioning of
designed materials in a specific industry.

• First, think of an industry where molecular-level
structure is important.

• Research what materials are used in that industry
as well as what are the desired properties of the
materials.

• What molecular-level characteristics lead to what
properties?

One example would be explaining how flexible but
durable materials are made up of long-chained
molecules and how this is useful for finding more
environmentally friendly alternatives to plastics.
Another example is explaining why electrically
conductive materials are often made of metal and how
this is useful for developing better batteries.

TEST PREP
Multiple Choice
23.1 The Four Fundamental Forces
33. Which of the following is not one of the four

fundamental forces?
a. gravity
b. friction
c. strong nuclear
d. electromagnetic

34. What type of carrier particle has not yet been found?
a. gravitons
b. bosons
c. bosons
d. pions

35. What effect does an increase in electric potential have
on the accelerating capacity of a Van de Graaff
generator?
a. It increases accelerating capacity.
b. It decreases accelerating capacity.
c. The accelerating capacity of a Van de Graaff

generator is constant regardless of electric
potential.

d. Van de Graaff generators do not have the capacity
to accelerate particles.

36. What force or forces exist between a proton and a
second proton?
a. The weak electrostatic force and strong magnetic

force
b. The weak electrostatic and strong gravitational

force
c. The weak frictional force and strong gravitational

force
d. The weak nuclear force, the strong nuclear force,

and the electromagnetic force

23.2 Quarks
37. To what color must quarks combine for a particle to be

constructed?
a. black
b. green
c. red
d. white

38. What type of hadron is always constructed partially of
an antiquark?
a. baryon
b. lepton
c. meson
d. photno

39. What particle is typically released when two particles
annihilate?
a. graviton
b. antimatter
c. pion
d. photno

40. Which of the following categories is not one of the three
main categories of the Standard Model?
a. gauge bosons
b. hadrons
c. leptons
d. quarks

41. Analysis of what particles began the search for the Higgs
boson?
a. W and Z bosons
b. up and down quarks
c. mesons and baryons
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d. neutrinos and photons

42. What similarities exist between the discovery of the
quark and the discovery of the neutron?
a. Both the quark and the neutron were discovered by

launching charged particles through an unknown
structure and observing the particle recoil.

b. Both the quark and the neutron were discovered by
launching electrically neutral particles through an
unknown structure and observing the particle
recoil.

c. Both quarks and neutrons were discovered by
studying their deflection under an electric field.

23.3 The Unification of Forces
43. Which two forces were first combined, signifying the

eventual desire for a Grand Unified Theory?
a. electric force and magnetic forces
b. electric force and weak nuclear force
c. gravitational force and the weak nuclear force
d. electroweak force and strong nuclear force

44. After the Big Bang, what was the first force to separate
from the others?
a. electromagnetic force
b. gravity
c. strong nuclear force
d. weak nuclear force

45. What is the name of the device used by scientists to
check for proton decay?
a. the cyclotron
b. the Large Hadron Collider
c. the Super-Kamiokande
d. the synchrotron

46. How do Feynman diagrams suggest the Grand Unified
Theory?
a. The electromagnetic, weak, and strong nuclear

forces all have similar Feynman diagrams.
b. The electromagnetic, weak, and gravitational forces

all have similar Feynman diagrams.
c. The electromagnetic, weak, and strong forces all

have different Feynman diagrams.

Short Answer
23.1 The Four Fundamental Forces
47. Why do people tend to be more aware of the

gravitational and electromagnetic forces than the strong
and weak nuclear forces?
a. The gravitational and electromagnetic forces act at

short ranges, while strong and weak nuclear forces
act at comparatively long range.

b. The strong and weak nuclear forces act at short
ranges, while gravitational and electromagnetic
forces act at comparatively long range.

c. The strong and weak nuclear forces act between all
objects, while gravitational and electromagnetic
forces act between smaller objects.

d. The strong and weak nuclear forces exist in outer
space, while gravitational and electromagnetic
forces exist everywhere.

48. What fundamental force is responsible for the force of
friction?
a. the electromagnetic force
b. the strong nuclear force
c. the weak nuclear force

49. How do carrier particles relate to the concept of a force
field?
a. Carrier particles carry mass from one location to

another within a force field.
b. Carrier particles carry force from one location to

another within a force field.

c. Carrier particles carry charge from one location to
another within a force field.

d. Carrier particles carry volume from one location to
another within a force field.

50. Which carrier particle is transmitted solely between
nucleons?
a. graviton
b. photon
c. pion
d. W and Z bosons

51. Two particles of the same mass are traveling at the same
speed but in opposite directions when they collide head-
on.
What is the final kinetic energy of this two-particle
system?
a. infinite
b. the sum of the kinetic energies of the two particles
c. zero
d. the product of the kinetic energies of the two

particles

52. Why do colliding beams result in the location of smaller
particles?
a. Colliding beams create energy, allowing more

energy to be used to separate the colliding
particles.

b. Colliding beams lower the energy of the system, so
it requires less energy to separate the colliding
particles.

c. Colliding beams reduce energy loss, so less energy
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is required to separate colliding particles.
d. Colliding beams reduce energy loss, allowing more

energy to be used to separate the colliding
particles.

23.2 Quarks
53. What two features of quarks determine the structure of

a particle?
a. the color and charge of individual quarks
b. the color and size of individual quarks
c. the charge and size of individual quarks
d. the charge and mass of individual quarks

54. What fundamental force does quantum
chromodynamics describe?
a. the weak nuclear force
b. the strong nuclear force
c. the electromagnetic force
d. the gravitational force

55. Is it possible for a baryon to be constructed of two
quarks and an antiquark?
a. Yes, the color of the three particles would be able to

sum to white.
b. No, the color of the three particles would not be

able to sum to white.

56. Can baryons be more massive than mesons?
a. no
b. yes

57. If antimatter exists, why is it so difficult to find?
a. There is a smaller amount of antimatter than

matter in the universe; antimatter is quickly
annihilated by its matter analogue.

b. There is a smaller amount of matter than
antimatter in the universe; matter is annihilated by
its antimatter analogue.

c. There is a smaller amount of antimatter than
matter in universe; antimatter and its matter
analogue coexist.

d. There is a smaller amount of matter than
antimatter in the universe; matter and its
antimatter analogue coexist.

58. Does a neutron have an antimatter counterpart?
a. No, the antineutron does not exist.
b. Yes, the antineutron does exist.

59. How are the four fundamental forces incorporated into
the Standard Model of the atom?
a. The four fundamental forces are represented by

their carrier particles, the electrons.
b. The four fundamental forces are represented by

their carrier particles, the gauge bosons.

c. The four fundamental forces are represented by
their carrier particles, the leptons.

d. The four fundamental forces are represented by
their carrier particles, the quarks.

60. Which particles in the Standard Model account for the
majority of matter with which we are familiar?
a. particles in fourth column of the Standard Model
b. particles in third column of the Standard Model
c. particles in the second column of the Standard

Model
d. particles in the first column of the Standard Model

61. How can a particle gain mass by traveling through the
Higgs field?
a. The Higgs field slows down passing particles; the

decrease in kinetic energy is transferred to the
particle’s mass.

b. The Higgs field accelerates passing particles; the
decrease in kinetic energy is transferred to the
particle’s mass.

c. The Higgs field slows down passing particles; the
increase in kinetic energy is transferred to the
particle’s mass.

d. The Higgs field accelerates passing particles; the
increase in kinetic energy is transferred to the
particle’s mass.

62. How does mass-energy conservation relate to the Higgs
field?
a. The increase in a particle’s energy when traveling

through the Higgs field is countered by its increase
in mass.

b. The decrease in a particle’s kinetic energy when
traveling through the Higgs field is countered by its
increase in mass.

c. The decrease in a particle’s energy when traveling
through the Higgs field is countered by its decrease
in mass.

d. The increase in a particle’s energy when traveling
through the Higgs field is countered by its decrease
in mass.

23.3 The Unification of Forces
63. Why do scientists believe that the strong nuclear force

and the electroweak force will combine under high
energies?
a. The electroweak force will have greater strength.
b. The strong nuclear force and electroweak force will

achieve the same strength.
c. The strong nuclear force will have greater strength.

64. At what energy will the strong nuclear force
theoretically unite with the electroweak force?
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a.
b.
c.
d.

65. While we can demonstrate the unification of certain
forces within the laboratory, for how long were the four
forces naturally unified within the universe?
a.
b.
c.
d.

66. How does the search for the Grand Unified Theory help
test the standard cosmological model?
a. Scientists are increasing energy in the lab that

models the energy in earlier, denser stages of the
universe.

b. Scientists are increasing energy in the lab that
models the energy in earlier, less dense stages of
the universe.

c. Scientists are decreasing energy in the lab that
models the energy in earlier, denser stages of the
universe.

d. Scientists are decreasing energy in the lab that

models the energy in earlier, less dense stages of
the universe.

67. Why does finding proof that protons do not decay not
disprove all GUTs?
a. Proton decay is not a premise of all GUTs, and

current GUTs can be amended in response to new
findings.

b. Proton decay is a premise of all GUTs, but current
GUTs can be amended in response to new findings.

68. When accelerating elementary particles in a particle
accelerator, they quickly achieve a speed approaching
the speed of light. However, as time continues, the
particles maintain this speed yet continue to increase
their kinetic energy. How is this possible?
a. The speed remains the same, but the masses of the

particles increase.
b. The speed remains the same, but the masses of the

particles decrease.
c. The speed remains the same, and the masses of the

particles remain the same.
d. The speed and masses will remain the same, but

temperature will increase.

Extended Response
23.1 The Four Fundamental Forces
69. If the strong attractive force is the greatest of the four

fundamental forces, are all masses fated to combine
together at some point in the future? Explain.
a. No, the strong attractive force acts only at

incredibly small distances. As a result, only masses
close enough to be within its range will combine.

b. No, the strong attractive force acts only at large
distances. As a result, only masses far enough apart
will combine.

c. Yes, the strong attractive force acts at any distance.
As a result, all masses are fated to combine
together at some point in the future.

d. Yes, the strong attractive force acts at large
distances. As a result, all masses are fated
tocombine together at some point in the future.

70. How does the discussion of carrier particles relate to the
concept of relativity?
a. Calculations of mass and energy during their

transfer are relativistic, because carrier particles
travel more slowly than the speed of sound.

b. Calculations of mass and energy during their
transfer are relativistic, because carrier particles
travel at or near the speed of light.

c. Calculations of mass and energy during their
transfer are relativistic, because carrier particles
travel at or near the speed of sound.

d. Calculations of mass and energy during their
transfer are relativistic, because carrier particles
travel faster than the speed of light.

71. Why are synchrotrons constructed to be very large?
a. By using a large radius, high particle velocities can

be achieved using a large centripetal force created
by large electromagnets.

b. By using a large radius, high particle velocities can
be achieved without a large centripetal force
created by large electromagnets.

c. By using a large radius, the velocities of particles
can be reduced without a large centripetal force
created by large electromagnets.

d. By using a large radius, the acceleration of particles
can be decreased without a large centripetal force
created by large electromagnets.

23.2 Quarks
72. In this image, how does the emission of the gluon cause

the down quark to change from a red color to a green
color?
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a. The emitted red gluon is made up of a green and a
red color. As a result, the down quark changes from
a red color to a green color.

b. The emitted red gluon is made up of an anti-green
and an anti-red color. As a result, the down quark
changes from a red color to a green color.

c. The emitted red gluon is made up of a green and an
anti-red color. As a result, the down quark changes
from a red color to a green color.

d. The emitted red gluon is made up of an anti-green
and a red color. As a result, the down quark
changes from a red color to a green color.

73. Neutrinos are much more difficult for scientists to find
when compared to other hadrons and leptons. Why is
this?
a. Neutrinos are hadrons, and they lack charge.
b. Neutrinos are not hadrons, and they lack charge.
c. Neutrinos are hadrons, and they have positive

charge.
d. Neutrinos are not hadrons, and they have a positive

charge.

74. What happens to the masses of a particle and its
antiparticle when the two annihilate at low energies?
a. The masses of the particle and antiparticle are

transformed into energy in the form of photons.
b. The masses of the particle and antiparticle are

converted into kinetic energy of the particle and
antiparticle respectively.

c. The mass of the antiparticle is converted into
kinetic energy of the particle.

d. The mass of the particle is converted into radiation
energy of the antiparticle.

75. When a star erupts in a supernova explosion, huge
numbers of electron neutrinos are formed in nuclear
reactions. Such neutrinos from the 1987A supernova in
the relatively nearby Magellanic Cloud were observed
within hours of the initial brightening, indicating that
they traveled to earth at approximately the speed of
light. Explain how this data can be used to set an upper
limit on the mass of the neutrino.

a. If the velocity of the neutrino is known, then the
upper limit on mass of the neutrino can be set.

b. If only the kinetic energy of the neutrino is known,
then the upper limit on mass of the neutrino can be
set.

c. If either the velocity or the kinetic energy is known,
then the upper limit on the mass of the neutrino
can be set.

d. If both the kinetic energy and the velocity of the
neutrino are known, then the upper limit on the
mass of the neutrino can be set.

76. The term force carrier particle is shorthand for the
scientific term vector gauge boson. From that
perspective, can the Higgs boson truly be considered a
force carrier particle?
a. No, the mass quality provided by the Higgs boson is

a scalar quantity.
b. Yes, the mass quality provided by the Higgs boson

results in a change of particle’s direction.

23.3 The Unification of Forces
77. If a Grand Unified Theory is proven and the four forces

are unified, it will still be correct to say that the orbit of
the Moon is determined by the gravitational force.
Explain why.
a. Gravity will not be a property of the unified force.
b. Gravity will be one property of the unified force.
c. Apart from gravity, no other force depends on the

mass of the object.
d. Apart from gravity, no other force can make an

object move in a fixed orbit.

78. As the universe expanded and temperatures dropped,
the strong nuclear force separated from the electroweak
force. Is it likely that under cooler conditions, the force
of electricity will separate from the force of magnetism?
a. No, the electric force relies on the magnetic force

and vice versa.
b. Yes, the electric and magnetic forces can be

separated from each other.

79. Two pool balls collide head-on and stop. Their original
kinetic energy is converted to heat and sound. Given
that this is not possible for particles, what happens to
their converted energy?
a. The kinetic energy is converted into relativistic

potential energy, governed by the equation
.

b. The kinetic energy is converted into relativistic
mass, governed by the equation .

c. The kinetic energy is converted into relativistic
potential energy, governed by the equation

.
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d. Their kinetic energy is converted into relativistic mass, governed by the equation .

806 Chapter 23 • Test Prep

Access for free at openstax.org.



APPENDIX A
Reference Tables

Figure A1 Periodic Table of Elements

Prefix Symbol Value Prefix Symbol Value

tera T 1012 deci d 10–1

giga G 109 centi c 10–2

mega M 106 milli m 10–3

kilo k 103 micro µ 10–6

hecto h 102 nano n 10–9

deka da 101 pico p 10–12

Table A1 Metric Prefixes for Powers of Ten and Their Symbols
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Prefix Symbol Value Prefix Symbol Value

___ 100 femto f 10–15

Table A1 Metric Prefixes for Powers of Ten and Their Symbols

Entity Abbreviation Name

Fundamental units Length m meter

Mass kg kilogram

Time s second

Current A ampere

Supplementary unit Angle rad radian

Derived units Force newton

Energy joule

Power watt

Pressure pascal

Frequency hertz

Electronic potential volt

Capacitance farad

Charge coulomb

Resistance ohm

Magnetic field tesla

Nuclear decay rate becquerel

Table A2 SI Units

Length 1 inch (in.) = 2.54 cm (exactly)

1 foot (ft) = 0.3048 m

1 mile (mi) = 1.609 km

Table A3 Selected British Units
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Force 1 pound (lb) = 4.448 N

Energy 1 British thermal unit (Btu) = 1.055 × 103 J

Power 1 horsepower (hp) = 746 W

Pressure 1 lb/in2 = 6.895 × 103 Pa

Table A3 Selected British Units

Length 1 light year (ly) = 9.46 × 1015 m

1 astronomical unit (au) = 1.50 × 1011 m

1 nautical mile = 1.852 km

1 angstrom(Å) = 10-10 m

Area 1 acre (ac) = 4.05 × 103 m2

1 square foot (ft2) 9.29 × 10-2 m3

1 barn (b) = 10-28 m2

Volume 1 liter (L) = 10-3 m3

1 U.S. gallon (gal) = 3.785 × 10-3 m3

Mass 1 solar mass = 1.99 × 1030 kg

1 metric ton = 103 kg

1 atomic mass unit (u) = 1.6605 × 10-27 kg

Time 1 year (y) = 3.16 × 107 s

1 day (d) = 86,400 s

Speed 1 mile per hour (mph) = 1.609 km / h

1 nautical mile per hour (naut) = 1.852 km / h

Angle 1 degree (°) = 1.745x10-2 rad

1 minute of arc (') = 1 / 60 degree

1 second of arc ('') = 1 / 60 minute of arc

1 grad = 1.571 × 10-2 rad

Table A4 Other Units
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Energy 1 kiloton TNT (kT) = 4.2 × 1012 J

1 kilowatt hour (kW h) = 3.60 × 106 J

1 food calorie (kcal) = 4186 J

1 calorie (cal) = 4.186 J

1 electron volt (cV) = 1.60 × 10-19 J

Pressure 1 atmosphere (atm) = 1.013 × 105 Pa

1 millimeter of mercury (mm Hg) = 133.3 Pa

1 torricelli (torr) = 1 mm Hg = 133.3 Pa

Nuclear decay rate 1 curie (Ci) = 3.70 × 1010 Bq

Table A4 Other Units

Circumference of a circle with radius r or diameter d

Area of a circle with radius r or diameter d

Area of a sphere with radius r

Volume of a sphere with radius r

Table A5 Useful formulae

Symbol Meaning Best Value Approximate Value

c Speed of light in vacuum

G Gravitational constant

NA Avogadro’s number

k Boltzmann’s constant

R Gas constant

σ Stefan-Boltzmann
Constant

k Coulomb force constant

Table A6 Important Constants
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Symbol Meaning Best Value Approximate Value

qe Charge on electron

ε0 Permittivity of free space

µ0 Permeability of free space

h Planck’s constant

Table A6 Important Constants

Alpha

Beta

Gamma

Delta

Epsilon

Zeta

Eta

Theta

Iota

Kappa

Lambda

Mu

Nu

Xi

Omicron

Pi

Rho

Sigma

Tau

Table A7 The Greek
Alphabet
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Upsilon

Phi

Chi

Psi

Omega

Table A7 The Greek
Alphabet

Sun mass 1.99 × 1030 kg

average radius 6.96 × 108 m

Earth-sun distance (average) 1.496 × 1011 m

Earth mass 5.9736 × 1024 kg

average radius 6.376 × 106 m

orbital period 3.16 × 107 s

Moon mass 7.35 × 1022 kg

average radius 1.74 × 106 s

orbital period (average) 2.36 × 106 s

Earth-moon distance (average) 3.84 × 108 m

Table A8 Solar System Data

Atomic
number, Z

Name
Atomic Mass
Number, A

Symbol
Atomic

Mass (u)
Percent Abundance or

Decay Mode
Half-

life, t1/2

0 neutron 1 n 1.008 665 β– 10.37
min

1 Hydrogen 1 1H 1.007 825 99.985%

Deuterium 2 2H or D 2.014 102 0.015%

Tritium 3 3H or T 3.016 050 β– 12.33 y

2 Helium 3 3He 3.016 030 1.38 × 10−4 %

Table A9 Atomic Masses and Decay
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Atomic
number, Z

Name
Atomic Mass
Number, A

Symbol
Atomic

Mass (u)
Percent Abundance or

Decay Mode
Half-

life, t1/2

4 4He 4.002 603 ≈100%

3 Lithium 6 6Li 6.015 121 7.5%

7 7Li 7.016 003 92.5%

4 Beryllium 7 7Be 7.016 928 EC 53.29 d

9 9Be 9.012 182 100%

5 Boron 10 10B 10.012 937 19.9%

11 11B 11.009 305 80.1%

6 Carbon 11 11C 11.011 432 EC, β+

12 12C 12.000 000 98.90%

13 13C 13.003 355 1.10%

14 14C 14.003 241 β– 5730 y

7 Nitrogen 13 12N 13.005 738 β+ 9.96 min

14 13N 14.003 074 99.63%

15 14N 15.000 108 0.37%

8 Oxygen 15 15O 15.003 065 EC, β+ 122 s

16 16O 15.994 915 99.76%

18 18O 17.999 160 0.200%

9 Fluorine 18 18F 18.000 937 EC, β+ 1.83 h

19 19F 18.998 403 100%

10 Neon 20 20Ne 19.992 435 90.51%

22 22Ne 21.991 383 9.22%

11 Sodium 22 22Na 21.994 434 β+ 2.602 y

23 23Na 22.989 767 100%

24 24Na 23.990 961 β– 14.96 h

Table A9 Atomic Masses and Decay
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Atomic
number, Z

Name
Atomic Mass
Number, A

Symbol
Atomic

Mass (u)
Percent Abundance or

Decay Mode
Half-

life, t1/2

12 Magnesium 24 24Mg 23.985 042 78.99%

13 Aluminum 27 27Al 26.981 539 100%

14 Silicon 28 28Si 27.976 927 92.23% 2.62h

31 31Si 30.975 362 β–

15 Phosphorus 31 31P 30.973 762 100%

32 32P 31.973 907 β– 14.28 d

16 Sulfur 32 32S 31.972 070 95.02%

35 35S 34.969 031 β– 87.4 d

17 Chlorine 35 35Cl 34.968 852 75.77%

37 37Cl 36.965 903 24.23%

18 Argon 40 40Ar 39.962 384 99.60%

19 Potassium 39 39K 38.963 707 93.26%

40 40K 39.963 999 0.0117%, EC, β– 1.28 × 109

y

20 Calcium 40 40Ca 39.962 591 96.94%

21 Scandium 45 45Sc 44.955 910 100%

22 Titanium 48 48Ti 47.947 947 73.8%

23 Vanadium 51 51V 50.943 962 99.75%

24 Chromium 52 52Cr 51.940 509 83.79%

25 Manganese 55 55Mn 54.938 047 100%

26 Iron 56 56Fe 55.934 939 91.72%

27 Cobalt 59 59Co 58.933 198 100%

60 60Co 59.933 819 β– 5.271 y

28 Nickel 58 58Ni 57.935 346 68.27%

Table A9 Atomic Masses and Decay
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Atomic
number, Z

Name
Atomic Mass
Number, A

Symbol
Atomic

Mass (u)
Percent Abundance or

Decay Mode
Half-

life, t1/2

60 60Ni 59.930 788 26.10%

29 Copper 63 63Cu 62.939 598 69.17%

65Cu 64.927 793 30.83%

30 Zinc 64 64Zn 63.929 145 48.6%

66 66Zn 65.926 034 27.9%

31 Gallium 69 69Ga 68.925 580 60.1%

32 Germanium 72 72Ge 71.922 079 27.4%

74 74Ge 73.921 177 36.5%

33 Arsenic 75 75As 74.921 594 100%

34 Selenium 80 80Se 79.916 520 49.7%

35 Bromine 79 79Br 78.918 336 50.69%

36 Krypton 84 84Kr 83.911 507 57.0%

37 Rubidium 85 85Rb 84.911 794 72.17%

38 Strontium 86 86Sr 85.909 267 9.86%

88 88Sr 87.905 619 82.58%

90 90Sr 89.907 738 β– 28.8 y

39 Yttrium 89 89Y 88.905 849 100%

90 90Y 89.907 152 β– 64.1 h

40 Zirconium 90 90Zr 89.904 703 51.45%

41 Niobium 93 93Nb 92.906 377 100%

42 Molybdenum 98 98Mo 97.905 406 24.13%

43 Technetium 98 98Tc 97.907 215 β– 4.2 × 106

y

44 Ruthenium 102 102Ru 101.904 348 31.6%

Table A9 Atomic Masses and Decay
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Atomic
number, Z

Name
Atomic Mass
Number, A

Symbol
Atomic

Mass (u)
Percent Abundance or

Decay Mode
Half-

life, t1/2

45 Rhodium 103 103Rh 102.905 500 100%

46 Palladium 106 106Pd 105.903 478 27.33%

47 Silver 107 107Ag 106.905 092 51.84%

109 109Ag 108.904 757 48.16%

48 Cadmium 114 114Cd 113.903 357 28.73%

49 Indium 115 115In 114.903 880 95.7%, β– 4.4 × 1014

y

50 Tin 120 120Sn 119.902 200 32.59%

51 Antimony 121 121Sb 120.903 821 57.3%

52 Tellurium 130 130Te 129.906 229 33.8%, β– 2.5 × 1021

y

53 Iodine 127 127I 126.904 473 100%

131 131I 130.906 114 β– 8.040 d

54 Xenon 132 132Xe 131.904 144 26.9%

136 136Xe 135.907 214 8.9%

55 Cesium 133 133Cs 132.905 429 100%

134 134Cs 133.906 696 EC, β– 2.06 y

56 Barium 137 137Ba 136.905 812 11.23%

138 138Ba 137.905 232 71.70%

57 Lanthanum 139 139La 138.906 346 99.91%

58 Cerium 140 140Ce 139.905 433 88.48%

59 Praseodymium 141 141Pr 140.907 647 100%

60 Neodymium 142 142Nd 141.907 719 27.13%

61 Promethium 145 145Pm 144.912 743 EC, α 17.7 y

62 Samarium 152 152Sm 151.919 729 26.7%

Table A9 Atomic Masses and Decay
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Atomic
number, Z

Name
Atomic Mass
Number, A

Symbol
Atomic

Mass (u)
Percent Abundance or

Decay Mode
Half-

life, t1/2

63 Europium 153 153Eu 152.921 225 52.2%

64 Gadolinium 158 158Gd 157.924 099 24.84%

65 Terbium 159 159Tb 158.925 342 100%

66 Dysprosium 164 164Dy 163.929 171 28.2%

67 Holmium 165 165Ho 164.930 319 100%

68 Erbium 166 166Ho 165.930 290 33.6%

69 Thulium 169 169Tm 168.934 212 100%

70 Ytterbium 174 174Yb 173.938 859 31.8%

71 Lutecium 175 175Lu 174.940 770 97.41%

72 Hafnium 180 180Hf 179.946 545 35.10%

73 Tantalum 181 181Ta 180.947 992 99.98%

74 Tungsten 184 184W 183.950 928 30.67%

75 Rhenium 187 187Re 186.955 744 62.6%, β– 4.6 ×
1010y

76 Osmium 191 191Os 190.960 920 β– 15.4 d

192 192Os 191.961 467 41.0%

77 Iridium 191 191Ir 190.960 584 37.3%

193 193Ir 192.962 917 62.7%

78 Platinum 195 195Pt 194.964 766 33.8%

79 Gold 197 197Au 196.966 543 100%

198 198Au 197.968 217 β– 2.696 d

80 Mercury 199 199Hg 198.968 253 16.87%

202 202Hg 201.970 617 29.86%

81 Thallium 205 205Tl 204.974 401 70.48%

Table A9 Atomic Masses and Decay
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Atomic
number, Z

Name
Atomic Mass
Number, A

Symbol
Atomic

Mass (u)
Percent Abundance or

Decay Mode
Half-

life, t1/2

82 Lead 206 206Pb 205.974 440 24.1%

207 207Pb 206.975 872 22.1%

208 208Pb 207.976 627 52.4%

210 210Pb 209.984 163 α, β– 22.3 y

211 211Pb 210.988 735 β– 36.1 min

212 212Pb 211.991 871 β– 10.64 h

83 Bismuth 209 209Bi 208.980 374 100%

211 211Bi 210.987 255 α, β– 2.14 min

84 Polonium 210 210Po 209.982 848 α 138.38 d

85 Astatine 218 218At 218.008 684 α, β– 1.6 s

86 Radon 222 222Rn 222.017 570 α 3.82 d

87 Francium 2 223 223Fr 223.019 733 α, β– 21.8 min

88 Radium 226 226Ra
226.025
402

α 1.60 × 103

y

89 Actinium 227 227Ac 227.027 750 α, β– 21.8 y

90 Thorium 228 228Th 228.028 715 α 1.91 y

232 232Th 232.038 054 100%, α 1.41 ×
1010 y

91 Protactinium 231 231Pa 231.035 880 α 3.28 × 104

y

92 Uranium 233 233U 233.039 628 α 1.59 × 103

y

235 235U 235.043 924 0.720%, α 7.04 ×
108 y

236 236U 236.045 562 α 2.34 × 107

y

Table A9 Atomic Masses and Decay
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Atomic
number, Z

Name
Atomic Mass
Number, A

Symbol
Atomic

Mass (u)
Percent Abundance or

Decay Mode
Half-

life, t1/2

238 238U 238.050 784 99.2745%, α 4.47 × 109

y

239 239U 239.054 289 β– 23.5 min

93 Neptunium 239 239Np 239.052 933 β– 2.355 d

94 Plutonium 239 239Pu 239.052 157 α 2.41 × 104

y

95 Americium 243 243Am 243.061 375 α, fission
7.37 × 103

y

96 Curium 245 245Cm 245.065 483 α 8.50 ×
103 y

97 Berkelium 245 247Bk
247.070
300

α 1.38 × 103

y

98 Californium 249 249Cf 249.074 844 α 351 y

99 Einsteinium 254 254Es 254.088 019 α, β– 276 d

100 Fermium 253 253Fm 253.085 173 EC, α 3.00 d

101 Mendelevium 255 255Md 255.091 081 EC, α 27 min

102 Nobelium 255 255No 255.093 260 EC, α 3.1 min

103 Lawrencium 257 257Lr 257.099 480 EC, α 0.646 s

104 Rutherfordium 261 261Rf 261.108 690 α 1.08
mim

105 Dubnium 262 262Db 262.113 760 α, fission 34 s

106 Seaborgium 263 263Sg 263.11 86 α, fission 0.8 s

107 Bohrium 262 262Bh 262.123 1 α 0.102 s

108 Hassium 264 264Hs 264.128 5 α 0.08 ms

108 Meitnerium 266 266Mt 266.137 8 α 3.4 ms

Table A9 Atomic Masses and Decay
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Isotope t1/2 Decay Mode Energy(MeV) Percent T-Ray Energy(MeV) Percent

3H 12.33 y β– 0.0186 100%

14C 5730 y β– 0.156 100%

13N 9.96 min β+ 1.20 100%

22Na 2.602 y β+ 1.20 90% γ 1.27 100%

32P 14.28 d β– 1.71 100%

35S 87.4 d β– 0.167 100%

36Ci 3.00 × 105 y β– 0.710 100%

40K 1.28 × 109 y β– 1.31 89%

43K 22.3 h β– 0.827 87% γs 0.373 87%

0.618 87%

45Ca 165 d β– 0.257 100%

51Cr 27.70 d EC γ 0.320 10%

52Mn 5.59d β+ 3.69 28% γ s 1.33 28%

1.43 28%

52Fe 8.27 h β+ 1.80 43% 0.169 43%

0.378 43%

59Fe 44.6 d β– s 0.273 45% γ s 1.10 57%

0.466 55% 1.29 43%

60Co 5.271 y β– 0.318 100% γ s 1.17 100%

1.33 100%

65Zn 244.1 d EC γ 1.12 51%

67Ga 78.3 h EC γ s 0.0933 70%

0.185 35%

0.300 19%

Table A10 Selected Radioactive Isotopes
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Isotope t1/2 Decay Mode Energy(MeV) Percent T-Ray Energy(MeV) Percent

others

75Se 118.5 d EC γ s 0.121 20%

0.136 65%

0.265 68%

0.280 20%

others

86Rb 18.8 d β– s 0.69 9% γ 1.08 9%

1.77 91%

85Sr 64.8 d EC γ 0.514 1 100%

90Sr 28.8 y β– 0.546 100%

90Y 64.1 h β– 2.28 100%

99mTc 6.02 h IT γ 0.142 100%

113mIn 99.5 min IT γ 0.392 100%

123I 13.0 h EC γ 0.159 ≈100%

131I 8.040 d β– s 0.248 7% γ s 0.364 85%

0.607 93% others

others

129Cs 32.3 h EC γ s 0.0400 35%

0.372 32%

0.411 25%

others

137Cs 30.17 y β– s 0.511 95% γ 0.662 95%

1.17 5%

140Ba 12.79 d β– 1.035 ≈100% γ s 0.030 25%

Table A10 Selected Radioactive Isotopes
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Isotope t1/2 Decay Mode Energy(MeV) Percent T-Ray Energy(MeV) Percent

0.044 65%

0.537 24%

others

198Au 2.696 d β– 1.161 ≈100% γ 0.412 ≈100%

197Hg 64.1 h EC γ 0.0733 100%

210Po 138.38 d α 5.41 100%

226Ra 1.60 × 103 y αs 4.68 5% γ 0.186 1 100%

4.87 95%

235U 7.038 × 108 y α 4.68 ≈100% γ s Numerous <0.400%

238U 4.468 × 109 y αs 4.22 23% γ 0.050 23%

4.27 77%

237Np 2.14 × 106 y αs numerous γ s numerous <0.250%

4.96 (max.)

239Pu 2.41 × 104 y αs 5.19 11% γ s 7.5 × 10-5 73%

5.23 15% 0.013 15%

5.24 73% 0.052 15%

others

243Am 7.37 × 103 y αs Max. 5.44 γ s 0.075

5.37 88% others

5.32 11%

others

Table A10 Selected Radioactive Isotopes

Symbol Meaning Best Value Approximate Value

me Electron mass 9.10938291(40) × 10–31 kg 9.11 × 10–31 kg

Table A11 Submicroscopic masses
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Symbol Meaning Best Value Approximate Value

mp Proton mass 1.672621777(74) × 10–27 kg 1.6726 × 10–27 kg

mn Neutron mass 1.674927351(74) × 10–27 kg 1.6749 × 10–27 kg

u Atomic mass unit 1.660538921(73) × 10–27 kg 1.6605 × 10–27 kg

Table A11 Submicroscopic masses

Substance p(kg/m3) Substance p(kg/m3)

Air 1.29 Iron 7.86 × 103

Air (at 20°C and Atmospheric pressure) 1.20 Lead 11.3 × 103

Aluminum 2.70 × 103 Mercury 13.6 × 103

Benzene 0.879 × 103 Nitrogen gas 1.25

Brass 8.4 × 103 Oak 0.710 × 103

Copper 8.92 × 103 Osmium 22.6 × 103

Ethyl alcohol 0.806 × 103 Oxygen gas 1.43

Fresh water 1.00 × 103 Pine 0.373 × 103

Glycerin 1.26 × 103 Platinum 21.4 × 103

Gold 1.93 × 103 Seawater 1.03 × 103

Helium gas 1.79 × 10–1 Silver 10.5 × 103

Hydrogen gas 8.99 × 10–2 Tin 7.30 × 103

Ice 0.917 × 103 Uranium 18.7 × 103

Table A12 Densities of common substances (including water at various temperatures)

Substance Specific Heat (J/kg °C) Substance Specific Heat (J/kg °C)

Elemental solids Other solids

Aluminum 900 Brass 380

Beryllium 1830 Glass 837

Cadmium 230 Ice (–5 °C) 2090

Table A13 Specific heats of common substances
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Substance Specific Heat (J/kg °C) Substance Specific Heat (J/kg °C)

Copper 387 Marble 860

Germanium 322 Wood 1700

Gold 129 Liquids

Iron 448 Alcohol (ethyl) 2400

Lead 128 Mercury 140

Silicon 703 Water (15 °C) 4186

Silver 234 Gas

Steam (100 °C) 2010

Note: To convert values to units of cal/g °C, divide by 4186

Table A13 Specific heats of common substances

Substance
Melting Point

(°C)
Latent Heat of Fusion

(J/kg)
Boiling Point

(°C)
Latent Heat of Vaporization

(J/kg)

Helium –272.2 5.23 × 103 –268.93 2.09 × 104

Oxygen –218.79 1.38 × 104 –182.97 2.13 × 105

Nitrogen –209.97 2.55 × 104 –195.81 2.01 × 105

Ethyl
Alcohol

–114 1.04 × 105 78 8.54 × 105

Water 0.00 3.33 × 105 100.00 2.26 × 106

Sulfur 119 3.81 × 104 444.60 2.90 × 105

Lead 327.3 3.97 × 105 1750 8.70 × 105

Aluminum 660 3.97 × 105 2516 1.05 × 107

Silver 960.80 8.82 × 104 2162 2.33 × 106

Gold 1063.00 6.44 × 104 2856 1.58 × 106

Copper 1083 1.34 × 105 2562 5.06 × 106

Table A14 Heats of fusion and vaporization for common substances
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Materials
(Solids)

Average Linear Expansion
Coefficient (a)(°C)–1

Material (Liquids
and Gases)

Average Volume Expansion
Coefficient (B)(°C)–1

Aluminum 24 × 10–6 Acetone 1.5 × 10–4

Brass and
Bronze

19 × 10–6 Alcohol, ethyl 1.12 × 10–4

Concrete 12 × 10–6 Benzene 1.24 × 10–4

Copper 17 × 10–6 Gasoline 9.6 × 10–4

Glass
(ordinary)

9 × 10–6 Glycerin 4.85 × 10–4

Glass (Pyrex) 3.2 × 10–6 Mercury 1.82 × 10–4

Invar (Ni-Fe
alloy)

1.3 × 10–6 Turpentine 9.0 × 10–4

Lead 29 × 10–6 Air* at 0°C 3.67 × 10–3

Steel 13 × 10–6 Helium* 3.665 × 10–3

* The values given here assume the gases undergo expansion at constant pressure. However, the expansion of gases depends on
the pressure applied to the gas. Therefore, gases do not have a specific value for the volume expansion coefficient.

Table A15 Coefficients of thermal expansion for common substances

Medium v(m/s) Medium v(m/s) Medium v(m/s)

Gases Liquids at 25°C Solids*

Hydrogen 1286 Glycerol 1904 Pyrex glass 5640

Helium 972 Seawater 1533 Iron 5950

Air 343 Water 1493 Aluminum 5100

Air 331 Mercury 1450 Brass 4700

Oxygen 317 Kerosene 1324 Copper 3560

Methyl Alcohol 1143 Gold 3240

Carbon tetrachloride 926 Lucite 2680

Lead 1322

Rubber 1600

Table A16 Speed of sound in various substances
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Medium v(m/s) Medium v(m/s) Medium v(m/s)

*Values given here are for propagation of longitudinal waves in bulk media. However, speeds for longitudinal waves in thin rods
are slower, and speeds of transverse waves in bulk are even slower.

Table A16 Speed of sound in various substances

Source of Sound B(dB)

Nearby jet airplane 150

Jackhammer machine gun 130

Siren; rock concert 120

Subway; power lawn mower 100

Busy traffic 80

Vacuum cleaner 70

Normal Conversation 60

Mosquito buzzing 40

whisper 30

Rustling leaves 10

Threshold of hearing 0

Table A17 Conversion of sound intensity
to decibel level

Wavelength Range (nm) Color Description

400-430 Violet

430-485 Blue

485-560 Green

560-590 Yellow

590-625 Orange

625-700 Red

Table A18 Wavelengths of visible light
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Substance Index of Refraction Substance Index of Refraction

Solids at 20°C Liquids at 20°C

Cubic zirconia 2.15 Benzene 1.501

Diamond (C) 2.419 Carbon disulfide 1.628

Flourite (CaF2) 1.434 Carbon tetrachloride 1.461

Fused quartz (SiO2) 1.458 Ethyl alcohol 1.361

Gallium phosphide 3.50 Glycerin 1.473

Glass, crown 1.52 Water 1.333

Glass, flint 1.66

Ice (H2O) 1.309 Gases at 0°C, 1 atm

Polystyrene 1.49 Air 1.000 293

Sodium chloride (NaCl) 1.544 Carbon dioxide 1.000 45

Note: These values assume that light has a wavelength of 589 nm in vacuum.

Table A19 Indices of refraction

Hoop or thin cylindrical shell

Hollow cylinder

Solid cylinder or disk

Rectangular plane

Long, thin rod with rotation axis through center

Long, thin rod with rotation axis through end

Solid sphere

Thin spherical shell

Table A20 Moments of inertia for different shapes

μs μk

Rubber on dry concrete 1.0 0.8

Table A21 Coefficients of friction for common objects on other objects
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μs μk

Steel on steel 0.74 0.57

Aluminum on steel 0.61 0.47

Glass on glass 0.94 0.4

Copper on steel 0.53 0.36

Wood on wood 0.25-0.5 0.2

Waxed wood on wet snow 0.14 0.1

Waxed wood on dry snow 0.1 0.04

Metal on metal (lubricated) 0.15 0.06

Teflon on Teflon 0.04 0.04

Ice on ice 0.1 0.03

Synovial joints in humans 0.01 0.003

Note: All values are approximate. In some cases, the coefficient of friction can exceed 1.0.

Table A21 Coefficients of friction for common objects on other objects

Material Dielectric Constant ĸ Dielectric Strength* (106V/m)

Air (dry) 1.000 59 3

Bakelite 4.9 24

Fused quartz 4.3 8

Mylar 3.2 7

Neoprene rubber 6.7 12

Nylon 3.4 14

Paper 3.7 16

Paraffin-impregnated paper 3.5 11

Polystyrene 2.56 24

Polyvinyl chloride 3.4 40

Porcelain 6 8

Table A22 Dielectric constants
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Material Dielectric Constant ĸ Dielectric Strength* (106V/m)

Pyrex glass 5.6 14

Silicone oil 2.5 15

Strontium titanate 233 8

Teflon 2.1 60

Vacuum 1.000 00 ∞

Water 80 3

Table A22 Dielectric constants
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INDEX
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absolute zero 329
absorption spectrum 725
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acceleration due to gravity 104
Accuracy 26
acoustics 8
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air resistance 162
alpha (α) decay 738
alpha particle 738
alternating current 606
ampere 604
amplitude 180, 390, 417, 457
amplitude modulation 461
analytical method 153
Anger camera 758
angle of incidence 478
angle of reflection 478
angle of refraction 491
angle of rotation 198
angular acceleration 212, 261
angular momentum 261
angular velocity 198, 206
annihilation 753, 785
Antimatter 784
antinode 403, 437
Antoine Henri Becquerel 736
aphelion 230
arc length 198
atomic number 735
atoms 8
Average acceleration 94
Average speed 62
Average velocity 63

B
baryons 784
beat frequency 436

Beats 436
becquerel 744
beta ( β β ) decay 738
Big Bang 792
binding energy 317, 699
blackbody 692
Boltzmann constant 359
bottom 781

C
capacitor 582
carbon-14 dating 745
carrier particles 773
Celsius scale 328
central axis 481
centrifugal force 205
centripetal acceleration 205,
213
centripetal force 207
cesium atomic clock 20
chain reaction 749
change in momentum 254
charmed 781
chromatic aberration 505
circuit diagrams 613
Circular motion 198, 205
classical physics 8
closed system 286
closed-pipe resonator 439
coefficient of friction 119
Colliding beams 778
collision 256
collisions 262
color 782
complex machine 293
component 154
Compton 705
Compton effect 705
concave lens 499
concave mirror 481
Condensation 341

conduction 334, 556
conductors 555
conservation 259
Constant acceleration 99
constructive interference 400
convection 334
conventional current 605
converging lens 498
conversion factor 24, 24
convex lens 498
convex mirror 481
Copernican model 232
corner reflector 494
Coulomb 562
coulomb force 772
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Coulomb’s law 563
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Curie temperature 654
cyclical process 373
cyclotron 777

D
damping 435
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decibels 424
deformation 178
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degree Fahrenheit ( °F ( °F ) 328
dependent variable 34, 67
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destructive interference 401
dielectric 585
differential interference
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diffraction 525
diffraction grating 533
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direct current 606
direction 54
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dispersion 491
displacement 57, 73, 94, 100
distance 56
diverging lens 499
domains 653
Doppler effect 430
down 780
dynamics 7, 116

E
E.O. Lawrence 777
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Edwin Hubble 792
efficiency output 293
Einstein 698
elastic collision 262
electric circuits 612
Electric current 604
electric eye 702
electric field 456, 567
Electric motors 665
electric potential 575
Electric potential energy 572
electric power 632
electrical charge 562
Electricity 8
electromagnet 656
electromagnetic force 772
electromagnetic radiation
(EMR) 456
electromagnetism 661
electron 551
electron cloud model 15
Electroweak Epoch 793
electroweak theory 790
emf 673
emission spectrum 724
energy 280, 390
energy-level diagram 726
energy-mass curve 751
English units 19
Enrico Fermi 773
entropy 366
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equivalent resistor 618

Ernest Rutherford 722
ether 306
excited states 726
experiment 14
exponential relationship 37
external force 116
eyepiece 504

F
Fahrenheit scale 328
Faraday 567
Fermi National Accelerator
Laboratory 778
ferromagnetic 653
Feynman diagram 774
first law of
thermodynamics 361
flavors 780
Fletcher 551
focal length 481
focal point 481
Force 116, 254
force field 567
frame of reference 306
frame-dragging effect 242
frames of reference 314
Fraunhofer lines 725
free-body diagram 116
freefall 124
Freezing 341
Frequency 180, 390, 416, 457
frequency modulation 461
friction 118
fulcrum 215, 290
fundamental 438
fundamental physical 18
fusion reactors 756

G
Galilei 115
Galileo 55
gamma (γ) rays 457
Gamma decay 739

gauge pressure 417
Geiger tube 742
General relativity 305
generator 666
geodetic effect 242
geometric optics 478
George Zweig 780
glass rods 550
gluon 782
gluons 774
Grand Unification Epoch 793
Grand Unified Theory
(GUT) 790
graph 67, 73
graphical 144
gravitational 129
gravitational constant 238
gravitational force 117, 123, 772
Gravitational potential
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graviton 774, 776
Gravity 104, 123
ground state 726
gun-type bomb 754

H
hadrons 780
half-life 743
harmonic motion 416
harmonics 438
head 144
head-to-tail method 144
Hearing 427
Heat 328
heat capacity 332
heat engine 372
Heat pumps 374
Heisenberg uncertainty
principle 733
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Hideki Yukawa 773
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Huygens’s principle 525
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hydrogen-like atoms 728
hypothesis 14

I
ideal gas law 358
ideal mechanical
advantage 290
illuminance 467
impulse 254
impulse-momentum
theorem 254
in parallel 621
in series 618
incident ray 491
inclined plane 291
independent 162
independent variable 34, 67
index of refraction 488
induction 557, 672
inelastic collision 264
Inertia 120
inertial reference frame 307
Inflationary Epoch 793
infrared (IR) radiation 457
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input work 293
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Internal energy 361
Inverse proportionality 37
inverse relationship 37
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ionizing radiation 759
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J

joule 281

K
kelvin 20, 329
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Kepler 115
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kinematic equations 99
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kinetic energy 262, 280, 572
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L
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transformer 669
Large Hadron Collider 776
laser 532
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Observatory 776
latent heat 341
latent heat of fusion 342
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law of conservation of
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law of conservation of
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law of conservation of
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law of reflection 478
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Leptons 780
lever 290
lever arm 216
light years 466
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liquid drop model 748
log-log plot 38
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lux 467

M
magnetic dipoles 652
magnetic field 456, 654
magnetic flux 675
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magnetic pole 650
Magnetism 8
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Manhattan Project 754
Mass 120, 122, 254
mass defect 317
mass number 735
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mechanical advantage 290
mechanical energy 280
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medium 390
Melting 341
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Michelson–Morley
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Murray Gell-Mann 780
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Newton’s first law of
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Newton’s second law of
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Newton’s third law of
motion 128
Newton’s universal law of
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nuclear strong force 751
nucleons 735, 773
nuclide 736
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pair production 785
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protons 551
Ptolemaic model 232
pulley 292
pulse wave 390

Q
quadratic relationship 37
quantized 695
quantum 694
quantum
chromodynamics 774, 782
quantum electrodynamics 774
quantum mechanics 8, 694
Quark Era 793
quarks 780

R
rad 760

834 Index

Access for free at openstax.org.



Radar 461
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